1
|
Di Giulio M. Theories of the origin of the genetic code: Strong corroboration for the coevolution theory. Biosystems 2024; 239:105217. [PMID: 38663520 DOI: 10.1016/j.biosystems.2024.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
I analyzed all the theories and models of the origin of the genetic code, and over the years, I have considered the main suggestions that could explain this origin. The conclusion of this analysis is that the coevolution theory of the origin of the genetic code is the theory that best captures the majority of observations concerning the organization of the genetic code. In other words, the biosynthetic relationships between amino acids would have heavily influenced the origin of the organization of the genetic code, as supported by the coevolution theory. Instead, the presence in the genetic code of physicochemical properties of amino acids, which have also been linked to the physicochemical properties of anticodons or codons or bases by stereochemical and physicochemical theories, would simply be the result of natural selection. More explicitly, I maintain that these correlations between codons, anticodons or bases and amino acids are in fact the result not of a real correlation between amino acids and codons, for example, but are only the effect of the intervention of natural selection. Specifically, in the genetic code table we expect, for example, that the most similar codons - that is, those that differ by only one base - will have more similar physicochemical properties. Therefore, the 64 codons of the genetic code table ordered in a certain way would also represent an ordering of some of their physicochemical properties. Now, a study aimed at clarifying which physicochemical property of amino acids has influenced the allocation of amino acids in the genetic code has established that the partition energy of amino acids has played a role decisive in this. Indeed, under some conditions, the genetic code was found to be approximately 98% optimized on its columns. In this same work, it was shown that this was most likely the result of the action of natural selection. If natural selection had truly allocated the amino acids in the genetic code in such a way that similar amino acids also have similar codons - this, not through a mechanism of physicochemical interaction between, for example, codons and amino acids - then it might turn out that even different physicochemical properties of codons (or anticodons or bases) show some correlation with the physicochemical properties of amino acids, simply because the partition energy of amino acids is correlated with other physicochemical properties of amino acids. It is very likely that this would inevitably lead to a correlation between codons (or anticodons or bases) and amino acids. In other words, since the codons (anticodons or bases) are ordered in the genetic code, that is to say, some of their physicochemical properties should also be ordered by a similar order, and given that the amino acids would also appear to have been ordered in the genetic code by selection natural, then it should inevitably turn out that there is a correlation between, for example, the hydrophobicity of anticodons and that of amino acids. Instead, the intervention of natural selection in organizing the genetic code would appear to be highly compatible with the main mechanism of structuring the genetic code as supported by the coevolution theory. This would make the coevolution theory the only plausible explanation for the origin of the genetic code.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
2
|
Arguments against the stereochemical theory of the origin of the genetic code. Biosystems 2022; 221:104750. [PMID: 35970477 DOI: 10.1016/j.biosystems.2022.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
I support the hypothesis that stereochemical theory is unnatural because it is based on artificial and not simple mechanisms as required for a good theory. Indeed, for stereochemical theory the origin of the genetic code requires, in the first place, a primary interaction, for example, between a codon and an amino acid on a proto-tRNA. But this interaction is a necessary but not sufficient condition, because the evolution of the mRNA molecule, which would really define the genetic code, is still necessary for the complete origin of the genetic code. In other words, the need for two molecules, tRNA and mRNA, to define the genetic code, with their at least partial independence would testify to an artificial mechanism typical of stereochemical theory because it would not guarantee that amino acid-codon (or -anticodon) assignments realized in the first phase of the origin of the genetic code, would necessarily be maintained also in the second phase of its completion. Furthermore, the genetic code encodes for amino acids but amino acids are not the truly functional aspect, they are only intermediaries, of their final products, proteins, which are the only true entities actually coded by genes. Therefore, it would not be immediately clear from the point of view of stereochemical theory, to say why it is the amino acids and not the proteins that are involved in the primary stereochemical interactions that would have led to the origin of the genetic code. Hence, at least some of the stereochemical theory models would be not very credible, not being able to say much about the coding of proteins by genes. Finally, I inspected the genetic code table following the logic that more closely similar amino acids should - according to stereochemical theory - be coded by highly similar codons, finding that only a few pairs of amino acids actually satisfy this logic, further discretizing the stereochemical theory.
