1
|
Sonninen TM, Hämäläinen RH, Koskuvi M, Oksanen M, Shakirzyanova A, Wojciechowski S, Puttonen K, Naumenko N, Goldsteins G, Laham-Karam N, Lehtonen M, Tavi P, Koistinaho J, Lehtonen Š. Metabolic alterations in Parkinson's disease astrocytes. Sci Rep 2020; 10:14474. [PMID: 32879386 PMCID: PMC7468111 DOI: 10.1038/s41598-020-71329-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
In Parkinson`s disease (PD), the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta is associated with Lewy bodies arising from the accumulation of alpha-synuclein protein which leads ultimately to movement impairment. While PD has been considered a disease of the DA neurons, a glial contribution, in particular that of astrocytes, in PD pathogenesis is starting to be uncovered. Here, we report findings from astrocytes derived from induced pluripotent stem cells of LRRK2 G2019S mutant patients, with one patient also carrying a GBA N370S mutation, as well as healthy individuals. The PD patient astrocytes manifest the hallmarks of the disease pathology including increased expression of alpha-synuclein. This has detrimental consequences, resulting in altered metabolism, disturbed Ca2+ homeostasis and increased release of cytokines upon inflammatory stimulation. Furthermore, PD astroglial cells manifest increased levels of polyamines and polyamine precursors while lysophosphatidylethanolamine levels are decreased, both of these changes have been reported also in PD brain. Collectively, these data reveal an important role for astrocytes in PD pathology and highlight the potential of iPSC-derived cells in disease modeling and drug discovery.
Collapse
Affiliation(s)
- Tuuli-Maria Sonninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Marja Koskuvi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Anastasia Shakirzyanova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Katja Puttonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Nikolay Naumenko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Pasi Tavi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Šárka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland.
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Bagley JR, Szumlinski KK, Kippin TE. Discovery of early life stress interacting and sex-specific quantitative trait loci impacting cocaine responsiveness. Br J Pharmacol 2019; 176:4159-4172. [PMID: 30874305 DOI: 10.1111/bph.14661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Addiction vulnerability involves complex gene X environment interactions leading to a pathological response to drugs. Identification of the genes involved in these interactions is an important step in understanding the underlying neurobiology and rarely have such analyses examined sex-specific influences. To dissect this interaction, we examined the impact of prenatal stress (PNS) on cocaine responsiveness in male and female mice of the BXD recombinant inbred panel. EXPERIMENTAL APPROACH BXD strains were subjected to timed mating and assigned to PNS or control groups. PNS dams were subjected to restraint stress (1-hr restraint, three times daily) starting between embryonic day (E) 11 and 14 and continued until parturition. Adult male and female, control and PNS offspring were tested for locomotor response to initial and repeated cocaine injections (sensitization) as well as cocaine-induced conditioned place preference (CPP). KEY RESULTS Strain, PNS, and sex interacted to modulate initial and sensitized cocaine-induced locomotion, as well as CPP. Moreover, a quantitative trait locus (QTL) interacting with PNS regulating initial locomotor response to cocaine (chromosome X, 37.91 to 50.95 Mb) was identified. Also PNS-independent, female-specific QTLs regulating CPP (chromosome 11, 65.50 to 81.31 Mb) and sensitized cocaine-induced locomotion (chromosome 16, 95.79 to 98.32 Mb) were identified. Publicly available mRNA expression data were utilized to identify cis-eQTL and transcript covariation with the behavioural phenotype to prioritize candidate genes; including Aifm1. CONCLUSIONS AND IMPLICATIONS These QTL encompass genes that may moderate genetic susceptibility to PNS and interact with sex to determine adult responsiveness to cocaine and addiction vulnerability. LINKED ARTICLES This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Jared R Bagley
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California.,Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California.,Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
3
|
Gross JA, Turecki G. Suicide and the polyamine system. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:980-8. [PMID: 24040803 DOI: 10.2174/18715273113129990095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/02/2012] [Accepted: 12/02/2012] [Indexed: 12/27/2022]
Abstract
Suicide is a significant worldwide public health problem. Understanding the neurobiology is important as it can help us to better elucidate underlying etiological factors and provide opportunities for intervention. In recent years, many lines of research have suggested that the polyamine system may be dysregulated in suicidal behaviors. Initial research in animals provided evidence of a dysfunctional polyamine stress response system, while later work using post-mortem human brain tissue has suggested that molecular mechanisms may be at play in the suicide brain. In this review, we will describe the research that suggests the presence of alterations in the polyamine system in mental disorders and behavioral phenotypes, with particular attention to work on suicide. In addition, we will also describe potential avenues for future work.
