1
|
Yamamoto Y, Takahashi RU, Kinehara M, Yano K, Kuramoto T, Shimamoto A, Tahara H. Downregulation of Histone H3.3 Induces p53-Dependent Cellular Senescence in Human Diploid Fibroblasts. Genes (Basel) 2024; 15:543. [PMID: 38790171 PMCID: PMC11121134 DOI: 10.3390/genes15050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular senescence is an irreversible growth arrest that acts as a barrier to cancer initiation and progression. Histone alteration is one of the major events during replicative senescence. However, little is known about the function of H3.3 in cellular senescence. Here we found that the downregulation of H3.3 induced growth suppression with senescence-like phenotypes such as senescence-associated heterochromatin foci (SAHF) and β-galactosidase (SA-β-gal) activity. Furthermore, H3.3 depletion induced senescence-like phenotypes with the p53/p21-depedent pathway. In addition, we identified miR-22-3p, tumor suppressive miRNA, as an upstream regulator of the H3F3B (H3 histone, family 3B) gene which is the histone variant H3.3 and replaces conventional H3 in active genes. Therefore, our results reveal for the first time the molecular mechanisms for cellular senescence which are regulated by H3.3 abundance. Taken together, our studies suggest that H3.3 exerts functional roles in regulating cellular senescence and is a promising target for cancer therapy.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Ryou-u Takahashi
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Masaki Kinehara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Tatsuya Kuramoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda 756-0884, Japan;
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| |
Collapse
|
2
|
Rashid M, Shah SG, Verma T, Chaudhary N, Rauniyar S, Patel VB, Gera PB, Smoot D, Ashaktorab H, Dalal SN, Gupta S. Tumor-specific overexpression of histone gene, H3C14 in gastric cancer is mediated through EGFR-FOXC1 axis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194703. [PMID: 33727172 DOI: 10.1016/j.bbagrm.2021.194703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Incorporation of different H3 histone isoforms/variants have been reported to differentially regulate gene expression via alteration in chromatin organization during diverse cellular processes. However, the differential expression of highly conserved histone H3.2 genes, H3C14 and H3C13 in human cancer has not been delineated. In this study, we investigated the expression of H3.2 genes in primary human gastric, brain, breast, colon, liver, and head and neck cancer tissues and tumor cell lines. The data showed overexpression of H3.2 transcripts in tumor samples and cell lines with respect to normal counterparts. Furthermore, TCGA data of individual and TCGA PANCAN cohort also showed significant up-regulation of H3.2 genes. Further, overexpressed H3C14 gene coding for H3.2 protein was regulated by FOXC1 transcription factor and G4-cassette in gastric cancer cell lines. Elevated expression of FOXC1 protein and transcripts were also observed in human gastric cancer samples and cell lines. Further, FOXC1 protein was predominantly localized in the nuclei of neoplastic gastric cells compared to normal counterpart. In continuation, studies with EGF induction, FOXC1 knockdown, and ChIP-qPCR for the first time identified a novel axis, EGFR-FOXC1-H3C14 for regulation of H3C14 gene overexpression in gastric cancer. Therefore, the changes the epigenomic landscape due to incorporation of differential expression H3 variant contributes to change in gene expression pattern and thereby contributing to pathogenesis of cancer.
Collapse
Affiliation(s)
- Mudasir Rashid
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanket Girish Shah
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Tripti Verma
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Nazia Chaudhary
- KS216, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sukanya Rauniyar
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Vidisha Bhavesh Patel
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Poonam B Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, United States
| | - Hassan Ashaktorab
- Department of Medicine and Cancer Center, College of Medicine, Howard University, Washington DC, WA 20060, United States
| | - Sorab N Dalal
- KS216, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanjay Gupta
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India.
