1
|
Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc Natl Acad Sci U S A 2019; 116:5387-5392. [PMID: 30842280 PMCID: PMC6431231 DOI: 10.1073/pnas.1813987116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many approaches to the origin of life focus on how the molecules found in biology might be made in the absence of biological processes, from the simplest plausible starting materials. Another approach could be to view the emergence of the chemistry of biology as process whereby the environment effectively directs "primordial soups" toward structure, function, and genetic systems over time. This does not require the molecules found in biology today to be made initially, and leads to the hypothesis that environment can direct chemical soups toward order, and eventually living systems. Herein, we show how unconstrained condensation reactions can be steered by changes in the reaction environment, such as order of reactant addition, and addition of salts or minerals. Using omics techniques to survey the resulting chemical ensembles we demonstrate there are distinct, significant, and reproducible differences between the product mixtures. Furthermore, we observe that these differences in composition have consequences, manifested in clearly different structural and functional properties. We demonstrate that simple variations in environmental parameters lead to differentiation of distinct chemical ensembles from both amino acid mixtures and a primordial soup model. We show that the synthetic complexity emerging from such unconstrained reactions is not as intractable as often suggested, when viewed through a chemically agnostic lens. An open approach to complexity can generate compositional, structural, and functional diversity from fixed sets of simple starting materials, suggesting that differentiation of chemical ensembles can occur in the wider environment without the need for biological machinery.
Collapse
|
2
|
Villafañe-Barajas SA, Baú JPT, Colín-García M, Negrón-Mendoza A, Heredia-Barbero A, Pi-Puig T, Zaia DAM. Salinity Effects on the Adsorption of Nucleic Acid Compounds on Na-Montmorillonite: a Prebiotic Chemistry Experiment. ORIGINS LIFE EVOL B 2018; 48:181-200. [PMID: 29392543 DOI: 10.1007/s11084-018-9554-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.
Collapse
Affiliation(s)
- Saúl A Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México.
| | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Alejandro Heredia-Barbero
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Teresa Pi-Puig
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
3
|
Sproul G. Abiogenic Syntheses of Lipoamino Acids and Lipopeptides and their Prebiotic Significance. ORIGINS LIFE EVOL B 2015; 45:427-37. [PMID: 26248658 DOI: 10.1007/s11084-015-9451-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/05/2015] [Indexed: 11/30/2022]
Abstract
Researchers have formed peptide bonds under a variety of presumed prebiotic conditions. Here it is proposed that these same conditions would have also formed amide bonds between fatty acids and amino acids, producing phosphate-free amphipathic lipoamino acids and lipopeptides. These compounds are known to form vesicles and are ubiquitous in living organisms. They could represent molecules that provided protection by membranes as well as possibilities for proto-life metabolism . It is here demonstrated that when a fatty acid is heated with various amino acids, optimally in the presence of suitable salts or minerals, lipoamino acids are formed. Magnesium and potassium carbonates as well as iron (II) sulfide are found to be particularly useful in these reactions. In this manner N-lauroylglycine, N-lauroylalanine, N-stearoylalanine and several other lipoamino acids have been synthesized. Similarly, when glycylglycine was heated with lauric acid in the presence of magnesium carbonate, the lipopeptide N-lauroylglycylglycine was formed. Such compounds are proposed to have been critical precursors to the development of life.
Collapse
Affiliation(s)
- Gordon Sproul
- University of South Carolina Beaufort, 801 Carteret St, Beaufort, SC, 29902, USA,
| |
Collapse
|
4
|
|
5
|
Awasthi S, N.T. S. Crystal structure of Alanine-Copper(II) complex to understand the mechanism of salt induced prebiotic oligomerization of amino acids. CRYSTAL RESEARCH AND TECHNOLOGY 2015. [DOI: 10.1002/crat.201400466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab; School of Chemical and Biotechnology; SASTRA University; Thanjavur-613401 Tamilnadu India
| | - Saraswathi N.T.
- Molecular Biophysics Lab; School of Chemical and Biotechnology; SASTRA University; Thanjavur-613401 Tamilnadu India
| |
Collapse
|
6
|
Spitzer J. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients. ASTROBIOLOGY 2013; 13:404-413. [PMID: 23577817 DOI: 10.1089/ast.2012.0924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.
