1
|
Learning from transgenics: Advanced gene editing technologies should also bridge the gap with traditional genetic selection. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
2
|
Kashima K, Mejima M, Kurokawa S, Kuroda M, Kiyono H, Yuki Y. Comparative whole-genome analyses of selection marker-free rice-based cholera toxin B-subunit vaccine lines and wild-type lines. BMC Genomics 2015; 16:48. [PMID: 25653106 PMCID: PMC4320824 DOI: 10.1186/s12864-015-1285-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Background We have developed a rice-based oral cholera vaccine named MucoRice-CTB (Cholera Toxin B-subunit) by using an Agrobacterium tumefaciens–mediated co-transformation system. To assess the genome-wide effects of this system on the rice genome, we compared the genomes of three selection marker–free MucoRice-CTB lines with those of two wild-type rice lines (Oryza sativa L. cv. Nipponbare). Mutation profiles of the transgenic and wild-type genomes were examined by next-generation sequencing (NGS). Results Using paired-end short-read sequencing, a total of more than 300 million reads for each line were obtained and mapped onto the rice reference genome. The number and distribution of variants were similar in all five lines: the numbers of line-specific variants ranged from 524 to 842 and corresponding mutation rates ranged from 1.41 × 10−6 per site to 2.28 × 10−6 per site. The frequency of guanine-to-thymine and cytosine-to-adenine transversions was higher in MucoRice-CTB lines than in WT lines. The transition-to-transversion ratio was 1.12 in MucoRice-CTB lines and 1.65 in WT lines. Analysis of variant-sharing profiles showed that the variants common to all five lines were the most abundant, and the numbers of line-specific variant for all lines were similar. The numbers of non-synonymous amino acid substitutions in MucoRice-CTB lines (15 to 21) were slightly higher than those in WT lines (7 or 8), whereas the numbers of frame shifts were similar in all five lines. Conclusions We conclude that MucoRice-CTB and WT are almost identical at the genomic level and that genome-wide effects caused by the Agrobacterium-mediated transformation system for marker-free MucoRice-CTB lines were slight. The comparative whole-genome analyses between MucoRice-CTB and WT lines using NGS provides a reliable estimate of genome-wide differences. A similar approach may be applicable to other transgenic rice plants generated by using this Agrobacterium-mediated transformation system. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1285-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koji Kashima
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,Asahi Kogyosha Co., Ltd., Tokyo, Japan.
| | - Mio Mejima
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Shiho Kurokawa
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Masaharu Kuroda
- Crop Development Division, NARO Agriculture Research Center, Niigata, Japan.
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Ismail RM. Evaluation of genetically modified sugarcane lines carrying Cry 1AC gene using molecular marker techniques. GM CROPS & FOOD 2013; 4:58-66. [PMID: 23549345 DOI: 10.4161/gmcr.24299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Five genetically modified insect resistant sugarcane lines harboring the Bt Cry 1AC gene to produce insecticidal proteins were compared with non-transgenic control by using three types of molecular marker techniques namely, RAPD, ISSR and AFLP. These techniques were applied on transgenic and non-transgenic plants to investigate the genetic variations, which may appear in sugarcane clones. This variation might demonstrate the genomic changes associated with the transformation process, which could change important molecular basis of various biological phenomena. Genetic variations were screened using 22 different RAPD primers, 10 ISSR primers and 13 AFLP primer combinations. Analysis of RAPD and ISSR banding patterns gave no exclusive evidence for genetic variations. Meanwhile, the percentage of polymorphic bands was 0.45% in each of RAPD and ISSR, while the polymorphism generated by AFLP analysis was 1.8%. The maximum percentage of polymorphic bands was 1.4%, 1.1% and 5.5% in RAPD, ISSR and AFLP, respectively. These results demonstrate that most transgenic lines showed genomic homogeneity and verified minor genomic changes. Dendrograms revealing the relationships among the transgenic and control plants were developed from the data of each of the three marker types.
Collapse
Affiliation(s)
- Roba M Ismail
- Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
| |
Collapse
|
4
|
Gao D, He B, Zhou Y, Sun L. Genetic and molecular analysis of a purple sheath somaclonal mutant in japonica rice. PLANT CELL REPORTS 2011; 30:901-11. [PMID: 21249365 DOI: 10.1007/s00299-011-1004-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/21/2010] [Accepted: 01/05/2011] [Indexed: 05/24/2023]
Abstract
Natural and artificially induced mutants have provided valuable resources for plant genetic studies and crop improvement. In this study, we investigated the genetic and molecular basis of the purple sheath trait in a somaclonal mutant Z418, which was regenerated from a green sheath rice variety C418 through tissue culture. The purple sheath trait in Z418 was heritable and stable based on our 10 years of evaluation. Genetic analysis revealed that the purple sheath trait of the mutant was controlled by a single dominant gene. To map the gene, we scored 89 polymorphic SSRs markers in a F(2) population of 232 plants derived from a cross between Z418 and HX-3, an indica variety with green sheath trait. The gene was initially mapped to the short arm of chromosome 6 between two SSR markers, RPM5 and RM402, with a genetic distance of 1.1 and 10.3 cM, respectively. Thirty-one SSR and indel markers located within the target region were further used to fine-map the gene to a 153-kb interval between two SSR markers (RPM8 and RPM11). The OsC1 gene, which locates within the region and encodes a MYB family transcription factor, was chosen as the candidate gene controlling the purple sheath trait in Z418. Sequencing analysis revealed that OsC1 gene and its transcript in Z418 was 34 bp longer than that in C418. The possible mechanisms for the gene mutation, the developmental and tissue-specific expression of purple anthocyanin pigmentation in Z418, were finally discussed.