| |
Collapse
|
3
|
miR-155 Accelerates the Growth of Human Liver Cancer Cells by Activating CDK2 via Targeting H3F3A. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:471-483. [PMID: 32490171 PMCID: PMC7260613 DOI: 10.1016/j.omto.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
miR-155 is associated with the promotion of tumorigenesis. Herein, we indicate that abnormal miR-155 was negatively correlated with the expression of P21WAF1/Cip1. Our results suggest that miR-155 alters the transcriptome and inhibits the expression of H3F3A in liver cancer cells. Therefore, miR-155 inhibits the methylation modification of histone H3 on the 27th lysine. Notably, on the one hand, miR-155-dependent CTCF loops cause the CDK2 interacting with cyclin E in liver cancer cells; on the other hand, miR-155 promotes the phosphorylation modification of CDK2 by inhibiting H3F3A. Subsequently, miR-155 competitively blocks the binding of RNA polymerase II (RNA Pol II) to the P21WAF1/CIP1 promoter by increasing the phosphorylation of CDK2, inhibiting the transcription and translation of P21WAF1/CIP1. Strikingly, excessive P21WAF1/CIP1 abolishes the cancerous function of miR-155. In conclusion, miR-155 can play a positive role in the development of liver cancer and influence a series of gene expression through epigenetic regulation.
Collapse
|
4
|
Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nat Commun 2016; 7:12914. [PMID: 27694942 PMCID: PMC5477500 DOI: 10.1038/ncomms12914] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/16/2016] [Indexed: 01/12/2023] Open
Abstract
Although several somatic single nucleotide variations in histone H3.3 have been investigated as cancer drivers, other types of aberration have not been well studied. Here, we demonstrate that overexpression of H3F3A, encoding H3.3, is associated with lung cancer progression and promotes lung cancer cell migration by activating metastasis-related genes. H3.3 globally activates gene expression through the occupation of intronic regions in lung cancer cells. Moreover, H3.3 binding regions show characteristics of regulatory DNA elements. We show that H3.3 is deposited at a specific intronic region of GPR87, where it modifies the chromatin status and directly activates GPR87 transcription. The expression levels of H3F3A and GPR87, either alone or in combination, are robust prognostic markers for early-stage lung cancer, and may indicate potential for the development of treatments involving GPR87 antagonists. In summary, our results demonstrate that intronic regulation by H3F3A may be a target for the development of novel therapeutic strategies. Histone variants act as transcriptional activators and repressors and have been linked to cancer progression. Park and Choi et al. show that the histone H3.3 overexpression is associated with early-stage lung cancer, and promotes cancer cell migration by upregulating a G-protein-coupled receptor.
Collapse
|
5
|
Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 2014; 15:259-71. [PMID: 24614311 DOI: 10.1038/nrg3673] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a conserved role for histones as general DNA packaging agents, it is now clear that another key function of these proteins is to confer variations in chromatin structure to ensure dynamic patterns of transcriptional regulation in eukaryotes. The incorporation of histone variants is particularly important to this process. Recent knockdown and knockout studies in various cellular systems, as well as direct mutational evidence from human cancers, now suggest a crucial role for histone variant regulation in processes as diverse as differentiation and proliferation, meiosis and nuclear reprogramming. In this Review, we provide an overview of histone variants in the context of their unique functions during mammalian germ cell and embryonic development, and examine the consequences of aberrant histone variant regulation in human disease.
Collapse
|
6
|
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71:379-404. [PMID: 23652611 DOI: 10.1007/s00018-013-1343-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | | | | | | | | | | |
Collapse
|
7
|
Lee CC, Lin YH, Chang WH, Lin PC, Wu YC, Chang JG. Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells. BMC Cancer 2011; 11:58. [PMID: 21299907 PMCID: PMC3055232 DOI: 10.1186/1471-2407-11-58] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 02/08/2011] [Indexed: 12/31/2022] Open
Abstract
Background Histone modifications in tumorigenesis are increasingly recognized as important epigenetic factors leading to cancer. Increased phosphorylation levels of histone H3 as a result of aurora B and pMSK1 overexpression were observed in various tumors. We selected aurora B and MSK1 as representatives for testing various compounds and drugs, and found that squamocin, a bis-tetrahydrofuran annonaceous acetogenin, exerted a potent effect on histone H3 phosphorylation. Methods GBM8401, Huh-7, and SW620 cells were incubated with 15, 30, and 60 μM squamocin for 24 h. The expressions of mRNA and proteins were analyzed by qRT-PCR and Western blotting, respectively. The cell viability was determined by an MTT assay. Cell cycle distribution and apoptotic cells were analyzed by flow cytometry. Results Our results showed that squamocin inhibited the proliferation of GBM8401, Huh-7, and SW620 cells, arrested the cell cycle at the G1 phase, and activated both intrinsic and extrinsic pathways to apoptosis. In addition, we demonstrated that squamocin had the ability to modulate the phosphorylation levels of H3S10 (H3S10p) and H3S28 (H3S28p) in association with the downregulation of aurora B and pMSK1 expressions. Conclusions This study is the first to show that squamocin affects epigenetic alterations by modulating histone H3 phosphorylation at S10 and S28, providing a novel view of the antitumor mechanism of squamocin.