Collapse
Affiliation(s)
- Jan Spitzer
- R&D Department, MCP Inc., Charlotte, North Carolina 29262, USA.
| |
Collapse
|
7
|
Menor-Salván C, Marín-Yaseli MR. Prebiotic chemistry in eutectic solutions at the water-ice matrix. Chem Soc Rev 2012; 41:5404-15. [PMID: 22660387 DOI: 10.1039/c2cs35060b] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry.
Collapse
Affiliation(s)
- César Menor-Salván
- Centro de Astrobiología (INTA-CSIC), INTA, E-28850 Torrejón de Ardoz, Spain.
| | | |
Collapse
|
8
|
Arora AK. Role of metal oxides in chemical evolution: interaction of ribose nucleotides with alumina. ASTROBIOLOGY 2009; 9:165-171. [PMID: 19371159 DOI: 10.1089/ast.2007.0143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Interaction of ribonucleotides--namely, 5'-AMP, 5'-GMP, 5'-CMP, and 5'-UMP--with acidic, neutral, and basic alumina has been studied. Purine nucleotides showed higher adsorption on alumina in comparison with pyrimidine nucleotides under acidic conditions. Adsorption data obtained followed Langmuir adsorption isotherm, and X(m) and K(L) values were calculated. On the basis of infrared spectral studies of ribonucleotides, alumina, and ribonucleotide-alumina adducts, we propose that the nitrogen base and phosphate moiety of the ribonucleotides interact with the positive charge surface of alumina. Results of the present study may indicate the importance of alumina in concentrating organic molecules from dilute aqueous solutions in primeval seas in the course of chemical evolution on Earth.
Collapse
Affiliation(s)
- Avnish Kumar Arora
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
9
|
Interaction of ribose nucleotides with zinc oxide and relevance in chemical evolution. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2006.10.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Tewari BB, Hamid N. Interaction of glycine and β-alanine with nickel, cobalt and cadmium ferrocyanides. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2006.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Abstract
Although many potential pathways exist for the prebiotic condensation of amino acids to form simple peptides, minimal conditions for such a reaction in the dry state have yet to be defined. In this work, water was evaporated from a solution of alanine and copper chloride (CuCl2), creating a dry residue. Incubation of this residue at moderate temperatures over 25 days produced even greater amounts of di-alanine, as determined by high performance liquid chromatographic characterization of the re-dissolved residue. Copper(II) and chloride were required for the reaction and di-peptide yields were highest for 1:2 molar ratios of copper:alanine. These results define minimal conditions for a dry-state pathway that plausibly played a role in the prebiotic formation of simple peptides.
Collapse
Affiliation(s)
- Joseph Napier
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA
| | | |
Collapse
|
12
|
Abstract
In the traditional concept for the origin of life as proposed by Oparin and Haldane in the 1920s, prebiotic reactants became slowly concentrated in the primordial oceans and life evolved slowly from a series of highly protracted chemical reactions during the first billion years of Earth's history. However, chemical evolution may not have occurred continuously because planetesimals and asteroids impacted the Earth many times during the first billion years, may have sterilized the Earth, and required the process to start over. A rapid process of chemical evolution may have been required in order that life appeared at or before 3.5 billion years ago. Thus, a setting favoring rapid chemical evolution may be required. A chemical evolution hypothesis set forth by Woese in 1979 accomplished prebiotic reactions rapidly in droplets in giant atmospheric reflux columns. However, in 1985 Scherer raised a number of objections to Woese's hypothesis and concluded that it was not valid. We propose a mechanism for prebiotic chemistry in clouds that satisfies Scherer's concerns regarding the Woese hypothesis and includes advantageous droplet chemistry. Prebiotic reactants were supplied to the atmosphere by comets, meteorites, and interplanetary dust or synthesized in the atmosphere from simple compounds using energy sources such as ultraviolet light, corona discharge, or lightning. These prebiotic monomers would have first encountered moisture in cloud drops and precipitation. We propose that rapid prebiotic chemical evolution was facilitated on the primordial Earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by , or synthesized during entry of, meteorites, comets, and interplanetary dust would have been scavenged by cloud drops containing clay condensation nuclei. Polymerization would have occurred within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops. We suggest that polymerization reactions occurred in the atmosphere as in the Woese hypothesis, but life originated in the ocean as in the Oparin-Haldane hypothesis. The rapidity with which chemical evolution could have occurred within clouds accommodates the time constraints suggested by recent astrophysical theories.
