1
|
Leitão MM, Gonçalves ASC, Borges F, Simões M, Borges A. Polypharmacological strategies for infectious bacteria. Pharmacol Rev 2025; 77:100038. [PMID: 40022769 DOI: 10.1016/j.pharmr.2025.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 03/04/2025] Open
Abstract
Polypharmacological approaches have significant potential for the treatment of various complex diseases, including infectious bacteria-related diseases. Actually, multitargeting agents can achieve better therapeutic effects and overcome the drawbacks of monotherapy. Although multidrug multitarget strategies have demonstrated the ability to inactivate infectious bacteria, several challenges have been pointed out. In this way, multitarget direct ligands approaches appear to be a rational and sustainable strategy to combat antibiotic resistance. By combining different pharmacophores, antibiotic hybrids stand out as a promising application in the field of bacterial infections. These new chemical entities can achieve synergistic interactions that allow to extend the spectrum of action and target multiple pathways. In addition, antibiotic hybrids can reduce the likelihood of resistance development and provide improved chemical stability. It is worth highlighting that despite the efforts of the scientific community to discover new solutions for the most complex diseases, there is a significant lack of studies on biofilm-associated infections. This review describes the different polypharmacological approaches that can be used to treat bacterial infections with a particular focus, whenever possible, on those promoted by biofilms. By exploring these innovative approaches, we aim to inspire further research and progress in the search for effective treatments for infectious bacteria-related diseases, including biofilm-related ones. SIGNIFICANCE STATEMENT: The importance of the proposed topic lies in the escalating challenge of antibiotic resistance, particularly in the context of infectious bacteria-related infections. Polypharmacological approaches, such as antibiotic hybrids, represent innovative strategies to combat bacterial infections. By targeting multiple signaling pathways, these approaches not only enhance therapeutic effect but also reduce the development of resistance while improving the drug's chemical stability. Despite the urgent need to combat bacterial infectious diseases, there is a notable research gap, in particular in biofilm-related ones. This review highlights the critical importance of exploring polypharmacological approaches with the aim of motivating further research and advances in effective treatments for infectious bacteria, including biofilm related infections.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
In Vitro Selective Combinatory Effect of Ciprofloxacin with Nitroxoline, Sanguinarine, and Zinc Pyrithione against Diarrhea-Causing and Gut Beneficial Bacteria. Microbiol Spectr 2022; 10:e0106322. [PMID: 35972279 PMCID: PMC9603368 DOI: 10.1128/spectrum.01063-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance in diarrhea-causing bacteria and its disruption of gut microbiota composition are health problems worldwide. The development of combinatory agents that increase the selective inhibitory effect (synergism) against diarrheagenic pathogens and, simultaneously, have a lowered impact (antagonism) or no negative action on the gut microbiota is therefore proposed as a new strategy efficient for chemotherapy against diarrheal conditions. In this study, the in vitro selective combinatory effect of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione, representing various classes of alkaloid-related compounds (nitroquinolines, benzylisoquinolines and metal-pyridine derivative complexes) against selected standard diarrhea-causing (Bacillus cereus, Enterococcus faecalis, Listeria monocytogenes, Shigella flexneri, and Vibrio parahaemolyticus) and gut-beneficial (Bifidobacterium adolescentis, Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, Lactobacillus casei, and Lactobacillus rhamnosus) bacteria, was evaluated according to the sum of fractional inhibitory concentration indices (FICIs) obtained by the checkerboard method. The results showed that the individual combination of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione produced a synergistic effect against the pathogenic bacteria, with FICI values ranging from 0.071 to 0.5, whereas their antagonistic interaction toward the Bifidobacterium strains (with FICI values ranging from 4.012 to 8.023) was observed. Ciprofloxacin-zinc pyrithione produced significant synergistic action against S. flexneri, whereas a strong antagonistic interaction was observed toward B. breve for the ciprofloxacin-nitroxoline combination. These findings suggest that certain combinations of agents tested in this study can be used for the development of antidiarrheal therapeutic agents with reduced harmful action on the gastrointestinal microbiome. However, further studies focused on their pharmacological efficacy and safety are needed before they are considered for clinical trials. IMPORTANCE Diarrheal infections, which are commonly treated by antibiotics, are still responsible for over 4 to 5 million cases of human deaths annually. Moreover, the rising incidence of antibiotic resistance and its negative effect on beneficial bacteria (e.g., Bifidobacteria) of the gut microbial community are another problem. Thus, the development of selective agents able to inhibit diarrheal bacteria and, simultaneously, that have no negative impact on the gut microbiota, is important. Our results showed that individual combinations of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione produced synergism against the pathogenic bacteria, whereas their antagonistic interaction toward the beneficial strains was observed. The antagonism can be considered a positive effect contributing to the safety of the therapeutic agents, whereas their synergism against diarrheal bacteria significantly potentiates total antimicrobial efficacy. The certain combinations tested in this study can be used for the development of antidiarrheal agents with reduced harmful action on the gastrointestinal microbiome.