Collapse
|
3
|
Błażej P, Kowalski DR, Mackiewicz D, Wnetrzak M, Aloqalaa DA, Mackiewicz P. The structure of the genetic code as an optimal graph clustering problem. J Math Biol 2022; 85:9. [PMID: 35838803 DOI: 10.1007/s00285-022-01778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
The standard genetic code (SGC) is the set of rules by which genetic information is translated into proteins, from codons, i.e. triplets of nucleotides, to amino acids. The questions about the origin and the main factor responsible for the present structure of the code are still under a hot debate. Various methodologies have been used to study the features of the code and assess the level of its potential optimality. Here, we introduced a new general approach to evaluate the quality of the genetic code structure. This methodology comes from graph theory and allows us to describe new properties of the genetic code in terms of conductance. This parameter measures the robustness of codon groups against the potential changes in translation of the protein-coding sequences generated by single nucleotide substitutions. We described the genetic code as a partition of an undirected and unweighted graph, which makes the model general and universal. Using this approach, we showed that the structure of the genetic code is a solution to the graph clustering problem. We presented and discussed the structure of the codes that are optimal according to the conductance. Despite the fact that the standard genetic code is far from being optimal according to the conductance, its structure is characterised by many codon groups reaching the minimum conductance for their size. The SGC represents most likely a local minimum in terms of errors occurring in protein-coding sequences and their translation.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland.
| | - Dariusz R Kowalski
- School of Computer and Cyber Sciences, Augusta University, Augusta, GA, USA
| | - Dorota Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland
| | - Małgorzata Wnetrzak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland
| | | | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland
| |
Collapse
|
4
|
Caldararo F, Di Giulio M. The genetic code is very close to a global optimum in a model of its origin taking into account both the partition energy of amino acids and their biosynthetic relationships. Biosystems 2022; 214:104613. [DOI: 10.1016/j.biosystems.2022.104613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 01/23/2023]
|
5
|
Formation of the Codon Degeneracy during Interdependent Development between Metabolism and Replication. Genes (Basel) 2021; 12:genes12122023. [PMID: 34946975 PMCID: PMC8701183 DOI: 10.3390/genes12122023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Nirenberg's genetic code chart shows a profound correspondence between codons and amino acids. The aim of this article is to try to explain the primordial formation of the codon degeneracy. It remains a puzzle how informative molecules arose from the supposed prebiotic random sequences. If introducing an initial driving force based on the relative stabilities of triplex base pairs, the prebiotic sequence evolution became innately nonrandom. Thus, the primordial assignment of the 64 codons to the 20 amino acids has been explained in detail according to base substitutions during the coevolution of tRNAs with aaRSs; meanwhile, the classification of aaRSs has also been explained.
Collapse
|
6
|
Abstract
Selection for resource conservation can shape the coding sequences of organisms living in nutrient-limited environments. Recently, it was proposed that selection for resource conservation, specifically for nitrogen and carbon content, has also shaped the structure of the standard genetic code, such that the missense mutations the code allows tend to cause small increases in the number of nitrogen and carbon atoms in amino acids. Moreover, it was proposed that this optimization is not confounded by known optimizations of the standard genetic code, such as for polar requirement or hydropathy. We challenge these claims. We show the proposed optimization for nitrogen conservation is highly sensitive to choice of null model and the proposed optimization for carbon conservation is confounded by the known conservative nature of the standard genetic code with respect to the molecular volume of amino acids. There is therefore little evidence the standard genetic code is optimized for resource conservation. We discuss our findings in the context of null models of the standard genetic code.
Collapse
Affiliation(s)
- Hana Rozhoňová
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, Switzerland
| | - Joshua L Payne
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, Switzerland
| |
Collapse
|
7
|
Use of the Codon Table to Quantify the Evolutionary Role of Random Mutations. ALGORITHMS 2021. [DOI: 10.3390/a14090270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The various biases affecting RNA mutations during evolution is the subject of intense research, leaving the extent of the role of random mutations undefined. To remedy this lacuna, using the codon table, the number of codons representing each amino acid was correlated with the amino acid frequencies in different branches of the evolutionary tree. The correlations were seen to increase as evolution progressed. Furthermore, the number of RNA mutations that resulted in a given amino acid mutation were found to be correlated with several widely used amino acid similarity tables (used in sequence alignments). These correlations were seen to increase when the observed codon usage was factored in.
Collapse
|
8
|
Phylogenetic analysis of mutational robustness based on codon usage supports that the standard genetic code does not prefer extreme environments. Sci Rep 2021; 11:10963. [PMID: 34040064 PMCID: PMC8154912 DOI: 10.1038/s41598-021-90440-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The mutational robustness of the genetic code is rarely discussed in the context of biological diversity, such as codon usage and related factors, often considered as independent of the actual organism's proteome. Here we put the living beings back to picture and use distortion as a metric of mutational robustness. Distortion estimates the expected severities of non-synonymous mutations measuring it by amino acid physicochemical properties and weighting for codon usage. Using the biological variance of codon frequencies, we interpret the mutational robustness of the standard genetic code with regards to their corresponding environments and genomic compositions (GC-content). Employing phylogenetic analyses, we show that coding fidelity in physicochemical properties can deteriorate with codon usages adapted to extreme environments and these putative effects are not the artefacts of phylogenetic bias. High temperature environments select for codon usages with decreased mutational robustness of hydrophobic, volumetric, and isoelectric properties. Selection at high saline concentrations also leads to reduced fidelity in polar and isoelectric patterns. These show that the genetic code performs best with mesophilic codon usages, strengthening the view that LUCA or its ancestors preferred lower temperature environments. Taxonomic implications, such as rooting the tree of life, are also discussed.
