1
|
Downs AM, Fan X, Donsante C, Jinnah HA, Hess EJ. Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia. Neurobiol Dis 2019; 125:115-122. [PMID: 30707939 DOI: 10.1016/j.nbd.2019.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 11/17/2022] Open
Abstract
Trihexyphenidyl, a nonselective muscarinic receptor antagonist, is the small molecule drug of choice for the treatment of DYT1 dystonia, but it is poorly tolerated due to significant side effects. A better understanding of the mechanism of action of trihexyphenidyl is needed for the development of improved treatments. Because DTY1 dystonia is associated with both abnormal cholinergic neurotransmission and abnormal dopamine regulation, we tested the hypothesis that trihexyphenidyl normalizes striatal dopamine release in a mouse model of DYT1 dystonia using ex vivo fast scan cyclic voltammetry and in vivo microdialysis. Trihexyphenidyl increased striatal dopamine release and efflux as assessed by ex vivo voltammetry and in vivo microdialysis respectively. In contrast, ʟ-DOPA, which is not usually effective for the treatment of DYT1 dystonia, did not increase dopamine release in either Dyt1 or control mice. Trihexyphenidyl was less effective at enhancing dopamine release in Dyt1 mice relative to controls ex vivo (mean increase WT: 65% vs Dyt1: 35%). Trihexyphenidyl required nicotinic receptors but not glutamate receptors to increase dopamine release. Dyt1 mice were more sensitive to the dopamine release decreasing effects of nicotinic acetylcholine receptor antagonism (IC50: WT = 29.46 nM, Dyt1 = 12.26 nM) and less sensitive to acetylcholinesterase inhibitors suggesting that nicotinic acetylcholine receptor neurotransmission is altered in Dyt1 mice, that nicotinic receptors indirectly mediate the differential effects of trihexyphenidyl in Dyt1 mice, and that nicotinic receptors may be suitable therapeutic targets for DYT1 dystonia.
Collapse
Affiliation(s)
- Anthony M Downs
- Department of Pharmacology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Xueliang Fan
- Department of Pharmacology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Christine Donsante
- Department of Pharmacology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA
| | - Ellen J Hess
- Department of Pharmacology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Molecular Imaging of the Cholinergic System in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:211-250. [PMID: 30314597 DOI: 10.1016/bs.irn.2018.07.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of the first identified neurotransmitters in the brain, acetylcholine, is an important modulator that drives changes in neuronal and glial activity. For more than two decades, the main focus of molecular imaging of the cholinergic system in Parkinson's disease (PD) has been on cognitive changes. Imaging studies have confirmed that degeneration of the cholinergic system is a major determinant of dementia in PD. Within the last decade, the focus is expanding to studying cholinergic correlates of mobility impairments, dyskinesias, olfaction, sleep, visual hallucinations and risk taking behavior in this disorder. These studies increasingly recognize that the regional topography of cholinergic brain areas associates with specific functions. In parallel with this trend, more recent molecular cholinergic imaging approaches are investigating cholinergic modulatory functions and contributions to large-scale brain network functions. A novel area of research is imaging cholinergic innervation functions of peripheral autonomic organs that may have the potential of future prodromal diagnosis of PD. Finally, emerging evidence of hypercholinergic activity in prodromal and symptomatic leucine-rich repeat kinase 2 PD may reflect neuronal cholinergic compensation versus a response to neuro-inflammation. Molecular imaging of the cholinergic system has led to many new insights in the etiology of dopamine non-responsive symptoms of PD (more "malignant" hypocholinergic disease phenotype) and is poised to guide and evaluate future cholinergic drug development in this disorder.