Collapse
|
3
|
Fois B, Skok Ž, Tomašič T, Ilaš J, Zidar N, Zega A, Peterlin Mašič L, Szili P, Draskovits G, Nyerges Á, Pál C, Kikelj D. Dual
Escherichia coli
DNA Gyrase A and B Inhibitors with Antibacterial Activity. ChemMedChem 2019; 15:265-269. [DOI: 10.1002/cmdc.201900607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Benedetta Fois
- Faculty of Pharmacy University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
- Faculty of Biology and Pharmacy University of Cagliari Via Ospedale 72 09124 Cagliari Italy
| | - Žiga Skok
- Faculty of Pharmacy University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Nace Zidar
- Faculty of Pharmacy University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Lucija Peterlin Mašič
- Faculty of Pharmacy University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Petra Szili
- Synthetic and Systems Biology Unit Hungarian Academy of Sciences Szeged 6726 Hungary
- Doctoral School of Multidisciplinary Medical Sciences University of Szeged Szeged 6720 Hungary
| | - Gábor Draskovits
- Synthetic and Systems Biology Unit Hungarian Academy of Sciences Szeged 6726 Hungary
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit Hungarian Academy of Sciences Szeged 6726 Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit Hungarian Academy of Sciences Szeged 6726 Hungary
| | - Danijel Kikelj
- Faculty of Pharmacy University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| |
Collapse
|
4
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
5
|
4-Quinolone hybrids and their antibacterial activities. Eur J Med Chem 2017; 141:335-345. [DOI: 10.1016/j.ejmech.2017.09.050] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 01/28/2023]
|
6
|
Pharmacokinetic interaction of enrofloxacin/trimethoprim combination following single-dose intraperitoneal and oral administration in rats. Eur J Drug Metab Pharmacokinet 2013; 39:11-6. [DOI: 10.1007/s13318-013-0142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
7
|
Mechanism-independent method for predicting response to multidrug combinations in bacteria. Proc Natl Acad Sci U S A 2012; 109:12254-9. [PMID: 22773816 DOI: 10.1073/pnas.1201281109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Drugs are commonly used in combinations larger than two for treating bacterial infection. However, it is generally impossible to infer directly from the effects of individual drugs the net effect of a multidrug combination. Here we develop a mechanism-independent method for predicting the microbial growth response to combinations of more than two drugs. Performing experiments in both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, we demonstrate that for a wide range of drugs, the bacterial responses to drug pairs are sufficient to infer the effects of larger drug combinations. To experimentally establish the broad applicability of the method, we use drug combinations comprising protein synthesis inhibitors (macrolides, aminoglycosides, tetracyclines, lincosamides, and chloramphenicol), DNA synthesis inhibitors (fluoroquinolones and quinolones), folic acid synthesis inhibitors (sulfonamides and diaminopyrimidines), cell wall synthesis inhibitors, polypeptide antibiotics, preservatives, and analgesics. Moreover, we show that the microbial responses to these drug combinations can be predicted using a simple formula that should be widely applicable in pharmacology. These findings offer a powerful, readily accessible method for the rational design of candidate therapies using combinations of more than two drugs. In addition, the accurate predictions of this framework raise the question of whether the multidrug response in bacteria obeys statistical, rather than chemical, laws for combinations larger than two.
Collapse
|
8
|
Pokrovskaya V, Baasov T. Dual-acting hybrid antibiotics: a promising strategy to combat bacterial resistance. Expert Opin Drug Discov 2010; 5:883-902. [DOI: 10.1517/17460441.2010.508069] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Varvara Pokrovskaya
- Technion – Israel Institute of Technology, The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Haifa 32000, Israel ;
| | - Timor Baasov
- Technion – Israel Institute of Technology, The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Haifa 32000, Israel ;
| |
Collapse
|
9
|
Abstract
This review emphasises the advances in the development of newer quinolones: their broader antimicrobial activity particularly their increased activity against Pneumococcus and anaerobes; their longer half-life and tissue penetration including activity in cerebrospinal fluid; and their excellent efficacy in respiratory, intra-abdominal, pelvic, and skin and soft tissue infections. Also, considerable progress has been made in our understanding of the development of bacterial resistance to the newer quinolones. Additional advances in quinolone development are likely to provide better compounds for clinical use.
Collapse
Affiliation(s)
- V T Andriole
- Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| |
Collapse
|
10
|
Postelnick M, Halbur SR. Pharmacologic considerations with antimicrobials used in oncology. Cancer Treat Res 1998; 96:247-82. [PMID: 9711403 DOI: 10.1007/978-0-585-38152-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M Postelnick
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois 60611, USA
| | | |
Collapse
|
11
|
Huovinen S, Kotilainen P, Järvinen H, Malanin K, Sarna S, Helander I, Huovinen P. Comparison of ciprofloxacin or trimethoprim therapy for venous leg ulcers: results of a pilot study. J Am Acad Dermatol 1994; 31:279-81. [PMID: 8040418 DOI: 10.1016/s0190-9622(08)81980-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S Huovinen
- Department of Dermatology, Turku University Central Hospital, Finland
| | | | | | | | | | | | | |
Collapse
|