Collapse
|
9
|
Determining amino acid scores of the genetic code table: Complementarity, structure, function and evolution. Biosystems 2020; 187:104026. [DOI: 10.1016/j.biosystems.2019.104026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022]
|
10
|
Di Giulio M. The key role of the elongation factors in the origin of the organization of the genetic code. Biosystems 2019; 181:20-26. [DOI: 10.1016/j.biosystems.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 11/29/2022]
|
11
|
Optimization of the standard genetic code in terms of two mutation types: Point mutations and frameshifts. Biosystems 2019; 181:44-50. [DOI: 10.1016/j.biosystems.2019.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/27/2019] [Indexed: 02/08/2023]
|
12
|
The Quality of Genetic Code Models in Terms of Their Robustness Against Point Mutations. Bull Math Biol 2019; 81:2239-2257. [DOI: 10.1007/s11538-019-00603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/25/2019] [Indexed: 11/29/2022]
|
13
|
BłaŻej P, Wnetrzak M, Mackiewicz D, Mackiewicz P. The influence of different types of translational inaccuracies on the genetic code structure. BMC Bioinformatics 2019; 20:114. [PMID: 30841864 PMCID: PMC6404327 DOI: 10.1186/s12859-019-2661-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The standard genetic code is a recipe for assigning unambiguously 21 labels, i.e. amino acids and stop translation signal, to 64 codons. However, at early stages of the translational machinery development, the codons did not have to be read unambiguously and the early genetic codes could have contained some ambiguous assignments of codons to amino acids. Therefore, the goal of this work was to obtain the genetic code structures which could have evolved assuming different types of inaccuracy of the translational machinery starting from unambiguous assignments of codons to amino acids. RESULTS We developed a theoretical model assuming that the level of uncertainty of codon assignments can gradually decrease during the simulations. Since it is postulated that the standard code has evolved to be robust against point mutations and mistranslations, we developed three simulation scenarios assuming that such errors can influence one, two or three codon positions. The simulated codes were selected using the evolutionary algorithm methodology to decrease coding ambiguity and increase their robustness against mistranslation. CONCLUSIONS The results indicate that the typical codon block structure of the genetic code could have evolved to decrease the ambiguity of amino acid to codon assignments and to increase the fidelity of reading the genetic information. However, the robustness to errors was not the decisive factor that influenced the genetic code evolution because it is possible to find theoretical codes that minimize the reading errors better than the standard genetic code.
Collapse
Affiliation(s)
- Paweł BłaŻej
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Małgorzata Wnetrzak
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Dorota Mackiewicz
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| | - Paweł Mackiewicz
- Department of Genomics, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, 50-383 Poland
| |
Collapse
|
14
|
Wnętrzak M, Błażej P, Mackiewicz D, Mackiewicz P. The optimality of the standard genetic code assessed by an eight-objective evolutionary algorithm. BMC Evol Biol 2018; 18:192. [PMID: 30545289 PMCID: PMC6293558 DOI: 10.1186/s12862-018-1304-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The standard genetic code (SGC) is a unique set of rules which assign amino acids to codons. Similar amino acids tend to have similar codons indicating that the code evolved to minimize the costs of amino acid replacements in proteins, caused by mutations or translational errors. However, if such optimization in fact occurred, many different properties of amino acids must have been taken into account during the code evolution. Therefore, this problem can be reformulated as a multi-objective optimization task, in which the selection constraints are represented by measures based on various amino acid properties. RESULTS To study the optimality of the SGC we applied a multi-objective evolutionary algorithm and we used the representatives of eight clusters, which grouped over 500 indices describing various physicochemical properties of amino acids. Thanks to that we avoided an arbitrary choice of amino acid features as optimization criteria. As a consequence, we were able to conduct a more general study on the properties of the SGC than the ones presented so far in other papers on this topic. We considered two models of the genetic code, one preserving the characteristic codon blocks structure of the SGC and the other without this restriction. The results revealed that the SGC could be significantly improved in terms of error minimization, hereby it is not fully optimized. Its structure differs significantly from the structure of the codes optimized to minimize the costs of amino acid replacements. On the other hand, using newly defined quality measures that placed the SGC in the global space of theoretical genetic codes, we showed that the SGC is definitely closer to the codes that minimize the costs of amino acids replacements than those maximizing them. CONCLUSIONS The standard genetic code represents most likely only partially optimized systems, which emerged under the influence of many different factors. Our findings can be useful to researchers involved in modifying the genetic code of the living organisms and designing artificial ones.
