1
|
Tönißen K, Franz GP, Albrecht E, Lutze P, Bochert R, Grunow B. Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1527-1544. [PMID: 38733450 PMCID: PMC11286731 DOI: 10.1007/s10695-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.
Collapse
Affiliation(s)
- Katrin Tönißen
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - George P Franz
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Working Group Muscle-Fat Crosstalk, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Philipp Lutze
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Institute of Fisheries, Research Station Aquaculture, Born, Germany
| | - Bianka Grunow
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
2
|
Histological and biochemical evaluation of skeletal muscle in the two salmonid species Coregonus maraena and Oncorhynchus mykiss. PLoS One 2021; 16:e0255062. [PMID: 34383783 PMCID: PMC8360549 DOI: 10.1371/journal.pone.0255062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/08/2021] [Indexed: 12/03/2022] Open
Abstract
The growth of fishes and their metabolism is highly variable in fish species and is an indicator for fish fitness. Therefore, somatic growth, as a main biological process, is ecologically and economically significant. The growth differences of two closely related salmonids, rainbow trout (Oncorhynchus mykiss) and maraena whitefsh (Coregonus maraena), have not been adequately studied as a comparative study and are therefore insufficiently understood. For this reason, our aim was to examine muscle growth in more detail and provide a first complex insight into the growth and muscle metabolism of these two fish species at slaughter size. In addition to skeletal muscle composition (including nuclear counting and staining of stem and progenitor cells), biochemical characteristics, and enzyme activity (creatine kinase, lactate dehydrogenase, isocitrate dehydrogenase) of rainbow trout and maraena whitefish were determined. Our results indicate that red muscle contains cells with a smaller diameter compared to white muscle and those fibres had more stem and progenitor cells as a proportion of total nuclei. Interestingly, numerous interspecies differences were identified; in rainbow trout muscle RNA content, intermediate fibres and fibre diameter and in whitefish red muscle cross-sectional area, creatine kinase activity were higher compared to the other species at slaughter weight. The proportional reduction in red muscle area, accompanied by an increase in DNA content and a lower activity of creatine kinase, exhibited a higher degree of hypertrophic growth in rainbow trout compared to maraena whitefish, which makes this species particularly successful as an aquaculture species.
Collapse
|
3
|
Pengam M, Amérand A, Simon B, Guernec A, Inizan M, Moisan C. How do exercise training variables stimulate processes related to mitochondrial biogenesis in slow and fast trout muscle fibres? Exp Physiol 2021; 106:938-957. [PMID: 33512052 DOI: 10.1113/ep089231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? Exercise is known to promote mitochondrial biogenesis in skeletal muscle, but what are the most relevant training protocols to stimulate it? What is the main finding and its importance? As in mammals, training in rainbow trout affects slow and fast muscle fibres differently. Exercise intensity, relative to volume, duration and frequency, is the most relevant training variable to stimulate the processes related to mitochondrial biogenesis in both red and white muscles. This study offers new insights into muscle fibre type-specific transcription and expression of genes involved in mitochondrial adaptations following training. ABSTRACT Exercise is known to be a powerful way to improve health through the stimulation of mitochondrial biogenesis in skeletal muscle, which undergoes cellular and molecular adaptations. One of the current challenges in human is to define the optimal training stimulus to improve muscle performance. Fish are relevant models for exercise training physiology studies mainly because of their distinct slow and fast muscle fibres. Using rainbow trout, we investigated the effects of six different training protocols defined by manipulating specific training variables (such as exercise intensity, volume, duration and frequency), on mRNAs and some proteins related to four subsystems (AMP-activated protein kinase-peroxisome proliferator-activated receptor γ coactivator-1α signalling pathway, mitochondrial function, antioxidant defences and lactate dehydrogenase (LDH) metabolism) in both red and white muscles (RM and WM, respectively). In both muscles, high-intensity exercise stimulated more mRNA types and enzymatic activities related to mitochondrial biogenesis than moderate-intensity exercise. For volume, duration and frequency variables, we demonstrated fibre type-specific responses. Indeed, for high-intensity interval training, RM transcript levels are increased by a low training volume, but WM transcript responses are stimulated by a high training volume. Moreover, transcripts and enzymatic activities related to mitochondria and LDH show that WM tends to develop aerobic metabolism with a high training volume. For transcript stimulation, WM requires a greater duration and frequency of exercise than RM, whereas protein adaptations are efficient with a long training duration and a high frequency in both muscles.