Collapse
Affiliation(s)
- V R Oberbeck
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | |
Collapse
|
13
|
Orenberg JB, Chan S, Calderon J, Lahav N. Soluble minerals in chemical evolution. I. Adsorption of 5'-AMP on CaSO4--a model system. ORIGINS LIFE EVOL B 2001; 15:121-9. [PMID: 11539609 DOI: 10.1007/bf01809494] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The adsorption of 5'-AMP onto solid CaSO4 2H2O was studied in a saturated suspension as a function of pH and electrolyte concentration. The adsorption is pH-dependent and is directly correlated with the charge on the 5'-AMP molecule which is determined by the state of protonation of the N-1 nitrogen of the purine ring and the phosphate oxygens. It is proposed that the binding occurs between the nucleotide and the salt is electrostatic in nature. The adsorption decreases with increasing ionic strength of the solution which means that in a fluctuating environment of wetting and drying cycles, a biomolecule similar to 5'-AMP could be expected to desorb during the drying phase. The results indicate that CaSO4 2H2O can serve as a concentrating surface for biomolecules. The significance of this is discussed with regard to the possible role of soluble minerals and their surfaces in a geochemical model consistent with the evolution of the Earth and the origin of life.
Collapse
Affiliation(s)
- J B Orenberg
- Department of Chemistry, San Francisco State University, CA 94132, USA
| | | | | | | |
Collapse
|
14
|
Lahav N, Nir S, Elitzur AC. The emergence of life on Earth. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 75:75-120. [PMID: 11311715 DOI: 10.1016/s0079-6107(01)00003-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Combined top-down and bottom-up research strategies and the principle of biological continuity were employed in an attempt to reconstruct a comprehensive origin of life theory, which is an extension of the coevolution theory (Lahav and Nir, Origins of Life Evol. Biosphere (1997) 27, 377-395). The resulting theory of emergence of templated-information and functionality (ETIF) addresses the emergence of living entities from inanimate matter, and that of the central mechanisms of their further evolution. It proposes the emergence of short organic catalysts (peptides and proto-ribozymes) and feedback-loop systems, plus their template-and-sequence-directed (TSD) reactions, encompassing catalyzed replication and translation of populations of molecules organized as chemical-informational feedback loop entities, in a fluctuating (wetting-drying) environment, functioning as simplified extant molecular-biological systems. The feedback loops with their TSD systems are chemically and functionally continuous with extant living organisms and their emergence in an inanimate environment may be defined as the beginning of life. The ETIF theory considers the emergence of bio-homochirality, a primordial genetic code, information and the incorporation of primordial metabolic cycles and compartmentation into the emerging living entities. This theory helps to establish a novel measure of biological information, which focuses on its physical effects rather than on the structure of the message, and makes it possible to estimate the time needed for the transition from the inanimate state to the closure of the first feedback-loop systems. Moreover, it forms the basis for novel laboratory experiments and computer modeling, encompassing catalytic activity of short peptides and proto-RNAs and the emergence of bio-homochirality and feedback-loop systems.