Collapse
Affiliation(s)
- Małgorzata Wnętrzak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Dorota Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
15
|
Facchiano A, Di Giulio M. The genetic code is not an optimal code in a model taking into account both the biosynthetic relationships between amino acids and their physicochemical properties. J Theor Biol 2018; 459:45-51. [DOI: 10.1016/j.jtbi.2018.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 01/22/2023]
|
16
|
Di Giulio M. A Non-neutral Origin for Error Minimization in the Origin of the Genetic Code. J Mol Evol 2018; 86:593-597. [PMID: 30361751 DOI: 10.1007/s00239-018-9871-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022]
Abstract
Massey (J Mol Evol 67:510-516, 2008; J Theor Biol 408:237-242, 2016; Nat Comput. https://doi.org/10.1007/s11047-017-9669-3, 2018) claims that the error minimization of the genetic code is derived by means of a neutral process and was not due to the action of natural selection. Here, I argue that this neutralist hypothesis of the origin of error minimization is not based directly on any neutral process but it could be only indirectly. On the contrary, it has been natural selection that has acted during the origin of the genetic code determining the property that similar amino acids are coded by similar codons within the genetic code table.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Early Evolution of Life Laboratory, Institute of Biosciences and Bioresources, CNR, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
17
|
Błażej P, Wnętrzak M, Mackiewicz D, Mackiewicz P. Optimization of the standard genetic code according to three codon positions using an evolutionary algorithm. PLoS One 2018; 13:e0201715. [PMID: 30092017 PMCID: PMC6084934 DOI: 10.1371/journal.pone.0201715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/21/2018] [Indexed: 12/28/2022] Open
Abstract
Many biological systems are typically examined from the point of view of adaptation to certain conditions or requirements. One such system is the standard genetic code (SGC), which generally minimizes the cost of amino acid replacements resulting from mutations or mistranslations. However, no full consensus has been reached on the factors that caused the evolution of this feature. One of the hypotheses suggests that code optimality was directly selected as an advantage to preserve information about encoded proteins. An important feature that should be considered when studying the SGC is the different roles of the three codon positions. Therefore, we investigated the robustness of this code regarding the cost of amino acid replacements resulting from substitutions in these positions separately and the sum of these costs. We applied a modified evolutionary algorithm and included four models of the genetic code assuming various restrictions on its structure. The SGC was compared both with the codes that minimize the objective function and those that maximize it. This approach allowed us to place the SGC in the global space of possible codes, which is a more appropriate and unbiased comparison than that with randomly generated codes because they are characterized by relatively uniform amino acid assignments to codons. The SGC appeared to be well optimized at the global scale, but its individual positions were not fully optimized because there were codes that were optimized for only one codon position and simultaneously outperformed the SGC at the other positions. We also found that different code structures may lead to the same optimality and that random codes can show a tendency to minimize costs under some of the genetic code models. Our results suggest that the optimality of SGC could be a by-product of other processes.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Małgorzata Wnętrzak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dorota Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
18
|
Di Giulio M. A discriminative test among the different theories proposed to explain the origin of the genetic code: The coevolution theory finds additional support. Biosystems 2018; 169-170:1-4. [DOI: 10.1016/j.biosystems.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 11/29/2022]
|
19
|
Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes. Biosystems 2018; 167:33-46. [DOI: 10.1016/j.biosystems.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
|
20
|
de Oliveira LL, Freitas AA, Tinós R. Multi-objective genetic algorithms in the study of the genetic code’s adaptability. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Bijective codon transformations show genetic code symmetries centered on cytosine's coding properties. Theory Biosci 2017; 137:17-31. [PMID: 29147851 DOI: 10.1007/s12064-017-0258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce 'swinger' RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C's central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.
Collapse
|
22
|
Di Giulio M. The aminoacyl-tRNA synthetases had only a marginal role in the origin of the organization of the genetic code: Evidence in favor of the coevolution theory. J Theor Biol 2017; 432:14-24. [DOI: 10.1016/j.jtbi.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
23
|
Zamudio GS, José MV. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal. ORIGINS LIFE EVOL B 2017; 48:83-91. [PMID: 29082465 DOI: 10.1007/s11084-017-9552-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.
Collapse
Affiliation(s)
- Gabriel S Zamudio
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico.
| |
Collapse
|
24
|
Seligmann H, Warthi G. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes. Comput Struct Biotechnol J 2017; 15:412-424. [PMID: 28924459 PMCID: PMC5591391 DOI: 10.1016/j.csbj.2017.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022] Open
Abstract
A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').
Collapse
Affiliation(s)
- Hervé Seligmann
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
- Dept. Ecol Evol Behav, Alexander Silberman Inst Life Sci, The Hebrew University of Jerusalem, IL-91904 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
| |
Collapse
|
25
|
Santos J, Monteagudo Á. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability. BMC Bioinformatics 2017; 18:195. [PMID: 28347270 PMCID: PMC5369190 DOI: 10.1186/s12859-017-1608-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/16/2017] [Indexed: 11/26/2022] Open
Abstract
Background The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. Results The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Conclusions Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.
