1
|
Kim B, Kim N, Kim JY, Kim BS, Jung HJ, Hwang I, Noua IS, Sim SC, Park Y. Development of a high-resolution melting marker for selecting Fusarium crown and root rot resistance in tomato. Genome 2016; 59:173-83. [DOI: 10.1139/gen-2015-0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fusarium crown and root rot is a severe fungal disease of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL). In this study, the genomic location of the FORL-resistance locus was determined using a set of molecular markers on chromosome 9 and an F2 population derived from FORL-resistant inbred ‘AV107-4’ (Solanum lycopersicum) × susceptible ‘L3708’ (Solanum pimpinellifolium). Bioassay performed using Korean FORL strain KACC 40031 showed single dominant inheritance of FORL resistance in the F2 population. In all, 13 polymerase chain reaction-based markers encompassing approximately 3.6–72.0 Mb of chromosome 9 were developed based on the Tomato-EXPEN 2000 map and SolCAP Tomato single nucleotide polymorphism array analysis. These markers were genotyped on 345 F2 plants, and the FORL-resistance locus was found to be present on a pericentromeric region of suppressed chromosomal recombination in chromosome 9. The location of the FORL-resistance locus was further confirmed by testing these markers against diverse commercial tomato and stock cultivars resistant to FORL. A restriction fragment length polymorphism marker, PNU-D4, located at approximately 6.1 Mb of chromosome 9 showed the highest match with the resistance locus and was used for conducting high-resolution melting analysis for marker-assisted selection of FORL resistance.
Collapse
Affiliation(s)
- Bichseam Kim
- Department of Horticultural Bioscience, Pusan National University, Miryang 627-706, Republic of Korea
| | - Nahui Kim
- Department of Horticultural Bioscience, Pusan National University, Miryang 627-706, Republic of Korea
| | - Jun Young Kim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 210-720, Republic of Korea
| | - Byung Sup Kim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 210-720, Republic of Korea
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchun National University, Sunchun 540-950, Republic of Korea
| | - Indoek Hwang
- Department of Horticulture, Sunchun National University, Sunchun 540-950, Republic of Korea
| | - Ill-Sup Noua
- Department of Horticulture, Sunchun National University, Sunchun 540-950, Republic of Korea
| | - Sung-Chur Sim
- Department of Bioresources Engineering, Sejong University, Seoul 143-747, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 627-706, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| |
Collapse
|
2
|
Gaur R, Jeena G, Shah N, Gupta S, Pradhan S, Tyagi AK, Jain M, Chattopadhyay D, Bhatia S. High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci Rep 2015; 5:13387. [PMID: 26303721 PMCID: PMC4548218 DOI: 10.1038/srep13387] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/29/2015] [Indexed: 01/07/2023] Open
Abstract
This study presents genome-wide discovery of SNPs through next generation sequencing of the genome of Cicer reticulatum. Mapping of the C. reticulatum sequenced reads onto the draft genome assembly of C. arietinum (desi chickpea) resulted in identification of 842,104 genomic SNPs which were utilized along with an additional 36,446 genic SNPs identified from transcriptome sequences of the aforementioned varieties. Two new chickpea Oligo Pool All (OPAs) each having 3,072 SNPs were designed and utilized for SNP genotyping of 129 Recombinant Inbred Lines (RILs). Using Illumina GoldenGate Technology genotyping data of 5,041 SNPs were generated and combined with the 1,673 marker data from previously published studies, to generate a high resolution linkage map. The map comprised of 6698 markers distributed on eight linkage groups spanning 1083.93 cM with an average inter-marker distance of 0.16 cM. Utility of the present map was demonstrated for improving the anchoring of the earlier reported draft genome sequence of desi chickpea by ~30% and that of kabuli chickpea by 18%. The genetic map reported in this study represents the most dense linkage map of chickpea , with the potential to facilitate efficient anchoring of the draft genome sequences of desi as well as kabuli chickpea varieties.