Collapse
Affiliation(s)
- N Lahav
- Department of Soil and Water Sciences, The Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | |
Collapse
|
15
|
Basiuk VA, Khil'chevskaya EG. Adsorption of small biological molecules on silica from diluted aqueous solutions: quantitative characterization and implications to the Bernal's hypothesis. ORIGINS LIFE EVOL B 1995; 25:375-93. [PMID: 7659402 DOI: 10.1007/bf01581776] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To describe quantitatively the adsorption of prebiotically important compounds of low molecular weight (amino acids, short linear peptides, cyclic dipeptides, the Krebs's cycle and other carboxylic acids, nucleosides and related phosphates) on silica surface from diluted neutral aqueous solutions, equilibrium constants (K) and free energies (-delta G) of adsorption were determined from the retention values measured by means of high-performance liquid chromatography on a silica gel column and from the isotherms measured under static conditions. For most carboxylic acids (including amino acids and linear peptides) -delta G values were negative and K < 1, thus showing very weak adsorption. Cyclic dipeptides (2,5-piperazinediones) exhibited higher adsorbability; -delta G > 0 and K > 1 were found for most of them. Influence of the structure of alpha-substituent on the adsorbability is analyzed. A linear dependence of -delta G on the number of aliphatic carbon atoms in a sorbate molecule was found for the series of aliphatic bifunctional amino acids, related dipeptides and 2,5-piperazinediones, as well as for the row from glycine to triglycyl glycine. The adsorption of nucleosides and their phosphates is characterized by much higher K and -delta G values (of the order of 10(2) and 10(4), respectively). The adsorption data available from our work and literature are summarized and discussed with implications to the Bernal's hypothesis on the roles of solid surfaces in the prebiotic formation of biopolymers from monomeric 'building blocks'.
Collapse
Affiliation(s)
- V A Basiuk
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F
| | | |
Collapse
|
16
|
Vieyra A, Gueiros-Filho F, Meyer-Fernandes JR, Costa-Sarmento G, DeSouza-Barros F. Reactions involving carbamyl phosphate in the presence of precipitated calcium phosphate with formation of pyrophosphate: a model for primitive energy-conservation pathways. ORIGINS LIFE EVOL B 1995; 25:335-50. [PMID: 11536702 DOI: 10.1007/bf01581774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The formation of carbamyl phosphate (CAP) in dilute solutions of cyanate (NCO-) and orthophosphate (Pi) was measured both in the absence and in the presence of a precipitated matrix of calcium phosphate (Pi.Ca). The second-order rate constant and the free energy of CAP synthesis were not modified by the presence of the solid matrix, indicating that synthesis occurs in the homogeneous Pi-containing solution. The elimination reaction of CAP to form NCO- and Pi followed first-order kinetics and the rate constant was the same whether or not calcium phosphate was present. Elimination was not complete, and the steady level of remaining CAP was that expected from the free energy of synthesis. The formation of pyrophosphate (PPi) was detected in CAP-containing medium only in the presence of calcium, showing a close correlation with the amount of precipitated Pi.Ca. Phosphorolysis of CAP followed a sigmoidal time course, compatible with adsorption of CAP to the solid matrix as a prelude to transphosphorylation. Addition of 5'-AMP and of short linear polyphosphates inhibited phosphorolysis of CAP. It is proposed that the presence of a solid phosphate matrix and the relative concentrations of cyano compounds, as well as those of nucleotides and inorganic polyphosphates, could have played a crucial role in the conservation of chemical energy of CAP and in its use in prebiotic phosphorylation reactions.
Collapse
Affiliation(s)
- A Vieyra
- Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
17
|
Tessis AC, Salim De Amorim H, Farina M, DeSouza-Barros F, Vieyra A. Adsorption of 5'-AMP and catalytic synthesis of 5'-ADP onto phosphate surfaces: correlation to solid matrix structures. ORIGINS LIFE EVOL B 1995; 25:351-73. [PMID: 11536703 DOI: 10.1007/bf01581775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A non-enzymatic formation of 5'-ADP starting from phosphorylation of 5'-AMP in the presence of either calcium phosphate or calcium pyrophosphate precipitates is reported. This reaction is taken as a model for the study of heterogeneous catalysis of transphosphorylation in prebiotic conditions. Experiments were performed in completely aqueous media and in media containing dimethyl sulfoxide (Me2SO), to simulate periods of dehydration in primitive aquatic environments. It has been observed that the nucleotide is adsorbed onto both calcium phosphate and calcium pyrophosphate in accordance with Langmuir isotherms. Adsorptive capacity and affinity of the precipitates for nucleotide are changed by the presence of Me2SO, suggesting that the interaction between biomonomers and surfaces can be modulated by the degree of hydration of the anionic components of these compounds. In completely aqueous environments, formation of 5'-ADP from 5'-AMP adsorbed on precipitates of calcium phosphate and calcium pyrophosphate is very small. However, in the presence of 60% Me2SO this synthesis increases by factors of 3 and 6 for surfaces of calcium phosphate and calcium pyrophosphate, respectively, and follows first-order kinetics. Determinations of free energy changes show that phosphorylation of 5'-AMP adsorbed to these precipitates is thermodynamically favorable. Depending on the precipitation time of the samples and the composition of the medium, structural analysis of these precipitates by electron and X-ray diffraction shows changes in their cristallinity grade. It is proposed that these changes are responsible for the modulation of the quantity of adsorbed nucleotides to the surface of solid matrices as well as the catalytic activity of the precipitates.