Collapse
Affiliation(s)
- Chien-Chih Lee
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Selaru FM, Wang S, Yin J, Schulmann K, Xu Y, Mori Y, Olaru AV, Sato F, Hamilton JP, Abraham JM, Schneider P, Greenwald BD, Brabender J, Meltzer SJ. Beyond Field Effect: Analysis of Shrunken Centroids in Normal Esophageal Epithelia Detects Concomitant Esophageal Adenocarcinoma. Bioinform Biol Insights 2007; 1:127-136. [PMID: 18425214 PMCID: PMC2323355 DOI: 10.4137/bbi.s311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND AIMS: Because of the extremely low neoplastic progression rate in Barrett's esophagus, it is difficult to diagnose patients with concomitant adenocarcinoma early in their disease course. If biomarkers existed in normal squamous esophageal epithelium to identify patients with concomitant esophageal adenocarcinoma, potential applications would be far-reaching. The aim of the current study was to identify global gene expression patterns in normal esophageal epithelium capable of revealing simultaneous esophageal adenocarcinoma, even located remotely in the esophagus. METHODS: Tissues comprised normal esophageal epithelia from 9 patients with esophageal adenocarcinoma, 8 patients lacking esophageal adenocarcinoma or Barrett's, and 6 patients with Barrett's esophagus alone. cDNA microarrays were performed, and pattern recognition in each of these subgroups was achieved using shrunken nearest centroid predictors. RESULTS: Our method accurately discriminated normal esophageal epithelia of 8/8 patients without esophageal adenocarcinoma or Barrett's esophagus and of 6/6 patients with Barrett's esophagus alone from normal esophageal epithelia of 9/9 patients with Barrett's esophagus and concomitant esophageal adenocarcinoma. Moreover, we identified genes differentially expressed between the above subgroups. Thus, based on their corresponding normal esophageal epithelia alone, our method accurately diagnosed patients who had concomitant esophageal adenocarcinoma. CONCLUSIONS: These global gene expression patterns, along with individual genes culled from them, represent potential biomarkers for the early diagnosis of esophageal adenocarcinoma from normal esophageal epithelia. Genes discovered in normal esophagus that are differentially expressed in patients with vs. without esophageal adenocarcinoma merit further pursuit in molecular genetic, functional, and therapeutic interventional studies.
Collapse
Affiliation(s)
- Florin M. Selaru
- Gastroenterology Division, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Suna Wang
- Gastroenterology Division, Department of Medicine, University of Maryland School of Medicine and Baltimore VA Hospital and Greenebaum Cancer Center, Baltimore, MD 21201
| | - Jing Yin
- Gastroenterology Division, Department of Medicine, University of Maryland School of Medicine and Baltimore VA Hospital and Greenebaum Cancer Center, Baltimore, MD 21201
| | - Karsten Schulmann
- Division of Gastroenterology, Department of Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Yan Xu
- Gastroenterology Division, Department of Medicine, University of Maryland School of Medicine and Baltimore VA Hospital and Greenebaum Cancer Center, Baltimore, MD 21201
| | - Yuriko Mori
- Gastroenterology Division, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Alexandru V. Olaru
- Gastroenterology Division, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Fumiaki Sato
- Gastroenterology Division, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - James P. Hamilton
- Gastroenterology Division, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - John M. Abraham
- Gastroenterology Division, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Paul Schneider
- Department of Visceral and Vascular Surgery, University of Cologne, Germany
| | - Bruce D. Greenwald
- Gastroenterology Division, Department of Medicine, University of Maryland School of Medicine and Baltimore VA Hospital and Greenebaum Cancer Center, Baltimore, MD 21201