Collapse
Affiliation(s)
- Rashmi Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| | - Ganga Jeena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| | - Niraj Shah
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| | - Shefali Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| | - Seema Pradhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| | - Mukesh Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India
| |
Collapse
|
3
|
Zhang W, Cao Y, Wang K, Zhao T, Chen J, Pan M, Wang Q, Feng S, Guo W, Zhou B, Zhang T. Identification of centromeric regions on the linkage map of cotton using centromere-related repeats. Genomics 2014; 104:587-93. [PMID: 25238895 DOI: 10.1016/j.ygeno.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/16/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
Centromere usually contains high-copy-number retrotransposons and satellite repeats, which are difficult to map, clone and sequence. Currently, very little is known about the centromere in cotton. Here, we sequenced a bacterial artificial chromosome (BAC) mapping to the centromeric region and predicted four long-terminal-repeat (LTR) retrotransposons. They were located in the heterochromatic centromeric regions of all 52 pachytene chromosomes in Gossypium hirsutum. Fiber-FISH mapping revealed that these retrotransposons span an area of at least 1.8Mb in the centromeric region. Comparative analysis showed that these retrotransposons generated similar, strong fluorescent signals in the D progenitor Gossypium raimondii but not in the A progenitor Gossypium herbaceum, suggesting that the centromere sequence of tetraploid cotton might be derived from the D progenitor. Centromeric regions were anchored on 13 chromosomes of D-genome sequence. Characterization of these centromere-related repeats and regions will enhance cotton centromere mapping, sequencing and evolutionary studies.
Collapse
Affiliation(s)
- Wenpan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiedan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqiao Pan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiong Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Shouli Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Chusreeaeom K, Ariizumi T, Asamizu E, Okabe Y, Shirasawa K, Ezura H. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary. Mol Genet Genomics 2014; 289:399-409. [PMID: 24519535 DOI: 10.1007/s00438-014-0822-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Genes controlling fruit morphology offer important insights into patterns and mechanisms determining organ shape and size. In cultivated tomato (Solanum lycopersicum L.), a variety of fruit shapes are displayed, including round-, bell pepper-, pear-, and elongate-shaped forms. In this study, we characterized a tomato mutant possessing elongated fruit morphology by histologically analyzing its fruit structure and genetically analyzing and mapping the genetic locus. The mutant line, Solanum lycopersicum elongated fruit 1 (Slelf1), was selected in a previous study from an ethylmethane sulfonate-mutagenized population generated in the background of Micro-Tom, a dwarf and rapid-growth variety. Histological analysis of the Slelf1 mutant revealed dramatically increased elongation of ovary and fruit. Until 6 days before flowering, ovaries were round and they began to elongate afterward. We also determined pericarp thickness and the number of cell layers in three designated fruit regions. We found that mesocarp thickness, as well as the number of cell layers, was increased in the proximal region of immature green fruits, making this the key sector of fruit elongation. Using 262 F2 individuals derived from a cross between Slelf1 and the cultivar Ailsa Craig, we constructed a genetic map, simple sequence repeat (SSR), cleaved amplified polymorphism sequence (CAPS), and derived CAPS (dCAPS) markers and mapped to the 12 tomato chromosomes. Genetic mapping placed the candidate gene locus within a 0.2 Mbp interval on the long arm of chromosome 8 and was likely different from previously known loci affecting fruit shape.
