1
|
Ferreira AMV, Viana PF, Marajó L, Feldberg E. First Karyotypic Insights into Potamotrygon schroederi Fernández-Yépez, 1958: Association of Different Classes of Repetitive DNA. Cytogenet Genome Res 2024; 164:60-68. [PMID: 38744250 DOI: 10.1159/000539331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Currently, there are 38 valid species of freshwater stingrays, and these belong to the subfamily Potamotrygoninae. However, cytogenetic information about this group is limited, with studies mainly using classical techniques, Giemsa, and C-banding. METHODS In this study, we used classical and molecular cytogenetic techniques - mapping of 18S and 5S rDNA and simple sequence repeats (SSRs) - in order to investigate the karyotypic composition of Potamotrygon schroederi and reveal the karyoevolutionary trends of this group. RESULTS The species presented 2n = 66 chromosomes with 18m + 12sm + 16st + 20a, heterochromatic blocks distributed in the centromeric regions of all the chromosomes, and terminal blocks in the q arm of pairs 2 and 3. Mapping of 18S rDNA regions revealed multiple clusters on pairs 2 and 7 and a homolog of pair 24. The 5S rDNA region was found in the pericentromeric portion of the subtelocentric pair 16. Furthermore, dinucleotide SSRs sequences were found in the centromeric and terminal regions of different chromosomal pairs, with preferential accumulation in pair 17. In addition, we identified conspicuous blocks of (GATA)n and (GACA)n sequences colocalized with the 5S rDNA (pair 16). CONCLUSION In general, this study corroborates the general trend of a reduction in 2n in the species of Potamotrygoninae subfamily. Moreover, we found that the location of rDNA regions is very similar among Potamotrygon species, and the SSRs accumulation in the second subtelocentric pair (17) seems to be a common trait in this genus.
Collapse
Affiliation(s)
- Alex M V Ferreira
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Patrik F Viana
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Leandro Marajó
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| | - Eliana Feldberg
- Programa de Pós-graduação em Genética Conservação e Biologia Evolutiva - PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brazil
| |
Collapse
|
2
|
Ferreira AMV, Viana PF, Marajó L, Feldberg E. Karyotypic variation of two populations of the small freshwater stingray Potamotrygon wallacei Carvalho, Rosa & Araújo 2016: A classical and molecular approach. PLoS One 2023; 18:e0278828. [PMID: 36662738 PMCID: PMC9858463 DOI: 10.1371/journal.pone.0278828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 01/21/2023] Open
Abstract
Potamotrygoninae comprises a group of Neotropical fishes with an ancient relationship with marine environments. In the last few years, 11 new Potamotrygon species were described, including Potamotrygon wallacei Carvalho, Araújo e Rosa 2016. Cytogenetic data about this species are limited to classical markers (Giemsa, C-Banding and Ag-NOR techniques), these studies highlighted a rare sexual chromosome system XX/X0 with males presenting 67 chromosomes and females 68 chromosomes. The classical analyses performed here reveled populational variation in the karyotype formula, as well as, in the heterochromatin regions. Besides the classical markers, our molecular experiments showed multiple sites for 18S rDNA sequence (including in the X chromosomes) and single sites for 5S rDNA sequence, we did not find interstitial telomeric sequences. In addition, (AC)15, (AG)15, and (CAC)15 microsatellites showed association with the several autosome pair, and the (GT)15 clutters were found in only one population. On the other hand, (GATA)4 sequence showed association with the sexual chromosomes X in all males and females analyzed. Our results showed that pericentric inversions, in addition to fusions, shaped the karyotype of P. wallacei once we found two populations with distinct karyotype formula and this could be a result of the past events recovered by our modeling experiments. Besides, here we described the association of 18S and (GATA)4 motifs with sexual chromosomes, which indicated that these sequences had a novel in the differentiation of sexual chromosomes in P. wallacei.
Collapse
Affiliation(s)
- Alex M. V. Ferreira
- Programa de Pós-Graduação em Genética Conservação e Biologia Evolutiva – PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Leandro Marajó
- Programa de Pós-Graduação em Genética Conservação e Biologia Evolutiva – PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| |
Collapse
|
3
|
Spangenberg V, Redekop I, Simanovsky SA, Kolomiets O. Cytogenetic Analysis of the Bimodal Karyotype of the Common European Adder, Vipera berus (Viperidae). Animals (Basel) 2022; 12:3563. [PMID: 36552484 PMCID: PMC9774092 DOI: 10.3390/ani12243563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Vipera berus is the species with the largest range of snakes on Earth and one of the largest among reptiles in general. It is also the only snake species found in the Arctic Circle. Vipera berus is the most involved species of the genus Vipera in the process of interspecific hybridization in nature. The taxonomy of the genus Vipera is based on molecular markers and morphology and requires clarification using SC-karyotyping. This work is a detailed comparative study of the somatic and meiotic karyotypes of V. berus, with special attention to DNA and protein markers associated with synaptonemal complexes. The karyotype of V. berus is a remarkable example of a bimodal karyotype containing both 16 large macrochromosomes and 20 microchromosomes. We traced the stages of the asynchronous assembly of both types of bivalents. The number of crossing-over sites per pachytene nucleus, the localization of the nucleolar organizer, and the unique heterochromatin block on the autosomal bivalent 6-an important marker-were determined. Our results show that the average number of crossing-over sites per pachytene nucleus is 49.5, and the number of MLH1 sites per bivalent 1 reached 11, which is comparable to several species of agamas.