Collapse
Affiliation(s)
- José Santos
- Department of Computer Science, University of A Coruña, Campus de Elviña s/n, A Coruña, 15071, Spain.
| | - Ángel Monteagudo
- Department of Computer Science, University of A Coruña, Campus de Elviña s/n, A Coruña, 15071, Spain
| |
Collapse
|
26
|
José MV, Zamudio GS, Morgado ER. A unified model of the standard genetic code. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160908. [PMID: 28405378 PMCID: PMC5383835 DOI: 10.1098/rsos.160908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
The Rodin-Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.
Collapse
Affiliation(s)
- Marco V. José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, MexicoD.F. 04510, Mexico
| | - Gabriel S. Zamudio
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, MexicoD.F. 04510, Mexico
| | - Eberto R. Morgado
- Facultad de Matemática, Física y Computación, Universidad Central ‘Marta Abreu’ de Las Villas, Santa Clara, Cuba
| |
Collapse
|
27
|
Some pungent arguments against the physico-chemical theories of the origin of the genetic code and corroborating the coevolution theory. J Theor Biol 2017; 414:1-4. [DOI: 10.1016/j.jtbi.2016.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/26/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
28
|
The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization. Biosystems 2016; 150:61-72. [DOI: 10.1016/j.biosystems.2016.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/20/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022]
|
29
|
Klitting R, Gould EA, de Lamballerie X. G+C content differs in conserved and variable amino acid residues of flaviviruses and other evolutionary groups. INFECTION GENETICS AND EVOLUTION 2016; 45:332-340. [PMID: 27663721 DOI: 10.1016/j.meegid.2016.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
Abstract
Flaviviruses are small RNA viruses that exhibit genetic and ecological diversity and a wide range of G+C content (GC%). We discovered that, amongst flaviviruses, the GC% of nucleotides encoding conserved amino acid (AA) residues was consistently higher than that of nucleotides encoding variable AAs. This intriguing phenomenon was also identified for a wide range of other viruses, and some non-viral evolutionary groups. Here, we analyse the possible mechanisms underlying this imbalanced nucleotide content (in particular the role of the specific G content and the AA composition in flaviviral genomes) and discuss its evolutionary implications. Our findings suggest that one of the most simple characteristics of the genetic code (i.e., the G or G+C content of codons) is linked with the evolutionary behavior of the corresponding encoded AAs.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), 27 bd Jean Moulin, 13385 Marseille, France.
| | - Ernest Andrew Gould
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), 27 bd Jean Moulin, 13385 Marseille, France.
| | - Xavier de Lamballerie
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), 27 bd Jean Moulin, 13385 Marseille, France; Institut Hospitalo-Universitaire Méditerranée-Infection, 27 bd Jean Moulin, 13385 Marseille, France.
| |
Collapse
|
30
|
Aggarwal N, Bandhu AV, Sengupta S. Finite population analysis of the effect of horizontal gene transfer on the origin of an universal and optimal genetic code. Phys Biol 2016; 13:036007. [DOI: 10.1088/1478-3975/13/3/036007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Di Giulio M. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory. J Theor Biol 2016; 399:134-40. [PMID: 27067244 DOI: 10.1016/j.jtbi.2016.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 11/25/2022]
Abstract
I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the genetic code would be a theory highly corroborated.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Early Evolution of Life Laboratory, Institute of Biosciences and Bioresources, CNR, Via P. Castellino, 111, 80131 Naples, Italy.
| |
Collapse
|
32
|
Kumar B, Saini S. Analysis of the optimality of the standard genetic code. MOLECULAR BIOSYSTEMS 2016; 12:2642-51. [DOI: 10.1039/c6mb00262e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many theories have been proposed attempting to explain the origin of the genetic code. In this work, we compare performance of the standard genetic code against millions of randomly generated codes. On left, ability of genetic codes to encode additional information and their robustness to frameshift mutations.
Collapse
Affiliation(s)
- Balaji Kumar
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai – 400 076
- India
| | - Supreet Saini
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai – 400 076
- India
| |
Collapse
|
33
|
Massey SE. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Life (Basel) 2015; 5:1301-32. [PMID: 25919033 PMCID: PMC4500140 DOI: 10.3390/life5021301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023] Open
Abstract
The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of "neutral emergence". The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these "pseudaptations", and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an "unfreezing" of the codon - amino acid mapping that defines the genetic code, consistent with Crick's Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content between organisms, a selective pressure in the evolution of sexual reproduction, and differences in translational fidelity. Lastly, the utility of the concept of an informational constraint to other diverse fields of research is explored.
Collapse
Affiliation(s)
- Steven E Massey
- Biology Department, PO Box 23360, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA.
| |
Collapse
|
34
|
de Oliveira LL, de Oliveira PSL, Tinós R. A multiobjective approach to the genetic code adaptability problem. BMC Bioinformatics 2015; 16:52. [PMID: 25879480 PMCID: PMC4341243 DOI: 10.1186/s12859-015-0480-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 01/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes. RESULTS In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors. CONCLUSIONS Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach is also more natural, because more than one objective was adapted during the evolutionary process of the canonical genetic code. Our results suggest that the evaluation function employed to compare genetic codes should consider simultaneously more than one objective, in contrast to what has been done in the literature.