Collapse
Affiliation(s)
- Dongying Gao
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | | | | | | |
Collapse
|
5
|
Latham JR, Wilson AK, Steinbrecher RA. The mutational consequences of plant transformation. J Biomed Biotechnol 2010; 2006:25376. [PMID: 16883050 PMCID: PMC1559911 DOI: 10.1155/jbb/2006/25376] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant transformation is a genetic engineering tool for introducing transgenes into plant genomes. It is now being used for the
breeding of commercial crops. A central feature of transformation is insertion of the transgene into plant chromosomal DNA.
Transgene insertion is infrequently, if ever, a precise event. Mutations found at transgene insertion sites include deletions and
rearrangements of host chromosomal DNA and introduction of superfluous DNA. Insertion sites introduced using Agrobacterium tumefaciens tend to have simpler structures but can be associated with extensive chromosomal rearrangements, while those of particle bombardment appear invariably to be associated with deletion and extensive scrambling of inserted and chromosomal DNA. Ancillary procedures associated with plant transformation, including tissue culture and infection with A tumefaciens, can also introduce mutations. These genome-wide mutations can number from hundreds to many thousands per diploid genome.
Despite the fact that confidence in the safety and dependability of crop species rests significantly
on their genetic integrity, the frequency of transformation-induced mutations and their importance as potential biosafety hazards are poorly understood.
Collapse
Affiliation(s)
- Jonathan R. Latham
- Bioscience Resource Project, PO Box 66,
Ledbury HR8 9AE, UK
- EcoNexus, PO Box 3279, Brighton BN1 1TL, UK
- *Jonathan R. Latham:
| | - Allison K. Wilson
- Bioscience Resource Project, PO Box 66,
Ledbury HR8 9AE, UK
- EcoNexus, PO Box 3279, Brighton BN1 1TL, UK
| | | |
Collapse
|
6
|
Tyagi AK, Mohanty A, Bajaj S, Chaudhury A, Maheshwari SC. Transgenic Rice: A Valuable Monocot System for Crop Improvement and Gene Research. Crit Rev Biotechnol 2008. [DOI: 10.1080/0738-859991229198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Zolla L, Rinalducci S, Antonioli P, Righetti PG. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res 2008; 7:1850-61. [PMID: 18393457 DOI: 10.1021/pr0705082] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To improve the probability of detecting unintended side effects during maize gene manipulations by bombardment, proteomics was used as an analytical tool complementary to the existing safety assessment techniques. Since seed proteome is highly dynamic, depending on the species variability and environmental influence, we analyzed the proteomic profiles of one transgenic maize variety (event MON 810) in two subsequent generations (T05 and T06) with their respective isogenic controls (WT05 and WT06). Thus, by comparing the proteomic profiles of WT05 with WT06 we could determine the environmental effects, while the comparison between WT06 and T06 seeds from plants grown under controlled conditions enabled us to investigate the effects of DNA manipulation. Finally, by comparison of T05 with T06 seed proteomes, it was possible to get some indications about similarities and differences between the adaptations of transgenic and isogenic plants to the same strictly controlled growth environment. Approximately 100 total proteins resulted differentially modulated in the expression level as a consequence of the environmental influence (WT06 vs WT05), whereas 43 proteins resulted up- or down-regulated in transgenic seeds with respect to their controls (T06 vs WT06), which could be specifically related to the insertion of a single gene into a maize genome by particle bombardment. Transgenic seeds responded differentially to the same environment as compared to their respective isogenic controls, as a result of the genome rearrangement derived from gene insertion. To conclude, an exhaustive differential proteomic analysis allows to determine similarities and differences between traditional food and new products (substantial equivalence), and a case-by-case assessment of the new food should be carried out in order to have a wide knowledge of its features.
Collapse
Affiliation(s)
- Lello Zolla
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy.
| | | | | | | |
Collapse
|
8
|
Filipecki M, Malepszy S. Unintended consequences of plant transformation: A molecular insight. J Appl Genet 2006; 47:277-86. [PMID: 17132892 DOI: 10.1007/bf03194637] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant genomes are dynamic structures having both the system to maintain and accurately reproduce the information encoded therein and the ability to accept more or less random changes, which is one of the foundations of evolution. Crop improvement and various uncontrolled stress factors can induce unintended genetic and epigenetic variations. In this review it is attempted to summarize factors causing such changes and the molecular nature of these variations in transgenic plants. Unintended effects in transgenic plants can be divided into three main groups: first, pleiotropic effects of integrated DNA on the host plant genome; second, the influence of the integration site and transgene architecture on transgene expression level and stability; and third, the effect of various stresses related to tissue handling, regeneration and clonal propagation. Many of these factors are recently being redefined due to new researches, which apply modern highly sensitive analytical techniques and sequenced model organisms. The ability to inspect large portions of genomes clearly shows that tissue culture contributes to a vast majority of observed genetic and epigenetic changes. Nevertheless, monitoring of thousands transcripts, proteins and metabolites reveals that unintended variation most often falls in the range of natural differences between landraces or varieties. We expect that an increasing amount of evidence on many important crop species will support these observations in the nearest future.
Collapse
|
9
|
|
10
|
Henry Y, Nato A, de Buyser J. Genetic Fidelity of Plants Regenerated from Somatic Embryos of Cereals. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-94-015-9125-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
|
11
|
Poplar (Populus nigra L.) plants transformed with aBacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res 1996. [DOI: 10.1007/bf01968939] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|