Collapse
Affiliation(s)
- A C Tessis
- Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
18
|
Kamaluddin, Nath M, Sharma A. Role of metal ferrocyanides in chemical evolution. ORIGINS LIFE EVOL B 1994. [DOI: 10.1007/bf01582031] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Schwendinger MG, Rode BM. Investigations on the mechanism of the salt-induced peptide formation. ORIGINS LIFE EVOL B 1992; 22:349-59. [PMID: 1465297 DOI: 10.1007/bf01809371] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The applicability of the salt-induced peptide formation in aqueous solution--the simplest model so far for peptide synthesis under primitive earth conditions--is demonstrated for valine as another amino acid, and the formation of mixed peptides in systems containing glycine, alanine and valine is investigated. The dominant dipeptides formed are Gly-Gly, Gly-Ala and Gly-Val, at longer reaction times sequence inversion produces Ala-Gly and, considerably slower, Val-Gly. Ala-Ala is also produced and the relative amounts of the diastereomers prove the high conservation of optical purity of the original amino acids over a considerable time. The results lead to some further conclusions about the reaction mechanism and the possible dominance of peptide sequences in primordial dipeptides.
Collapse
Affiliation(s)
- M G Schwendinger
- Institute of Inorganic and Analytical Chemistry, University of Innsbruck, Austria
| | | |
Collapse
|
20
|
Hermes-Lima M, Vieyra A. Pyrophosphate synthesis from phospho(enol)pyruvate catalyzed by precipitated magnesium phosphate with "enzyme-like" activity. J Mol Evol 1992; 35:277-85. [PMID: 1328658 DOI: 10.1007/bf00161165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The enzyme-like kinetic properties of precipitated magnesium phosphate as a catalyst for formation of pyrophosphate (PPi) from phospho(enol)pyruvate (PEP) are described. This synthesis occurs at a low temperature (37 degrees C) and represents a model that may help us understand the relevance to chemical evolution of minerals as ancient catalysts whose functions could have been taken over by contemporary enzymes. An insoluble Pi.Mg matrix was formed in a medium with 80% of the water replaced by dimethyl sulfoxide as a way of simulating conditions in a drying pond. Phospho(enol)pyruvate adsorbs onto the Pi.Mg surface according to a Langmuir isotherm, and the PEP concentration dependence of PPi formation follows a Michaelian-like function. A yield of 33% for transformation of the initially adsorbed PEP into PPi was attained after 4 days of incubation with equimolecular concentrations of Pi, MgCl2, and PEP. The magnesium concentration dependence for Pi and Mg precipitation, for adsorption of PEP onto solid Pi.Mg, and for PPi formation showed complex cooperative behavior. These results taken as a whole lead to the conclusion that the Pi.Mg surface not only provides a reactant for PPi formation but also catalyzes the reaction.