Collapse
Affiliation(s)
- Katarut Chusreeaeom
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 2012; 7:e40563. [PMID: 22802968 PMCID: PMC3393668 DOI: 10.1371/journal.pone.0040563] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/09/2012] [Indexed: 11/19/2022] Open
Abstract
The concurrent development of high-throughput genotyping platforms and next generation sequencing (NGS) has increased the number and density of genetic markers, the efficiency of constructing detailed linkage maps, and our ability to overlay recombination and physical maps of the genome. We developed an array for tomato with 8,784 Single Nucleotide Polymorphisms (SNPs) mainly discovered based on NGS-derived transcriptome sequences. Of the SNPs, 7,720 (88%) passed manufacturing quality control and could be scored in tomato germplasm. The array was used to generate high-density linkage maps for three interspecific F(2) populations: EXPEN 2000 (Solanum lycopersicum LA0925 x S. pennellii LA0716, 79 individuals), EXPEN 2012 (S. lycopersicum Moneymaker x S. pennellii LA0716, 160 individuals), and EXPIM 2012 (S. lycopersicum Moneymaker x S. pimpinellifolium LA0121, 183 individuals). The EXPEN 2000-SNP and EXPEN 2012 maps consisted of 3,503 and 3,687 markers representing 1,076 and 1,229 unique map positions (genetic bins), respectively. The EXPEN 2000-SNP map had an average marker bin interval of 1.6 cM, while the EXPEN 2012 map had an average bin interval of 0.9 cM. The EXPIM 2012 map was constructed with 4,491 markers (1,358 bins) and an average bin interval of 0.8 cM. All three linkage maps revealed an uneven distribution of markers across the genome. The dense EXPEN 2012 and EXPIM 2012 maps showed high levels of colinearity across all 12 chromosomes, and also revealed evidence of small inversions between LA0716 and LA0121. Physical positions of 7,666 SNPs were identified relative to the tomato genome sequence. The genetic and physical positions were mostly consistent. Exceptions were observed for chromosomes 3, 10 and 12. Comparing genetic positions relative to physical positions revealed that genomic regions with high recombination rates were consistent with the known distribution of euchromatin across the 12 chromosomes, while very low recombination rates were observed in the heterochromatic regions.
Collapse
Affiliation(s)
- Sung-Chur Sim
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | | | | | | | | | - Allen Van Deynze
- Seed Biotechnology Center, University of California Davis, Davis, California, United States of America
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mathilde Causse
- Institut National de la Recherche Agronomique, INRA, Unité de Génétique et d’Amélioration des Fruits et Légumes, Montfavet, France
| | - Saranga Wijeratne
- Molecular Cellular and Imagining Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - David M. Francis
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
6
|
Ji Y, Chetelat RT. GISH analysis of meiotic chromosome pairing inSolanum lycopersicoidesintrogression lines of cultivated tomato. Genome 2007; 50:825-33. [PMID: 17893723 DOI: 10.1139/g07-069] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Meiotic chromosome pairing was studied in introgression lines of cultivated tomato, Lycopersicon esculentum (= Solanum lycopersicum ), containing 1 or 2 chromosome segments from the wild species Solanum lycopersicoides . Genomic in situ hybridization (GISH) was used to compare the relative lengths at diakinesis of the different introgressed segments and to measure the chiasmate arm frequency for the chromosome pair involved in the introgression(s). Longer segments generally produced stronger GISH signals than shorter segments. GISH signal intensity also depended on whether or not an introgressed segment encompassed the centromeric region. For example, a 29 cM segment that included the centromeric region produced a stronger GISH signal than a 42 cM segment that did not. In each line the chromosome arm containing the homeologous segment showed a reduction in chiasmate arm frequency that was most pronounced in lines with long segments. This reduction was accompanied by an increased chiasmate arm frequency on the other arm. Double introgression lines, heterozygous in repulsion phase for 2 introgressions on opposite chromosome arms, showed a lower frequency of chiasmata than single introgression lines. Pairing failure, indicated by the presence of univalents, was highest in the double introgression and whole chromosome substitution lines. These results are discussed with respect to observations of suppressed recombination in these stocks and potential practical implications for reducing linkage drag in breeding programs.
Collapse
Affiliation(s)
- Yuanfu Ji
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
7
|
Deniau AX, Pieper B, Ten Bookum WM, Lindhout P, Aarts MGM, Schat H. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:907-20. [PMID: 16850314 DOI: 10.1007/s00122-006-0350-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 06/21/2006] [Indexed: 05/10/2023]
Abstract
Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP markers and expressed sequence tags (ESTs). To establish a genetic map, an F(2) population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F(2). For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8-60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1).
Collapse
Affiliation(s)
- A X Deniau
- Ecology and Physiology of Plants, Vrije Universiteit Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 2006. [PMID: 16904008 DOI: 10.1186/1471‐2164‐7‐206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. RESULTS The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 +/- 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 +/- 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. CONCLUSION Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.