Collapse
Affiliation(s)
- Morgane Pengam
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Aline Amérand
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Bernard Simon
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Anthony Guernec
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Manon Inizan
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Christine Moisan
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| |
Collapse
|
4
|
Ferreira MS, Aride PHR, Val AL. Could resistance to lactate accumulation contribute to the better swimming performance of Brycon amazonicus when compared to Colossoma macropomum? PeerJ 2018; 6:e5719. [PMID: 30324018 PMCID: PMC6186156 DOI: 10.7717/peerj.5719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022] Open
Abstract
Background In the wild, matrinchã (Brycon amazonicus) and tambaqui (Colossoma macropomum) rely strongly on their swimming capacity to perform feeding, migration and reproductive activities. Sustained swimming speed in fishes is performed almost exclusively by aerobic red muscles. The white muscle has high contraction power, but fatigue quickly, being used mainly in sprints and bursts, with a maximum duration of few seconds. The Ucrit test, an incremental velocity procedure, is mainly a measure of the aerobic capacity of a fish, but with a high participation of anaerobic metabolism close to the velocity of fatigue. Our previous study has indicated a high swimming performance of matrinchã (Ucrit) after hypoxia exposure, despite increased levels of lactate in plasma. In contrast, tambaqui with high lactate levels in plasma presented very low swimming performance. Therefore, we aimed to study the resistance of matrinchã and tambaqui to the increased lactate levels in muscle over an incremental velocity test (Ucrit). As a secondary aim, we analyzed the differences in anaerobic metabolism in response to environmental hypoxia, which could also support the better swimming performance of matrinchã, compared to tambaqui. Methods We measured, over incremented velocities in both species, the metabolic rate (the oxygen consumption by the fish; MO2), and the concentrations of lactate and nitrites and nitrates (NOx) in muscles. NOx was measured as an indicator of nitric oxide and its possible role in improving cardiorespiratory capacity in these fishes, which could postpone the use of anaerobic metabolism and lactate production during the swimming test. Also, we submitted fishes until fatigue and hypoxia (0.5 mg L−1) and measured, in addition to the previous parameters, lactate dehydrogenase activity (LDH; the enzyme responsible for lactate production), since that swimming performance could also be explained by the anaerobic capacity of producing ATP. Results Matrinchã exhibited a better swimming performance and higher oxygen consumption rates. Lactate levels were higher in matrinchã only at the moment of fatigue. Under hypoxia, LDH activity increased in the white muscle only in tambaqui, but averages were always higher in matrinchã. Discussion and conclusions The results suggest that matrinchã is more resistant than tambaqui regarding lactate accumulation in muscle at the Ucrit test, but it is not clear how much it contributes to postpone fatigue. The higher metabolic rate possibly allows the accumulated lactate to be used as aerobic fuel by the matrinchã, improving swimming performance. More studies are needed regarding matrinchã’s ability to oxidize lactate, the effects of exercise on muscle acidification, and the hydrodynamics of these species, to clarify why matrinchã is a better swimmer than tambaqui.
Collapse
Affiliation(s)
- Marcio S Ferreira
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Paulo H R Aride
- Laboratory of Nutrition and Aquatic Organisms Production, Federal Institute of the Espírito Santo State, Piúma, Espírito Santo, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| |
Collapse
|
5
|
Svendsen JC, Tudorache C, Jordan AD, Steffensen JF, Aarestrup K, Domenici P. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer. J Exp Biol 2010; 213:2177-83. [PMID: 20543115 DOI: 10.1242/jeb.041368] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Members of the family Embiotocidae exhibit a distinct gait transition from exclusively pectoral fin oscillation to combined pectoral and caudal fin propulsion with increasing swimming speed. The pectoral–caudal gait transition occurs at a threshold speed termed Up–c. The objective of this study was to partition aerobic and anaerobic swimming costs at speeds below and above the Up–c in the striped surfperch Embiotoca lateralis using swimming respirometry and video analysis to test the hypothesis that the gait transition marks the switch from aerobic to anaerobic power output. Exercise oxygen consumption rate was measured at 1.4, 1.9 and 2.3 L s–1. The presence and magnitude of excess post-exercise oxygen consumption (EPOC) were evaluated after each swimming speed. The data demonstrated that 1.4 L s–1 was below the Up–c, whereas 1.9 and 2.3 L s–1 were above the Up–c. These last two swimming speeds included caudal fin propulsion in a mostly steady and unsteady (burst-assisted) mode, respectively. There was no evidence of EPOC after swimming at 1.4 and 1.9 L s–1, indicating that the pectoral–caudal gait transition was not a threshold for anaerobic metabolism. At 2.3 L s–1, E. lateralis switched to an unsteady burst and flap gait. This swimming speed resulted in EPOC, suggesting that anaerobic metabolism constituted 25% of the total costs. Burst activity correlated positively with the magnitude of the EPOC. Collectively, these data indicate that steady axial propulsion does not lead to EPOC whereas transition to burst-assisted swimming above Up–c is associated with anaerobic metabolism in this labriform swimmer.