Collapse
Affiliation(s)
| | | | - Renato Tinós
- Department of Computing and Mathematics, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
35
|
Bandhu AV, Aggarwal N, Sengupta S. Revisiting the physico-chemical hypothesis of code origin: an analysis based on code-sequence coevolution in a finite population. ORIGINS LIFE EVOL B 2013; 43:465-89. [PMID: 24500541 DOI: 10.1007/s11084-014-9353-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/13/2014] [Indexed: 01/23/2023]
Abstract
The origin of the genetic code marked a major transition from a plausible RNA world to the world of DNA and proteins and is an important milestone in our understanding of the origin of life. We examine the efficacy of the physico-chemical hypothesis of code origin by carrying out simulations of code-sequence coevolution in finite populations in stages, leading first to the emergence of ten amino acid code(s) and subsequently to 14 amino acid code(s). We explore two different scenarios of primordial code evolution. In one scenario, competition occurs between populations of equilibrated code-sequence sets while in another scenario; new codes compete with existing codes as they are gradually introduced into the population with a finite probability. In either case, we find that natural selection between competing codes distinguished by differences in the degree of physico-chemical optimization is unable to explain the structure of the standard genetic code. The code whose structure is most consistent with the standard genetic code is often not among the codes that have a high fixation probability. However, we find that the composition of the code population affects the code fixation probability. A physico-chemically optimized code gets fixed with a significantly higher probability if it competes against a set of randomly generated codes. Our results suggest that physico-chemical optimization may not be the sole driving force in ensuring the emergence of the standard genetic code.
Collapse
Affiliation(s)
- Ashutosh Vishwa Bandhu
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
36
|
Seligmann H, Labra A. Tetracoding increases with body temperature in Lepidosauria. Biosystems 2013; 114:155-63. [DOI: 10.1016/j.biosystems.2013.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
37
|
Di Giulio M. The Origin of the Genetic Code: Matter of Metabolism or Physicochemical Determinism? J Mol Evol 2013; 77:131-3. [DOI: 10.1007/s00239-013-9593-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/27/2022]
|
38
|
A realistic model under which the genetic code is optimal. J Mol Evol 2013; 77:170-84. [PMID: 23877342 DOI: 10.1007/s00239-013-9571-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/27/2013] [Indexed: 01/23/2023]
Abstract
The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By comparing this value with a distribution of values belonging to codes generated by random permutations of amino acid assignments, the level of error robustness of a genetic code can be quantified. We present a calculation in which the standard genetic code is shown to be optimal. We obtain this result by (1) using recently updated values of polar requirement as input; (2) fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and Leu) based on aptamer considerations; and (3) using known biosynthetic relations of the 20 amino acids. This last point is reflected in an approach of subdivision (restricting the random reallocation of assignments to amino acid subgroups, the set of 20 being divided in four such subgroups). The three approaches to explain robustness of the code (specific selection for robustness, amino acid-RNA interactions leading to assignments, or a slow growth process of assignment patterns) are reexamined in light of our findings. We offer a comprehensive hypothesis, stressing the importance of biosynthetic relations, with the code evolving from an early stage with just glycine and alanine, via intermediate stages, towards 64 codons carrying todays meaning.
Collapse
|
39
|
Di Giulio M. The origin of the genetic code in the ocean abysses: new comparisons confirm old observations. J Theor Biol 2013; 333:109-16. [PMID: 23727280 DOI: 10.1016/j.jtbi.2013.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/26/2022]
Abstract
I have analysed the amino acid substitution pattern between two pairs of nonbarophilic-barophilic organisms in order to confirm previous results. Indeed, the pattern deriving from a different pair of such organisms led to establish that the origin of the genetic code might have occurred in the ocean abysses. The hydrostatic pressure asymmetry indices computable from these matrices of amino acid substitutions confirm the correlation previously observed, even when differences in GC content are accounted for. As the three substitution matrices are independent between them, the old conclusion that the genetic code originated in the ocean abysses is considerably strengthened.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Laboratory for Molecular Evolution, Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Via P Castellino 111, 80131 Naples, Napoli, Italy.
| |
Collapse
|
40
|
Morgens DW, Cavalcanti ARO. An alternative look at code evolution: using non-canonical codes to evaluate adaptive and historic models for the origin of the genetic code. J Mol Evol 2013; 76:71-80. [PMID: 23344715 DOI: 10.1007/s00239-013-9542-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The canonical code has been shown many times to be highly robust against point mutations; that is, mutations that change a single nucleotide tend to result in similar amino acids more often than expected by chance. There are two major types of models for the origin of the code, which explain how this sophisticated structure evolved. Adaptive models state that the primitive code was specifically selected for error minimization, while historic models hypothesize that the robustness of the code is an artifact or by-product of the mechanism of code evolution. In this paper, we evaluated the levels of robustness in existing non-canonical codes as well as codes that differ in only one codon assignment from the standard code. We found that the level of robustness of many of these codes is comparable or better than that of the standard code. Although these results do not preclude an adaptive origin of the genetic code, they suggest that the code was not selected for minimizing the effects of point mutations.