Collapse
Affiliation(s)
- Victor Spangenberg
- Vavilov Institute of General Genetics, RAS, Moscow 119991, Russia
- Severtsov Institute of Ecology and Evolution, RAS, Moscow 119071, Russia
| | - Ilya Redekop
- Vavilov Institute of General Genetics, RAS, Moscow 119991, Russia
- Severtsov Institute of Ecology and Evolution, RAS, Moscow 119071, Russia
- Moscow Region State Pedagogical University, Mytischi 141014, Russia
| | | | - Oxana Kolomiets
- Vavilov Institute of General Genetics, RAS, Moscow 119991, Russia
| |
Collapse
|
4
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Cruz VPD, Nobile MLO, Paim FG, Adachi AMCDL, Ribeiro GDS, Ferreira DC, Pansonato-Alves JC, Charvet P, Oliveira C, Foresti F. Cytogenetic and molecular characteristics of Potamotrygon motoro and Potamotrygon sp. (Chondrichthyes, Myliobatiformes, Potamotrygonidae) from the Amazon basin: Implications for the taxonomy of the genus. Genet Mol Biol 2021; 44:e20200083. [PMID: 33835125 PMCID: PMC8033572 DOI: 10.1590/1678-4685-gmb-2020-0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
The chromosomes of two freshwater stingrays, Potamotrygon motoro and Potamotrygon sp., from the Amazon River basin in Brazil were investigated using integrated molecular (cytochrome c oxidase subunit 1) and cytogenetic analyses. Potamotrygon motoro presented intraspecific variation in the diploid number, with 2n=66 in the females and 2n=65 in the males, while Potamotrygon sp. had a karyotype with 66 chromosomes, in both sexes. The C-banding revealed the presence of heterochromatic blocks accumulated in the centromeric region of all the chromosomes in both species. The FISH assays with 18S DNA probes highlighted the terminal region of three or four chromosome pairs in P. motoro and seven chromosomes in Potamotrygon sp. The rDNA 5S sequences were found in only one chromosomal pair in both species. The interspecific genetic distance based on the COI sequences, between P. motoro and Potamotrygon sp. from Amazon River was 10.8%, while that between the Amazonian P. motoro and Potamotrygon amandae from the Paraná River was 2.2%, and the genetic distance between Potamotrygon sp. and P. amandae was 11.8%. In addition to the new insights on the cytogenetics of the study species, the results of the present study confirmed the existence of heteromorphic sex-linked chromosomes in P. motoro.
Collapse
Affiliation(s)
- Vanessa Paes da Cruz
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Maria Ligia Oliveira Nobile
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Fabilene Gomes Paim
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Aisni Mayumi Correia de Lima Adachi
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Giovana da Silva Ribeiro
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Daniela Carvalho Ferreira
- Universidade Federal de Mato Grosso (UFMT), Instituto de Biociências, Departamento de Biologia e Zoologia, Cuiabá, MT, Brazil
| | - José Carlos Pansonato-Alves
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Patrícia Charvet
- Universidade Federal do Paraná (UFPR), Departamento de Engenharia Ambiental, Laboratório de Ecologia e Conservação, Curitiba, PR, Brazil.,Universidade Federal do Ceará (UFC), Departamento de Biologia, Programa de Pós-Graduação em Sistemática, Uso e Conservação da Biodiversidade, Fortaleza, CE, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| |
Collapse
|
6
|
Menezes RST, Gazoni T, Costa MA. Cytogenetics of warrior wasps (Vespidae:Synoeca) reveals intense evolutionary dynamics of ribosomal DNA clusters and an unprecedented number of microchromosomes in Hymenoptera. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodolpho S T Menezes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras – Universidade de São Paulo (FFCLRP/USP), Ribeirão Preto, SP, Brazil
| | - Thiago Gazoni
- Departamento de Biologia – Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, SP, Brazil
| | - Marco A Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
7
|
Rocco L. Molecular and Chromosomal Markers for Evolutionary Considerations in Torpediniformes (Chondrichthyes, Batoidea). ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/808750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to their basal position in the vertebrate phylogenetic tree, the study on elasmobranch genetics and cytogenetics can provide remarkable information on the mechanisms underlying the evolution of all vertebrates. In recent years, different molecular approaches have been used to study the relationships between the different taxonomic groups of cartilaginous fish, among them are the physical mapping of specific nucleotide sequences on chromosomes. However, these are controversial, particularly in Torpediniformes in which the species have different karyological parameters. The purpose of this paper is to gather the molecular markers so far present in literature that were used to reconstruct the phylogenetic position of Torpediniformes with respect to the other Batoidea and to discriminate between the various chromosome pairs in the endemic species in the Mediterranean Sea, Torpedo torpedo, T. marmorata and T. nobiliana. The 5S and 18S ribosomal DNA, the HpaI and Alu SINE, the telomeric (TTAGGG)n and the spermatogenesis-related SPATA 16, SPATA 18, and UTY sequences were particularly useful. These last genomic segments were also able to differentiate between the male and the female karyotypes. Moreover, the torpedoes showed a particular genomic organization, especially Torpedo torpedo, in which large quantities of highly repeated DNA and a characteristic distribution of heterochromatin, which is never centromeric, were observed.