Collapse
Affiliation(s)
- Peter Wenzl
- Triticarte P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 2006; 7:206. [PMID: 16904008 PMCID: PMC1564146 DOI: 10.1186/1471-2164-7-206] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 08/12/2006] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. RESULTS The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 +/- 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 +/- 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. CONCLUSION Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.
Collapse
Affiliation(s)
- Peter Wenzl
- Triticarte P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
- DArT P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
| | - Haobing Li
- School of Agricultural Science, University of Tasmania, PO Box 252-54, Hobart TAS 7001, Australia
| | - Jason Carling
- Triticarte P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
- DArT P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agricultural Research, PO Box 46, Kings Meadows TAS 7249, Australia
| | - Harsh Raman
- NSW Agricultural Genomics Centre and NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga NSW 2650, Australia
| | - Edie Paul
- GeneFlow Inc., 14582 Olde Kent Rd., Centreville VA 20120, USA
| | - Phillippa Hearnden
- School of Agriculture, Food and Wine, Plant Genomics Centre, The University of Adelaide, PMB1, Glen Osmond SA 5064, Australia
| | - Christina Maier
- Dept. Crop and Soil Sciences and School of Molecular Biosciences, Washington State University, Pullman WA 99164-6420, USA
| | - Ling Xia
- Triticarte P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
- DArT P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
| | - Vanessa Caig
- Triticarte P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
- DArT P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
| | - Jaroslava Ovesná
- Research Institute of Crop Production, Drnovská 507, 161 06 Prague 6, Czech Republic
| | - Mehmet Cakir
- Molecular Plant Breeding CRC, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - David Poulsen
- Department of Primary Industries & Fisheries, Plant Science, MS 508 Warwick, QLD 4370, Australia
| | - Junping Wang
- NSW Agricultural Genomics Centre and NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga NSW 2650, Australia
| | - Rosy Raman
- NSW Agricultural Genomics Centre and NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga NSW 2650, Australia
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Ken J Chalmers
- School of Agriculture, Food and Wine, Plant Genomics Centre, The University of Adelaide, PMB1, Glen Osmond SA 5064, Australia
| | - Andris Kleinhofs
- Dept. Crop and Soil Sciences and School of Molecular Biosciences, Washington State University, Pullman WA 99164-6420, USA
| | - Eric Huttner
- Triticarte P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
- DArT P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
| | - Andrzej Kilian
- Triticarte P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
- DArT P/L, PO Box 7141 Yarralumla, Canberra, ACT 2600, Australia
| |
Collapse
|
10
|
High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 2005; 168:2127-40. [PMID: 15611181 DOI: 10.1534/genetics.104.031013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The locus sun on the short arm of tomato chromosome 7 controls morphology of the fruit. Alleles from wild relatives impart a round shape, while alleles from certain cultivated varieties impart an oval shape typical of roma-type tomatoes. We fine mapped the locus in two populations and investigated the genome organization of the region spanning and flanking sun. The first high-resolution genetic map of the sun locus was constructed using a nearly isogenic F(2) population derived from a cross between Lycopersicon pennellii introgression line IL7-4 and L. esculentum cv Sun1642. The mapping combined with results from pachytene FISH experiments demonstrated that the top of chromosome 7 is inverted in L. pennellii accession LA716. sun was located close to the chromosomal breakpoint and within the inversion, thereby precluding map-based cloning of the gene using this population. The fruit-shape locus was subsequently fine mapped in a population derived from a cross between L. esculentum Sun1642 and L. pimpinellifolium LA1589. Chromosome walking using clones identified from several large genomic insert libraries resulted in two noncontiguous contigs flanking sun. Fiber-FISH analysis showed that distance between the two contigs measured 68 kb in L. esculentum Sun1642 and 38 kb in L. pimpinellifolium LA1589, respectively. The sun locus mapped between the two contigs, suggesting that allelic variation at this locus may be due to an insertion/deletion event. The results demonstrate that sun is located in a highly dynamic region of the tomato genome.