Collapse
Affiliation(s)
- M Hermes-Lima
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
Kamaluddin, Nath M, Deopujari SW, Sharma A. Role of transition metal ferrocyanides (II) in chemical evolution. ORIGINS LIFE EVOL B 1990. [DOI: 10.1007/bf01808108] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Hermes-Lima M, Tessis AC, Vieyra A. Adsorption of 5'-adenosine monophosphate onto precipitated calcium phosphate: effects of inorganic polyphosphates and carbamyl phosphate. ORIGINS LIFE EVOL B 1990; 20:27-41. [PMID: 2392316 DOI: 10.1007/bf01808057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper it is shown that the adsorption of 5'-adenosine monophosphate (5'-AMP) onto precipitated calcium phosphate exhibits a sigmoidal profile as revealed by isotherms at 45 degrees C. This result indicates a cooperative behavior in the adsorption of 5'-AMP. The relationship between adsorption capacity and surface area of the sedimented matrix may be interpreted as an indication that there is a monolayer of the absorbed nucleotide on the solid surface. The pH dependence of adsorption suggests that the negatively charged phosphoryl group of 5'-AMP interacts with a positively charged site (possibly Ca2+) on the matrix surface. The adsorption of the nucleotide is markedly decreased at pH values above 8.0. The Dixon-like plot of the effect of pH suggests an inhibitory role of hydroxyl ions in the adsorption of 5'-AMP. At pH 7.5, other anions such as pyrophosphate, tripolyphosphate and carbamyl phosphate also inhibit the adsorption of the nucleotide, probably by interacting with its adsorption site. We suggest that these phosphorylated molecules could have played a role in chemical evolution by modulating the amount of nucleotides adsorbed onto mineral surfaces. The significance of these phenomena in chemical evolution is discussed.
Collapse
Affiliation(s)
- M Hermes-Lima
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brasil
| | | | | |
Collapse
|
23
|
Lazard D, Lahav N, Orenberg JB. The biogeochemical cycle of the adsorbed template. II: Selective adsorption of mononucleotides on adsorbed polynucleotide templates. ORIGINS LIFE EVOL B 1988; 18:347-57. [PMID: 3237397 DOI: 10.1007/bf01808215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and 5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, 5'-GMP and 5'-AMP, respectively were observed to be the most strongly adsorbed species. Moreover, there exists a direct quantitative relationship between the quantity of cytidine or uracil residues in the adsorbed state and the amount of the complementary mononucleotide that is attached to it. NaCl added to the system in order to create conditions of high ionic strength seems to enhance the selectivity of the adsorption of the monmucleotides to these adsorbed templates.
Collapse
Affiliation(s)
- D Lazard
- Seagram Center for Soil and Water Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | |
Collapse
|
24
|
Abstract
It is speculated that life originated in a small, shallow body of water containing concentrated prebiotic organic feedstocks, inorganic compounds, and catalytic agents in a diversity of microenvironments. This pond was formed by an improbable, fortuitous soft-landing of a cometary nucleus, or fragment thereof, on the surface of a suitable planet with an atmosphere in an appropriate thermodynamic state, such as Earth.
Collapse
Affiliation(s)
- B C Clark
- Planetary Sciences Laboratory, Martin Marietta Astronautics, Denver, CO 80201
| |
Collapse
|
25
|
Lazard D, Lahav N, Orenberg JB. The biogeochemical cycle of the adsorbed template. I: Formation of the template. ORIGINS LIFE EVOL B 1987; 17:135-48. [PMID: 3627763 DOI: 10.1007/bf01808241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Experimental results are presented for the verification of the first adsorption step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The adsorption of Poly-C, Poly-U, Poly-A, Poly-G, and 5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP onto gypsum was studied. It was found that under the conditions of the experiment, the polymers have a very high affinity for the mineral surface, while the monomers adsorb much less efficiently.