Collapse
Affiliation(s)
- David W Morgens
- Department of Biology, Pomona College, 175 W 6th Street, Claremont, CA, USA
| | | |
Collapse
|
41
|
Zhang Z, Yu J. Does the genetic code have a eukaryotic origin? GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:41-55. [PMID: 23402863 PMCID: PMC4357656 DOI: 10.1016/j.gpb.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/29/2022]
Abstract
In the RNA world, RNA is assumed to be the dominant macromolecule performing most, if not all, core “house-keeping” functions. The ribo-cell hypothesis suggests that the genetic code and the translation machinery may both be born of the RNA world, and the introduction of DNA to ribo-cells may take over the informational role of RNA gradually, such as a mature set of genetic code and mechanism enabling stable inheritance of sequence and its variation. In this context, we modeled the genetic code in two content variables—GC and purine contents—of protein-coding sequences and measured the purine content sensitivities for each codon when the sensitivity (% usage) is plotted as a function of GC content variation. The analysis leads to a new pattern—the symmetric pattern—where the sensitivity of purine content variation shows diagonally symmetry in the codon table more significantly in the two GC content invariable quarters in addition to the two existing patterns where the table is divided into either four GC content sensitivity quarters or two amino acid diversity halves. The most insensitive codon sets are GUN (valine) and CAN (CAR for asparagine and CAY for aspartic acid) and the most biased amino acid is valine (always over-estimated) followed by alanine (always under-estimated). The unique position of valine and its codons suggests its key roles in the final recruitment of the complete codon set of the canonical table. The distinct choice may only be attributable to sequence signatures or signals of splice sites for spliceosomal introns shared by all extant eukaryotes.
Collapse
Affiliation(s)
- Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
42
|
The genetic code and its optimization for kinetic energy conservation in polypeptide chains. Biosystems 2012; 109:141-4. [DOI: 10.1016/j.biosystems.2012.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/27/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|
43
|
Almeida L, Demongeot J. Predictive power of "a minima" models in biology. Acta Biotheor 2012; 60:3-19. [PMID: 22318429 DOI: 10.1007/s10441-012-9146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/11/2012] [Indexed: 12/19/2022]
Abstract
Many apparently complex mechanisms in biology, especially in embryology and molecular biology, can be explained easily by reasoning at the level of the "efficient cause" of the observed phenomenology: the mechanism can then be explained by a simple geometrical argument or a variational principle, leading to the solution of an optimization problem, for example, via the co-existence of a minimization and a maximization problem (a min-max principle). Passing from a microscopic (or cellular) level (optimal min-max solution of the simple mechanistic system) to the macroscopic level often involves an averaging effect (linked to the repetition of a large number of such microscopic systems with possible random choice of the parameters of each of them) that gives birth to a global functional feature (e.g. at the tissue level). We will illustrate these general principles by building in four different domains of application "a minima" models and showing the main properties of their solutions: (1) extraction of a minimal RNA structure functioning as the first "peptidic machine," a kind of ancestral ribosome; (2) study of a genetic regulatory network of Drosophila centred on Engrailed gene and expressing successively two genes inside a limit cycle; (3) study of a genetic network regulating neural activity and proliferation in mammals; and (4) study of a simple geometric model of epiboly in zebrafish.
Collapse
|
44
|
Abstract
The genes of all organisms have been shaped by selective pressures. The relationship between gene sequence and fitness has tremendous implications for understanding both evolutionary processes and functional constraints on the encoded proteins. Here, we have exploited deep sequencing technology to experimentally determine the fitness of all possible individual point mutants under controlled conditions for a nine-amino acid region of Hsp90. Over the past five decades, limited glimpses into the relationship between gene sequence and function have sparked a long debate regarding the distribution, relative proportion, and evolutionary significance of deleterious, neutral, and advantageous mutations. Our systematic experimental measurement of fitness effects of Hsp90 mutants in yeast, evaluated in the light of existing population genetic theory, are remarkably consistent with a nearly neutral model of molecular evolution.
Collapse
|
45
|
Santos J, Monteagudo A. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments. BMC Bioinformatics 2011; 12:56. [PMID: 21338505 PMCID: PMC3053255 DOI: 10.1186/1471-2105-12-56] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/21/2011] [Indexed: 11/29/2022] Open
Abstract
Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the fact that the best possible codes show the patterns of the standard genetic code. Our results are in accordance with the postulates of the engineering approach and indicate that the main arguments of the statistical approach are not enough to its assertion of the extreme efficiency of the canonical genetic code.