| | - Jan Brabender
- Department of Visceral and Vascular Surgery, University of Cologne, Germany
| | - Stephen J. Meltzer
- Gastroenterology Division, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
9
|
Piscopo M, Campisi G, Colella G, Bilancione M, Caccamo S, Di Liberto C, Tartaro GP, Giovannelli L, Pulcrano G, Fucci L. H3 and H3.3 histone mRNA amounts and ratio in oral squamous cell carcinoma and leukoplakia. Oral Dis 2006; 12:130-136. [PMID: 16476033 DOI: 10.1111/j.1601-0825.2005.01169.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histone variants (e.g. H3) play an important role in chromatin structure and gene expression regulation of normal cells. Aims of this study were to: (1) estimate H3 and H3.3 histone mRNA expressions and their ratio in oral squamous cell carcinoma (OSCC) and oral leukoplakia (OL); (2) investigate whether H3 and H3.3 variants could play a role in the pathogenesis of OSCC and OL, also conditionally to HPV infection, age, gender, and main habits (tobacco smoking and alcohol drinking) in human beings studied. Twenty-three cases of OSCC and 20 cases of OL were examined in lesion site (LS) and juxtaposed clinically undamaged site (JUS) by RT-PCR for H3 and H3.3 histone mRNA; 13 healthy oral mucosa samples (HS) were investigated in a single site as controls. HPV DNA presence was investigated in the respective exfoliated oral mucosa cells by nested PCR (nPCR: MY09-MY11/GP5-GP6). The data showed that both H3 and H3.3 histone mRNA crude concentrations are higher in OSCC (LS = 2901 +/- 459 ng of H3; JUS = 2699 +/- 658 ng of H3; LS = 3190 +/- 411 ng of H3.3; JUS = 2596 +/- 755 ng of H3.3) than those in OL (LS = 2095 +/- 349 ng of H3; JUS = 2192 +/- 897 ng of H3; LS = 2076 +/- 911 ng of H3.3; JUS = 1880 +/- 654 ng of H3.3) and in HS (2579 +/- 959 ng of H3; 2300 +/- 758 ng of H3.3), although not reaching any statistical significance. Interestingly, ratio of H3/H3.3 mRNA amounts decrease both in OSCC (0.99) and OL (1.009) vs HS (1.121). No association was found for H3 and H3.3 histone mRNA expressions in OSCC and OL with respect to HPV infection and the social-demographical variables considered (P > 0.2). The overall higher expression of H3.3 in damaged tissues up to the ratio inversion in OSCC especially in HPV+ alcohol drinkers (60.0%) represents the most interesting finding, in consideration of the proven ability of alcohol to act as permeability enhancer of human oral mucosa, to alter the mucosal structure and by this dynamics could favour the penetration through the epithelial layers of HPV.
Collapse
Affiliation(s)
- M Piscopo
- Department of Genetics, General and Molecular Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Choi HS, Choi BY, Cho YY, Mizuno H, Kang BS, Bode AM, Dong Z. Phosphorylation of histone H3 at serine 10 is indispensable for neoplastic cell transformation. Cancer Res 2005; 65:5818-27. [PMID: 15994958 PMCID: PMC2227263 DOI: 10.1158/0008-5472.can-05-0197] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Very little is known about the role of histone H3 phosphorylation in malignant transformation and cancer development. Here, we examine the function of H3 phosphorylation in cell transformation in vivo. Introduction of small interfering RNA-H3 into JB6 cells resulted in decreased epidermal growth factor (EGF)-induced cell transformation. In contrast, wild-type histone H3 (H3 WT)-overexpressing cells markedly stimulated EGF-induced cell transformation, whereas the H3 mutant S10A cells suppressed transformation. When H3 WT was overexpressed, EGF induction of c-fos and c-jun promoter activity was significantly increased compared with control cells but not in the H3 mutant S10A or S28A cells. In addition, activator protein-1 activity in H3 WT-overexpressing cells was markedly up-regulated by EGF in contrast to the H3 mutant S10A or S28A cells. These results indicate that the phosphorylation of histone H3 at Ser10 is an essential regulatory mechanism for EGF-induced neoplastic cell transformation.