Collapse
|
11
|
Yang TJ, Lee S, Chang SB, Yu Y, de Jong H, Wing RA. In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma 2005; 114:103-17. [PMID: 15965704 DOI: 10.1007/s00412-005-0342-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 11/30/2022]
Abstract
We sequenced a continuous 326-kb DNA stretch of a microscopically defined centromeric region of tomato chromosome 12. A total of 84% of the sequence (270 kb) was composed of a nested complex of repeat sequences including 27 retrotransposons, two transposable elements, three MITEs, two terminal repeat retrotransposons in miniature (TRIMs), ten unclassified repeats and three chloroplast DNA insertions. The retrotransposons were grouped into three families of Ty3-Gypsy type long terminal repeat (LTR) retrotransposons (PCRT1-PCRT3) and one LINE-like retrotransposon (PCRT4). High-resolution fluorescence in situ hybridization analyses on pachytene complements revealed that PCRT1a occurs on the pericentromere heterochromatin blocks. PCRT1 was the prevalent retrotransposon family occupying more than 60% of the 326-kb sequence with 19 members grouped into eight subfamilies (PCRT1a-PCRT1h) based on LTR sequence. The PCRT1a subfamily is a rapidly amplified element occupying tens of megabases. The other PCRT1 subfamilies (PCRT1b-PCRT1h) were highly degenerated and interrupted by insertions of other elements. The PCRT1 family shows identity with a previously identified tomato-specific repeat TGR2 and a CENP-B like sequence. A second previously described genomic repeat, TGR3, was identified as a part of the LTR sequence of an Athila-like PCRT2 element of which four copies were found in the 326-kb stretch. A large block of trinucleotide microsatellite (CAA)n occupies the centromere and large portions of the flanking pericentromere heterochromatin blocks of chromosome 12 and most of the other chromosomes. Five putative genes in the remaining 14% of the centromere region were identified, of which one is similar to a transcription regulator (ToCPL1) and a candidate jointless-2 gene.
Collapse
Affiliation(s)
- Tae-Jin Yang
- Brassica Genomics Team, National Institute of Agricultural Biotechnology, RDA, Suwon 441-707, South Korea
| | | | | | | | | | | |
Collapse
|
12
|
Yasui Y, Wang Y, Ohnishi O, Campbell CG. Amplified fragment length polymorphism linkage analysis of common buckwheat (Fagopyrum esculentum) and its wild self-pollinated relative Fagopyrum homotropicum. Genome 2005; 47:345-51. [PMID: 15060587 DOI: 10.1139/g03-126] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Common buckwheat (Fagopyrum esculentum) (2n = 2x = 16) and Fagopyrum homotropicum (2n = 2x = 16) were mated in an interspecific cross and amplified fragment length polymorphism (AFLP) linkage maps were constructed by analyzing segregation in the F2 population. Six hundred and sixty-nine bands were identified using 20 AFLP primer combinations, of which 462 (69%) segregated in the F2 population. The map of F. esculentum has eight linkage groups with 223 markers covering a total of 508.3 cM. The map of F. homotropicum has eight linkage groups with 211 markers covering 548.9 cM. There was one to one correspondence of the esculentum and homotropicum linkage groups. Three morphological markers, distylous self-incompatibility, shattering habit, and winged seed, were located on the AFLP map. Distylous self-incompatibility and shattering habit are tightly linked to each other (1.3 cM) and are located near the center of linkage group 1. Winged seed is located on linkage group 4.
Collapse
Affiliation(s)
- Yasuo Yasui
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Muko, Japan.