Collapse
Affiliation(s)
- José Santos
- Department of Computer Science, University of A Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain.
| | | |
Collapse
|
46
|
Stability of the genetic code and optimal parameters of amino acids. J Theor Biol 2010; 269:57-63. [PMID: 20955716 DOI: 10.1016/j.jtbi.2010.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/20/2010] [Accepted: 10/12/2010] [Indexed: 11/24/2022]
Abstract
The standard genetic code is known to be much more efficient in minimizing adverse effects of misreading errors and one-point mutations in comparison with a random code having the same structure, i.e. the same number of codons coding for each particular amino acid. We study the inverse problem, how the code structure affects the optimal physico-chemical parameters of amino acids ensuring the highest stability of the genetic code. It is shown that the choice of two or more amino acids with given properties determines unambiguously all the others. In this sense the code structure determines strictly the optimal parameters of amino acids or the corresponding scales may be derived directly from the genetic code. In the code with the structure of the standard genetic code the resulting values for hydrophobicity obtained in the scheme "leave one out" and in the scheme with fixed maximum and minimum parameters correlate significantly with the natural scale. The comparison of the optimal and natural parameters allows assessing relative impact of physico-chemical and error-minimization factors during evolution of the genetic code. As the resulting optimal scale depends on the choice of amino acids with given parameters, the technique can also be applied to testing various scenarios of the code evolution with increasing number of codified amino acids. Our results indicate the co-evolution of the genetic code and physico-chemical properties of recruited amino acids.
Collapse
|
47
|
Castro-Chavez F. The rules of variation: amino acid exchange according to the rotating circular genetic code. J Theor Biol 2010; 264:711-21. [PMID: 20371250 PMCID: PMC3130497 DOI: 10.1016/j.jtbi.2010.03.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/06/2010] [Accepted: 03/30/2010] [Indexed: 12/11/2022]
Abstract
General guidelines for the molecular basis of functional variation are presented while focused on the rotating circular genetic code and allowable exchanges that make it resistant to genetic diseases under normal conditions. The rules of variation, bioinformatics aids for preventative medicine, are: (1) same position in the four quadrants for hydrophobic codons, (2) same or contiguous position in two quadrants for synonymous or related codons, and (3) same quadrant for equivalent codons. To preserve protein function, amino acid exchange according to the first rule takes into account the positional homology of essential hydrophobic amino acids with every codon with a central uracil in the four quadrants, the second rule includes codons for identical, acidic, or their amidic amino acids present in two quadrants, and the third rule, the smaller, aromatic, stop codons, and basic amino acids, each in proximity within a 90 degree angle. I also define codifying genes and palindromati, CTCGTGCCGAATTCGGCACGAG.
Collapse
|
48
|
Santos J, Monteagudo Á. Study of the genetic code adaptability by means of a genetic algorithm. J Theor Biol 2010; 264:854-65. [DOI: 10.1016/j.jtbi.2010.02.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/05/2010] [Accepted: 02/23/2010] [Indexed: 11/30/2022]
|
49
|
Searching of Code Space for an Error-Minimized Genetic Code Via Codon Capture Leads to Failure, or Requires At Least 20 Improving Codon Reassignments Via the Ambiguous Intermediate Mechanism. J Mol Evol 2010; 70:106-15. [DOI: 10.1007/s00239-009-9313-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/07/2009] [Indexed: 10/19/2022]
|
50
|
Abstract
The genetic code is nearly universal, and the arrangement of the codons in the standard codon table is highly nonrandom. The three main concepts on the origin and evolution of the code are the stereochemical theory, according to which codon assignments are dictated by physicochemical affinity between amino acids and the cognate codons (anticodons); the coevolution theory, which posits that the code structure coevolved with amino acid biosynthesis pathways; and the error minimization theory under which selection to minimize the adverse effect of point mutations and translation errors was the principal factor of the code's evolution. These theories are not mutually exclusive and are also compatible with the frozen accident hypothesis, that is, the notion that the standard code might have no special properties but was fixed simply because all extant life forms share a common ancestor, with subsequent changes to the code, mostly, precluded by the deleterious effect of codon reassignment. Mathematical analysis of the structure and possible evolutionary trajectories of the code shows that it is highly robust to translational misreading but there are numerous more robust codes, so the standard code potentially could evolve from a random code via a short sequence of codon series reassignments. Thus, much of the evolution that led to the standard code could be a combination of frozen accident with selection for error minimization although contributions from coevolution of the code with metabolic pathways and weak affinities between amino acids and nucleotide triplets cannot be ruled out. However, such scenarios for the code evolution are based on formal schemes whose relevance to the actual primordial evolution is uncertain. A real understanding of the code origin and evolution is likely to be attainable only in conjunction with a credible scenario for the evolution of the coding principle itself and the translation system.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|