Collapse
Affiliation(s)
- Lucia Rocco
- Department of Life Sciences, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
8
|
Rocco L. Sex-related genomic sequences in cartilaginous fish: an overview. Cytogenet Genome Res 2013; 141:169-76. [PMID: 24052041 DOI: 10.1159/000354773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sex determination and differentiation are key events in the development of either the testis or ovary in fish. Sex determination mechanisms include environmental and genetic regulation. Research on sex determination systems and their related genes have been implemented in the teleost species, but the amount of information about these genes in cartilaginous fish is very scarce. This paper summarizes the few available data on molecular studies and chromosome localization of specific sequences useful to discriminate between various chromosome pairs in the common torpedo, Torpedo torpedo, and in the scyliorhinid coral catshark, Atelomycterus marmoratus, species that do not have morphologically distinct sex chromosomes. In addition, recent results obtained by sequence analysis of foxl2, a female-specific gene expressed during early phases of gonadal development in interesting key-species, such as the holocephalian Callorhinchus milii, is discussed. Nevertheless, the mechanism of sex determination in cartilaginous fish remains largely unknown. Further research needs to be carried out regarding the importance of basic and applied sex determination studies in fish, including chromosomal distribution of sex-related sequences.
Collapse
Affiliation(s)
- L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|
9
|
Rocco L, Bencivenga S, Archimandritis A, Stingo V. Molecular characterization and chromosomal localization of spermatogenesis related sequences in Torpedo torpedo (Chondrichthyes, Torpediniformes). Mar Genomics 2009; 2:99-102. [DOI: 10.1016/j.margen.2009.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
10
|
Rocco L, Liguori I, Costagliola D, Morescalchi MA, Tinti F, Stingo V. Molecular and karyological aspects of Batoidea (Chondrichthyes, Elasmobranchi) phylogeny. Gene 2007; 389:80-6. [PMID: 17098380 DOI: 10.1016/j.gene.2006.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 11/24/2022]
Abstract
Although considerable progress has been made in elucidating the relationships within the Chondrichthyes, there is no agreement as it concerns the systematics of Batoidea, the most derived superorder among cartilaginous fishes, and many different interpretations exist. Our investigation provides the first assessment of relationships among the described batoid species using sequences from both mtDNA and nuclear genes as well as karyological morphology. Our work consists primarily in reconstructing the phylogenetic relationships of Batoidea by examining the mtDNA (16S) and nuclear gene (18S) sequences from 11 batoid species. The three analytical methods (NJ, MP and Bayesian analysis) grouped Rajiformes, Myliobatiformes and Rhinobatiformes. In these trees the two torpedoes diverge from the other batoid fishes. We also compare the molecular data with the available karyological evidence, which consist of the diploid number and the karyotype morphology of eight species belonging to the four orders examined. The results show that the karyological structure in the different species is generally consistent with the various phylogenetical trees, and that Torpediniformes confirm their unique genome organization.