Collapse
|
3
|
Hosoi R, Kobayashi K, Ishida J, Yamaguchi M, Inoue O. Effect of sabcomeline on muscarinic and dopamine receptor binding in intact mouse brain. Ann Nucl Med 2003; 17:123-30. [PMID: 12790361 DOI: 10.1007/bf02988450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sabcomeline [(R-(Z)-(+)-alpha-(methoxyiamino)-1-azabicyclo[2.2.2]octane-3-acetonitrile)] is a potent and functionally selective muscarinic M1 receptor partial agonist. However, little is known of the binding properties of sabcomeline under in vivo conditions. In this study, muscarinic receptor occupancy by sabcomeline in mouse brain regions and heart was estimated using [3H]quinuclidinyl benzilate (QNB) and [3H]N-methylpiperidyl benzilate (NMPB) as radioligands. In the cerebral cortex, hippocampus, and striatum, the estimated IC50 value of sabcomeline for [3H]NMPB binding was almost 0.2 mg/kg. Sabcomeline was not a selective ligand to M1 receptors as compared with biperiden in vivo. In the cerebral cortex, maximum receptor occupancy was observed about 1 hr after intravenous injection of sabcomeline (0.3 mg/kg), and the binding availability of mACh receptors had almost returned to the control level by 3-4 hr. These findings indicated that the binding kinetics of sabcomeline is rather rapid in mouse brain. Examination of dopamine D2 receptor binding revealed that sabcomeline affected the kinetics of both [3H]raclopride and [3H]N-methylspiperone (NMSP) binding in the striatum. It significantly decreased the k3 and k4 of [3H]raclopride binding resulting in an increase in binding potential (BP = k3/k4 = Bmax/Kd) in sabcomeline-treated mice, and an approximately 15% decrease in k3 of [3H]NMSP binding was also observed. Although the mechanism is still unclear, sabcomeline altered dopamine D2 receptor affinity or availability by modulations via neural networks.
Collapse
Affiliation(s)
- Rie Hosoi
- Department of Medical Physics, School of Allied Health Sciences, Faculty of Medicine, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
4
|
McPherson DW, Breeden WK, Beets AL, Luo H, Sood V, Knapp FF. Stereoselective synthesis, in vitro, and initial in vivo evaluation of 1-methylpiperidin-4-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (IPIP): a novel radioiodinated molecular probe with high affinity for the muscarinic receptor. Nucl Med Biol 2001; 28:959-73. [PMID: 11711316 DOI: 10.1016/s0969-8051(01)00252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
1-Methylpiperidin-4-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (IPIP, Fig. 1) was investigated as a potential radioiodinated molecular probe targeted to the muscarinic receptor complex. The IPIP stereoisomers were synthesized via a chiral intermediate in >95% enantiomeric excess. The R-isomers demonstrated a M(1) to M(2) subtype selectivity of approximately 3 to 1 and the S-isomers demonstrated non-subtype selective binding in vitro. IPIP was radiolabeled with iodide-125 with an average radiochemical yield of 74.4% (+/-14.8, n = 5), specific activities >800 mCi/micromol, and radiochemical purities >97%. In vivo the Z-isomers demonstrated high uniform cerebral uptake suggesting non-subtype selective binding. In contrast, E-R-IPIP, after allowing a low uptake in M(2) rich areas to clear, demonstrated a retention of activity in M(1) and M(4) rich cerebral regions. In addition, the cerebral uptake of E-R-IPIP and Z-S-IPIP were inhibited by 70-90% via pretreatment with R-QNB, an established muscarinic antagonist. An ex vivo metabolism study demonstrated Z-S-IPIP was stable at the receptor site with an absence of radiolabeled metabolites.
Collapse
Affiliation(s)
- D W McPherson
- Nuclear Medicine Group, Life Sciences Division, Oak Ridge National Laboratory (ORNL), Post Office Box 2008, Building 4501, Oak Ridge, TN 37831-6229, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Asahina M, Shinotoh H, Hirayama K, Suhara T, Shishido F, Inoue O, Tateno Y. Hypersensitivity of cortical muscarinic receptors in Parkinson's disease demonstrated by PET. Acta Neurol Scand 1995; 91:437-43. [PMID: 7572037 DOI: 10.1111/j.1600-0404.1995.tb00443.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The status of muscarinic receptors (mAChRs) is not clear in Parkinson's disease (PD). We measured mAChR binding in the brain of eight patients with PD and eight, age-matched, healthy controls by positron emission tomography (PET) and [11C]N-methyl-4-piperidyl benzilate ([11C]NMPB). PD patients were not demented according to DSM III criteria but showed significant frontal lobe dysfunction in the Modified Wisconsin Card Sorting Test. A mean K3 value, which is an index of mAChR binding calculated by a graphical method, was 20% higher in the frontal cortex of PD patients than controls (p < 0.05). Hypersensitivity of mAChRs in the frontal cortex of PD patients may be a response to a loss of ascending cholinergic input to that region, and may relate to frontal lobe dysfunction in PD.
Collapse
Affiliation(s)
- M Asahina
- Department of Neurology, Chiba University, Japan
| | | | | | | | | | | | | |
Collapse
|