Collapse
Affiliation(s)
- Jeffrey A Gross
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 boul. Lasalle, Verdun, Quebec, H4H 1R3, Canada.
| | | |
Collapse
|
4
|
Fiori LM, Turecki G. Association of the SAT1 in/del polymorphism with suicide completion. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:825-9. [PMID: 19851986 DOI: 10.1002/ajmg.b.31040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several studies have observed decreased expression of spermidine/spermine N1-acetyltransferase (SAT1) in the brains of suicide completers, and we previously identified a single-nucleotide polymorphism in the promoter region of SAT1 which was associated with suicide completion and SAT1 expression in the brain. We recently characterized the haplotype structure of the SAT1 promoter region and identified an insertion/deletion (in/del) of 15 adenine residues. This variant appears to be a predictor of SAT1 expression, and we were thus interested in determining if the lower expressing deletion allele was found more frequently among suicide completers. To this end, we genotyped the in/del in a sample of 771 French-Canadian males, comprising 326 suicide completers and 445 non-suicide controls. We found no significant difference in the frequencies of the two alleles between suicide completers and controls in the entire sample. However, we observed a significantly higher frequency of the deletion in the depressed suicide completers compared to the depressed non-suicides. These results add support for a role of SAT1 in conferring a risk for suicide completion, in particular in the context of depressive disorders.
Collapse
Affiliation(s)
- Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
5
|
Medina MA, Urdiales JL, Rodríguez-Caso C, Ramírez FJ, Sánchez-Jiménez F. Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 2003; 38:23-59. [PMID: 12641342 DOI: 10.1080/713609209] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Biogenic amines are organic polycations derived from aromatic or cationic amino acids. All of them have one or more positive charges and a hydrophobic skeleton. Nature has evolved these molecules to play different physiological roles in mammals, but maintains similar patterns for their metabolic and intracellular handling. As deduced from this review, many questions still remain to be solved around their biochemistry and molecular biology, blocking our aims to control the relevant pathologies in which they are involved (cancer and immunological, neurological, and gastrointestinal diseases). Advances in this knowledge are dispersed among groups working on different biomedical areas. In these pages, we put together the most relevant information to remark how fruitful it can be to learn from Nature and to take advantage of the biochemical similarities (key protein structures and their regulation data on metabolic interplays and binding properties) to generate new hypothesis and develop different biomedical strategies based on biochemistry and molecular biology of these compounds.
Collapse
|
6
|
Cao BJ, Reith MEA. Nitric oxide inhibits uptake of dopamine and N-methyl-4-phenylpyridinium (MPP+) but not release of MPP+ in rat C6 glioma cells expressing human dopamine transporter. Br J Pharmacol 2002; 137:1155-62. [PMID: 12466224 PMCID: PMC1573603 DOI: 10.1038/sj.bjp.0704974] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 08/21/2002] [Accepted: 09/10/2002] [Indexed: 11/09/2022] Open
Abstract
1. Conflicting results have been reported regarding the influence of nitric oxide (NO) and peroxynitrite on dopamine (DA) uptake and release. In the present study, effects of NO donors were studied in rat C6 glioma cells expressing human DA transporter. 2. [(3)H]-DA uptake was inhibited by S-nitroso-thiol S-nitroso-N-acetylpenicillamine, spermine/NO, diethylamine/NO (DEA/NO), (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)-amino]/NO (PAPA/NO), and 3-morphosynodiomine (SIN-1) in a rank order correlating with their half lives as NO donors, whereas no effect was observed for diethylenetriamine/NO and dipropylenetriamine/NO, which release NO very slowly. 3. Hydroxycobalamin, a NO scavenger, but not superoxide dismutase and catalase, enzymes that metabolize superoxide and hydrogen peroxide, respectively, abolished the inhibitory effect of DEA/NO and SIN-1, indicating that they inhibit DA uptake through a mechanism related to the production of NO but unrelated to the formation of peroxynitrite. In consonance, peroxynitrite did not alter DA uptake in the present system. 4. DEA/NO and PAPA/NO reduced [(3)H]-MPP(+) uptake, whereas the release of [(3)H]-MPP(+) was not modified, demonstrating that NO can inhibit uptake of DA transporter substrate without accelerating DA transporter-mediated reverse transport of substrate under the same conditions.
Collapse
Affiliation(s)
- Bo-Jin Cao
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria, Illinois, IL 61656-1649, U.S.A
| | - Maarten E A Reith
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria, Illinois, IL 61656-1649, U.S.A
| |
Collapse
|