Collapse
Affiliation(s)
- Jon C. Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Christian Tudorache
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Anders D. Jordan
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - John F. Steffensen
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Kim Aarestrup
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Paolo Domenici
- CNR – IAMC, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, 09072 Torregrande, Oristano, Italy
| |
Collapse
|
6
|
Mesquita-Saad LSB, Leitão MAB, Paula-Silva MN, Chippari-Gomes AR, Almeida-Val VMF. Specialized metabolism and biochemical suppression during aestivation of the extant South American lungfish--Lepidosiren paradoxa. BRAZ J BIOL 2002; 62:495-501. [PMID: 12530187 DOI: 10.1590/s1519-69842002000300014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lepidosiren paradoxa (pirambóia) is the single representative of Dipnoan (lungfish) in South America. This species is considered a living fossil, in spite of some reports describing this fish as having a very specialized life style. It aestivates during the dry season, and has developed metabolic adaptations to cope with both flooding and drought. The literature describing its tissue ultra-structure shows high glycogen stored in the muscle, suggesting a strong dependence on anaerobic glycolysis. The present paper reports tissue enzyme levels of LDH, MDH, and CS, and isozymic tissue distribution of LDH, MDH, ADH, PGI, SOD, and PGM of 7 aestivating specimens from Lago do Canteiro in the Amazonas River. Animals were caught while burrowed in mud during the aestivation period. Our findings reveal high anaerobic capacity of both skeletal and heart muscles, even during the aestivation period, when enzymes showed suppressed levels compared to those of non-aestivating animals (data from the literature). Isozymic patterns suggest loss of duplicate condition in most analyzed loci, a characteristic that occurs mainly in higher vertebrate categories. These data indicate that, compared to the fish group, lungfish may be considered advanced, despite retaining primitive morphological characters.
Collapse
Affiliation(s)
- L S B Mesquita-Saad
- Laboratório de Ecologia e Ecofisiologia Molecular, Instituto Nacional de Pesquisas da Amazônia, Alameda Cosme Ferreira, 1756, CEP 69000-000, Aleixo, Manaus, AM, Brazil
| | | | | | | | | |
Collapse
|
7
|
Fitch NA. Lactate dehydrogenase isozymes in the trunk and cardiac muscles of an antarctic teleost fish,Notothenia neglecta Nybelin. FISH PHYSIOLOGY AND BIOCHEMISTRY 1989; 6:187-195. [PMID: 24227074 DOI: 10.1007/bf01874775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The distribution and kinetics of lactate dehydrogenase (LDH) isozymes in the red and white trunk muscles, and cardiac muscle of an antarctic teleost fish (Notothenia neglecta Nybelin) have been studied. Pyruvate inhibition of LDH in all three muscle types is very low, being less than 50% even at a concentration of 60mM pyruvate. Activity versus pyruvate concentration profiles are not significantly different for LDH in all three muscle types. The Michaelis constant (Km) for pyruvate was not significantly different for all three LDH's. Raising the assay temperature caused an increase in Km of similar form in all three muscle types, while Km was lowest at the lowest assay temperature (-1°C). When samples were run on a polyacrylamide gel, the bands stained specifically for LDH activity appeared at identical positions as those of the H2M2 band of the standards.It would appear therefore that the LDH isozyme found in the red and white trunk muscle ofN. neglecta is identical to that in cardiac muscle. This fact is discussed in relation to the physiological ecology of antaretic fishes, and the metabolic constraints imposed by their habitat, including their apparent low capacity for utilising glycolytic fuels.
Collapse
Affiliation(s)
- N A Fitch
- Department of Physiology and Pharmacology, Gatty Marine Laboratory, KY168LB, St. Andrews, Scotland
| |
Collapse
|
8
|
El-Fiky N, Hinterleitner S, Wieser W. Differentiation of swimming muscles and gills, and development of anaerobic power in the larvae of cyprinid fish (Pisces, Teleostei). ZOOMORPHOLOGY 1987. [DOI: 10.1007/bf00312122] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|