Collapse
|
26
|
Chan S, Orenberg J, Lahav N. Soluble minerals in chemical evolution. II. Characterization of the adsorption of 5'-AMP and 5'-CMP on a variety of soluble mineral salts. ORIGINS LIFE EVOL B 1987; 17:121-34. [PMID: 3627762 DOI: 10.1007/bf01808240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The adsorption of 5'-AMP and 5'-CMP was studied in saturated solutions of several soluble mineral salts (NaCl, Na2SO4, MgCl2 X 6H2O, MgSO4 X 7H2O, CaCl2 X 2H2O, CaSO4 X 2H2O, SrCl2 X 6H2O, SrSO4, and ZnSO4 X 7H2O) as a function of pH, ionic strength, and surface area of the solid salt. The adsorption shows a pH dependence; this can be correlated with the charge on the nucleotide molecule which is determined by the state of protonation of the N-1 nitrogen of 5'-AMP or N-3 nitrogen of 5'-CMP and the phosphate oxygens. The adsorption which results from the binding between the nucleotide molecule and the salt surface is proposed as being due to electrostatic forces. It was concluded that the adsorption was reversible in nature. The adsorption shows a strong dependence upon ionic strength and decreases with increasing ionic strength. Surface area is shown to be an important factor in evaluating and comparing the magnitude of adsorption of nucleotides onto various mineral salts. The implications of the results of the study are discussed in terms of the importance of soluble mineral salts as adsorption sites in the characterization of the adsorption reactions of an adsorbed template in biogeochemical cycles.
Collapse
|
27
|
Abstract
The postulated roles of clays and other minerals in chemical evolution and the origin of life are reconsidered in terms of the interaction of these minerals with penetrating sources of energy such as ionizing radiation and mechanical stress. This interaction, including such facets as excitation, degradation, storage, and transfer, is considered here with regard to its profound potential for altering the capabilities of minerals to serve both as substrates for prebiological chemistry and as inorganic prototypic life forms. The interaction of minerals and energy in relationship to surface chemistry is discussed in terms of the spectroscopic properties of minerals, the interaction of energy with condensed phases, some commonly accepted concepts of heterogeneous catalysis in the absence of electronic energy inputs, and some commonly accepted and novel means by which surface activity might be enhanced in the presence of energy inputs. An estimation is made of the potential contribution of two poorly characterized prebiotic energy sources, natural radioactive decay and triboelectric energy. These estimates place a conservative lower limit on their prebiotic abundance. Also some special properties of these energy sources, relative to solar energy, are pointed out which might give them particular suitability for driving reactions occurring under geological conditions. Skeletal support for this broadly defined framework of demonstrated and potential relationships between minerals, electronic excitation, and surface reactivity, as applied to chemical evolution, is provided from the results of our studies on 1/1 clays. We have discovered and partially characterized a number of novel luminescent properties of these clays, that indicate energy storage and transfer processes in clays. These luminescent properties are interpreted in relationship to the electron spin resonance phenomena, to provide a basis for estimating the potential significance of energy storage and transduction in monitoring or driving clay surface chemistry. Consideration of the electronic structure of abundant minerals in terms of band theory and localized defect centers provides a predictive theoretical framework from which to rationalize the capacity of these materials to store and transduce energy. The bulk crystal is seen as a collecting antenna for electronic energy, with the defect centers serving as storage sites. The clay properties produced by isomorphic substitution appear to be intimately associated with all of the life-mimetic chemical processes that have been attributed to clays.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
28
|
Lahav N. The synthesis of primitive 'living' forms: definitions, goals, strategies and evolution synthesizers. ORIGINS LIFE EVOL B 1985; 16:129-49. [PMID: 3835504 DOI: 10.1007/bf01809467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The arbitrariness of the definition of life is discussed in relation to both the archaic biological entities that preceded cells during the Molecular Evolution era, and the hypothetical, primitive, 'living' entities that presumably can be synthesized in the laboratory. Several experimental approaches to the synthesis, detection, and characterization of 'living' entities are discussed. The experimental approaches considered for the synthesis are the constructionist strategy, the whole-environment strategy, and the modular strategy, which is a combination of the first two. The whole-environment strategy is discussed in more detail and the establishment of an Evolution Synthesizer, based on this strategy, is proposed and rationalized. The guidelines for the detection and characterization of populations and processes of 'living' entities include chemical and physical analyses, but are based mainly on the reproductive characterization of these entities. It is expected that the higher the evolutionary level of the 'living' entities, the longer and more difficult it will be to synthesize them, but the easier it will be to detect them.
Collapse
|
29
|
Abstract
Research on trace elements in chemical evolution is reviewed from three points of view. They are: the origin of the essentiality of trace elements in present biological systems; the possible roles of trace elements in chemical evolution; and the origin of enzymatic activity with metal ions, i.e., the origin of metalloenzymes.
Collapse
|