| | | | | | | |
Collapse
|
13
|
Yao H, Zhou Q, Li J, Smith H, Yandeau M, Nikolau BJ, Schnable PS. Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci U S A 2002; 99:6157-62. [PMID: 11959909 PMCID: PMC122919 DOI: 10.1073/pnas.082562199] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The 140-kb a1-sh2 interval of the maize genome contains at least four genes (a1, yz1, x1, and sh2). Partial sequence analysis of two haplotypes has revealed many single nucleotide polymorphisms and InDel polymorphisms, including several large structural polymorphisms. The physical positions of 101 meiotic recombination breakpoints are not distributed uniformly across the interval and are instead concentrated within three recombination hot spots. Two of these recombination hot spots are genic (a1 and yz1) and one is apparently nongenic. The x1 gene is not a recombination hot spot. Thus, these results suggest that not all hot spots are genes and indicate that not all genes are hot spots. Two of the 101 recombination events arose by means of either noncrossover events involving conversion tract lengths of at least 17 kb or double-crossover events. Only one recombination breakpoint mapped to the approximately 80-kb distal portion of the a1-sh2 interval that contains large amounts of repetitive DNA including retrotransposons; in this region the ratio of genetic to physical distance is less than 0.5% of the genome's average. These results establish that the retrotransposon faction of the maize genome is relatively inert recombinationally.
Collapse
Affiliation(s)
- Hong Yao
- Interdepartmental Genetics Program, Department of Zoology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Areshchenkova T, Ganal MW. Long tomato microsatellites are predominantly associated with centromeric regions. Genome 1999. [DOI: 10.1139/g98-155] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsatellites as genetic markers are used in many crop plants. Major criteria for their usability as molecular markers include that they are highly polymorphic and evenly spread throughout a genome. In tomato, it has been reported that long arrays of tetranucleotide microsatellites containing the motif GATA are highly clustered around the centromeres of all chromosomes. In this study, we have isolated tomato microsatellites containing long arrays (> 20 repeats) of the dinucleotide motifs GA, GT, AT, as well as GATA, assessed their variability within Lycopersicon esculentum varieties and mapped them onto a genetic map of tomato. The investigated microsatellite markers exhibited between 1 and 5 alleles in a diverse set of L. esculentum lines. Mapping of the microsatellites onto the genetic map of tomato demonstrates that, as previously shown, GATA microsatellites are highly clustered in the regions of the tomato centromeres. Interestingly, the same centromeric location was now found for long dinucleotide microsatellite markers. Because of this uneven distribution, genetic mapping of the entire tomato genome using long dinucleotide microsatellites will be very difficult to achieve and microsatellite markers with shorter arrays of microsatellites could be more suitable for mapping experiments albeit their lower level of polymorphism. Some microsatellite markers described in this study might provide a useful tool to study the molecular structure of tomato centromeric regions and for variety identification.Key words: molecular marker, Lycopersicon esculentum, genetic variability, genetic map, simple sequence repeats.
Collapse
|
15
|
Castiglioni P, Pozzi C, Heun M, Terzi V, Müller KJ, Rohde W, Salamini F. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 1998; 149:2039-56. [PMID: 9691056 PMCID: PMC1460261 DOI: 10.1093/genetics/149.4.2039] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A strategy based upon AFLP markers for high-efficiency mapping of morphological mutations and DNA probes to linkage groups in barley is presented. First, 511 AFLP markers were placed on the linkage map derived from the cross Proctor x Nudinka. Second, loci controlling phenotypic traits were assigned to linkage groups by AFLP analysis, using F2 populations consisting of 30-50 mutant plants derived from crosses of the type "mutant x Proctor" and "mutant x Nudinka." To map DNA probes, 67 different wild-type barley lines were selected to generate F2 populations by crossing with Proctor and Nudinka. F2 plants that were polymorphic for a given RFLP fragment were classified into genotypic classes. Linkage of the RFLP polymorphism to 1 of the 511 AFLP loci was indicated by cosegregation. The use of the strategy is exemplified by the mapping of the mutation branched-5 to chromosome 2 and of the DNA probes Bkn2 and BM-7 to chromosomes 5 and 1, respectively. Map expansion and marker order in map regions with dense clustering of markers represented a particular problem. A discussion considering the effect of noncanonical recombinant products on these two parameters is provided.
Collapse
Affiliation(s)
- P Castiglioni
- Max-Planck-Institut für Züchtungsforschung, 50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Meiotic recombination generates novel allelic arrays on chromosomes. Recent experiments have revealed an extraordinarily nonrandom distribution of recombination breakpoints along the lengths of plant chromosomes; for example, recombination breakpoints often resolve within genic sequences, and thereby generate novel alleles. The mechanism by which recombination breakpoints are determined is an area of active investigation. In addition, recent developments are providing recombination-based technologies for creating targeted alterations in the architecture of plant genomes.