Collapse
Affiliation(s)
- Hong Seok Choi
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Bu Young Choi
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Yong-Yeon Cho
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Hideya Mizuno
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Bong Seok Kang
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Ann M. Bode
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| | - Zigang Dong
- Hormel Institute, University of Minnesota1, Austin, Minnesota 55912, USA
| |
Collapse
|
11
|
Kazemi-Noureini S, Colonna-Romano S, Ziaee AA, Malboobi MA, Yazdanbod M, Setayeshgar P, Maresca B. Differential gene expression between squamous cell carcinoma of esophageus and its normal epithelium; altered pattern of mal, akr1c2, and rab11a expression. World J Gastroenterol 2004; 10:1716-21. [PMID: 15188492 PMCID: PMC4572255 DOI: 10.3748/wjg.v10.i12.1716] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To identify the altered gene expression patterns in squamous cell carcinoma of esophagus (ESCC) in relation to adjacent normal esophageal epithelium.
METHODS: Total RNA was extracted using SV total RNA isolation kit from snap frozen tissues of ESCC samples and normal esophageal epithelium far from the tumor. Radio-labeled cDNA were synthesized from equal quantities of total RNAs of tumor and normal tissues using combinations of 24 arbitrary 13-mer primers and three different anchoring oligo-dT primers and separated on sequencing gels. cDNA with considerable different amounts of signals in tumor and normal tissue were reamplified and cloned. Using southern blot, the clones of each band were controlled for false positive results caused by probable heterogeneity of cDNA population with the same size. Clones that confirmed differential expression by slot blot selected for sequencing and northern analysis. Corresponding full-length gene sequences was predicted using human genome project data, related transcripts were translated and used for various protein/motif searches to speculate their probable functions.
RESULTS: The 97 genes showed different levels of cDNA in tumor and normal tissues of esophagus. The expression of mal gene was remarkably down regulated in all 10 surveyed tumor tissues. Akr1c2, a member of the aldo-keto reductase 1C family, which is involved in metabolism of sex hormones and xenobiotics, was up-regulated in 8 out of 10 inspected ESCC samples. Rab11a, RPL7, and RPL28 showed moderate levels of differential expression. Many other cDNAs remained to further studies.
CONCLUSION: The mal gene which is switched-off in all ESCC samples can be considered as a tumor suppressor gene that more studies in its regulation may lead to valuable explanations in ESCC development. Akr1c2 which is up-regulated in ESCC probably plays an important role in tumor development of esophagus and may be proposed as a potential molecular target in ESCC treatments. Differential display technique in spite of many disadvantages is still a valuable technique in gene function exploration studies to find new candidates for improved ones like gene chips.
Collapse
Affiliation(s)
- Sakineh Kazemi-Noureini
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box: 13145-1384, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
12
|
Li S, Hanna E, Breau R, Ratanatharathorn V, Xia X, Suen J. Preferential expression of hPGFS in primary SCCHN and tumour cell lines derived from respiratory and digestive organs. Br J Cancer 2004; 90:1093-9. [PMID: 14997212 PMCID: PMC2409636 DOI: 10.1038/sj.bjc.6601636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Identifying overexpressed genes in tumours is a critical step for tumour diagnosis, prognosis, and treatment. Using differential display polymerase chain reaction, sequence analysis, and gene Blast searches, we discovered that human prostaglandin F synthase (hPGFS) was upregulated in squamous cell carcinoma of the head and neck (SCCHN). Northern blot analysis indicated that up to a 16-fold increase in the level of hPGFS expression was detected in 40.5% (15 out of 37) of SCCHN primary tumours. The increased expression of hPGFS in SCCHN was primarily detected in SCC of larynx and hypopharynx (59%, P<0.05). Using the same primary tissue samples, increased levels of epidermal growth factor receptor (EGFR) expression were detected in only 32% of tumour tissues, suggesting hPGFS may have the potential to become a drug target or molecular marker for SCCHN. To determine if the increased level of hPGFS expression came from tumour cells, we determined the level of hPGFS expression in SCCHN tumour cell lines. A high level of hPGFS expression was detected in four out of five tumour SCCHN cell lines. To determine if upregulation of hPGFS is SCCHN-specific, hPGFS expression was analysed in 59 tumour cell lines derived from different types of tumours. The expression of hPGFS was increased from two- to 500-fold in a large portion of cell lines derived from lung (five out of nine), colon (five out of seven) as well as head and neck cancer (four out of five). These data link hPGFS expression to tumours located in the respiratory and digestive organs.
Collapse
Affiliation(s)
- S Li
- Department of Comparative Biomedical Sciences, SVM, Louisiana State University, Skip Bertman Drive, LA 70803, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- R P Scott
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA.
| |
Collapse
|
14
|
|