Collapse
Affiliation(s)
- Lucia Rocco
- Department of Life Sciences, Via Vivaldi, 43, Caserta, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Rocco L, Costagliola D, Fiorillo M, Tinti F, Stingo V. Molecular and chromosomal analysis of ribosomal cistrons in two cartilaginous fish, Taeniura lymma and Raja montagui (Chondrichthyes, Batoidea). Genetica 2005; 123:245-53. [PMID: 15954495 DOI: 10.1007/s10709-004-2451-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We used silver nitrate staining, CMA3 and FISH to study the chromosomal localization of both the major ribosomal genes and the nucleolar organizer regions as well as that of the minor ribosomal genes (5S rDNA) in two species of Batoidea, Taeniura lymma (Dasyatidae) and Raja montagui (Rajidae). In both species, all the metaphases examined showed the presence of multiple NOR-bearing sites, while the gene for 5S rRNA proved to be localized on two chromosome pairs. Furthermore, one of the two 5S rDNA sites in T. lymma was shown to be co-localized with the major ribosomal cluster. The presence of multiple nucleolar organizer regions in the two species might be interpreted as being the result of intraspecific polymorphisms, or as a phenomenon of the amplified transposition of mobile elements of the genome. We also determined the nucleotide sequence of the 5S rRNA gene, consisting of 564 bp in R. montagui and 612 bp in T. lymma. We also found TATA-like and (TGC)n trinucleotides, (CA)n dinucleotides and (GTGA)n tetranucleotides, which probably influence gene regulation.
Collapse
Affiliation(s)
- L Rocco
- Department of Life Sciences, Second University of Naples, Via Vivaldi 43, 81100 - Caserta, Italy.
| | | | | | | | | |
Collapse
|
12
|
Rocco L, Morescalchi MA, Costagliola D, Stingo V. Karyotype and genome characterization in four cartilaginous fishes. Gene 2002; 295:289-98. [PMID: 12354664 DOI: 10.1016/s0378-1119(02)00730-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Different approaches can be used to elucidate the unsolved questions concerning taxonomic evolution in cartilaginous fish. The study of the karyological characteristics of these vertebrates by combining molecular and traditional techniques of chromosome preparation and banding has been demonstrated to be a very effective method. In this paper we studied the localization and the composition of the constitutive heterochromatin by using C- and restriction endonuclease-banding in four selachian species, belonging to two of the four superorders. We also characterized two different types of repetitive genomic sequences in these species: satellite DNA and (TTAGGG)(n) telomeric sequences. Finally, we analysed the nuclear ribosomal gene to determine the number of the nucleolar organizers and their position on chromosomes by using silver staining, chromomycin A(3), and FISH (fluorescent in situ hybridization). The results showed a prevailingly telomeric localization of constitutive heterochromatin in the Galeomorphii, the presence of additional nucleolar organizer sites in Raja asterias, an exclusively telomeric localization of the (TTAGGG)(n) sequences in Scyliorhinus stellaris and both telomeric and interstitial in Taeniura lymma. These data, together with those concerning the conservation of the satellite DNA, seem to support the hypothesis that Chondrichthyes have an evolutionary history leading them to the acquisition of large genomes rich in highly repeated sequences and subjected to some selective pressures favoring the conservation of this DNA fraction.
Collapse
Affiliation(s)
- Lucia Rocco
- Second University of Naples, Dipartimento di Scienze della Vita, via Vivaldi 43, Caserta, Italy.
| | | | | | | |
Collapse
|
13
|
Abstract
The distribution of telomeric sequence (TTAGGG)n in the genomes of Chondrichthian species at different stages of evolution was investigated both by DNA genomic hybridization, and by fluorescence in-situ hybridization (FISH) of metaphase chromosomes. The sequence is highly conserved in all the species examined. FISH revealed a label uptake only by the telomeres in Raja asterias. However, in Torpedo ocellata, we revealed pericentromeric and interstitial sequence localization on some chromosome pairs in addition to the hybridization signal on telomeres. These findings confirm that the karyotype evolution of these fish began by Robertsonian fusion.
Collapse
Affiliation(s)
- L Rocco
- Dipartimento di Scienze della Vita, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy.
| | | | | |
Collapse
|
14
|
Rocco L, Stingo V, Bellitti M. Cloning and characterization of a repetitive DNA detected by HindIII in the genome of Raja montagui (Batoidea, Chondrichthyes). Gene 1996; 176:185-9. [PMID: 8918251 DOI: 10.1016/0378-1119(96)00244-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A repetitive HindIII fragment of DNA from Raja montagui (Rajiformes) was cloned and sequenced for the first time in cartilaginous fishes. This element, which comprises approximately 5% of the whole genome of the spotted ray, is absent in long tandem arrays, being typical of satellite DNA. It appeared constituted by 311 AT-rich bp (61%). The clone was hybridized to the genomic DNA of species with varying phyletic distances, revealing a high degree of conservation.
Collapse
Affiliation(s)
- L Rocco
- Department of Evolutionary and Comparative Biology, University of Naples, Federico II, Italy
| | | | | |
Collapse
|