Collapse
Affiliation(s)
- P S Schnable
- Department of Agronomy, lowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
17
|
Schondelmaier J, Schmidt T, Jung C, Heslop-Harrison JS. Genetic and chromosomal localization of the 5S rDNA locus in sugar beet (Beta vulgarisL.). Genome 1997; 40:171-5. [DOI: 10.1139/g97-024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A digoxigenin-labelled 5S rDNA probe containing the 5S rRNA gene and the adjacent intergenic spacer was used for in situ hybridization to metaphase and interphase chromosomes of a trisomic stock from sugar beet (Beta vulgaris L.). Three chromosomes of primary trisomic line IV (T. Butterfass. Z. Bot. 52: 46–77. 1964) revealed signals close to the centromeres. Polymorphisms of 5S rDNA repeats in a segregating population were used to map genetically the 5S rRNA genes within a cluster of markers in linkage group II of sugar beet. The concentration of genetic markers around the centromere presumably reflects the suppressed recombination frequency in centromeric regions. The correlation of physical and genetic data allowed the assignment of a linkage group to sugar beet chromosome IV according to line IV of the primary trisomics.Key words: Beta vulgaris, sugar beet, 5S rRNA, in situ hybridization, RFLPs, trisomics.
Collapse
|
18
|
van Tuinen A, Koornneef M, Cordonnier-Pratt MM, Pratt LH, Verkerk R, Zabel P. The mapping of phytochrome genes and photomorphogenic mutants of tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1997; 94:115-22. [PMID: 19352753 DOI: 10.1007/s001220050389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/1996] [Accepted: 06/14/1996] [Indexed: 05/08/2023]
Abstract
The map positions of five previously described phytochrome genes have been determined in tomato (Lycopersicon esculentum Mill.) The position of the yg-2 gene on chromosome 12 has been confirmed and the classical map revised. The position of the phytochrome A (phy A)-deficient fri mutants has been refined by revising the classical map of chromosome 10. The position of the PhyA gene is indistinguishable from that of the fri locus. The putative phyB1-deficient tri mutants were mapped by classical and RFLP analysis to chromosome 1. The PhyB1 gene, as predicted, was located at the same position. Several mutants with the high pigment (hp) phenotype, which exaggerates phytochrome responses, have been reported. Allelism tests confirmed that the hp-2 mutant is not allelic to other previously described hp (proposed here to be called hp-1) mutants and a second stronger hp-2 allele (hp-2 ( j )) was identified. The hp-2 gene was mapped to the classical, as well as the RFLP, map of chromosome 1.
Collapse
Affiliation(s)
- A van Tuinen
- Department of Genetics, Wageningen Agricultural University, Dreijenlaan 2, NL-6703 HA, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Presting GG, Frary A, Pillen K, Tanksley SD. Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:526-31. [PMID: 8709958 DOI: 10.1007/bf02173641] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Several bacteriophage lambda clones containing interstitial telomere repeats (ITR) were isolated from a library of tomato genomic DNA by plaque hybridization with the cloned Arabidopsis thaliana telomere repeat. Restriction fragments lacking highly repetitive DNA were identified and used as probes to map 14 of the 20 lambda clones. All of these markers mapped near the centromere on eight of the twelve tomato chromosomes. The exact centromere location of chromosomes 7 and 9 has recently been determined, and all ITR clones that localize to these two chromosomes map to the marker clusters known to contain the centromere. High-resolution mapping of one of these markers showed cosegregation of the telomere repeat with the marker cluster closest to the centromere in over 9,000 meiotic products. We propose that the map location of interstitial telomere clones may reflect specific sequence interchanges between telomeric and centromeric regions and may provide an expedient means of localizing centromere positions.
Collapse
Affiliation(s)
- G G Presting
- Department of Plant Breeding and Biometry, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|