1
|
Choi SJ. Cellular mechanism of eccentric-induced muscle injury and its relationship with sarcomere heterogeneity. J Exerc Rehabil 2014; 10:200-4. [PMID: 25210693 PMCID: PMC4157925 DOI: 10.12965/jer.140139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/09/2014] [Indexed: 11/22/2022] Open
Abstract
Activity-induced muscle injury and dysfunction have been identified as key components of musculoskeletal injuries. These injuries often occur following eccentric contractions, when the muscle is under tension and stretched by a force that is greater than the force generated by the muscle. Many daily activities require muscles to perform eccentric contractions, including walking (or running) downhill or down stairs, lowering heavy objects, and landing from a jump. Injuries often occur when these activities are performed at high intensity or for prolonged periods of time. General features of eccentric-induced muscle injury are well documented and include disruption of intracellular muscle structure, prolonged muscle weakness and dysfunction, a delayed-onset muscle soreness, and inflammation. Several weeks are required for the affected tissue to fully regenerate and recover from eccentric-induced muscle injury. Possible mechanisms responsible for eccentric-induced muscle injury are activation impairment and structural disruption of the sarcomere. These two factors seem to be the main sources of eccentric-induced muscle injury. Rather than being separate mechanisms they may be complimentary and interact with each other. Therefore, in this review we will focus on the two main cellular mechanism of muscle cell injury following accustomed eccentric contraction.
Collapse
Affiliation(s)
- Seung Jun Choi
- Division of Sports and Health Science, Kyungsung University, Busan, Korea
| |
Collapse
|
2
|
Abstract
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
3
|
Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy. J Biomech 2012; 45:2526-30. [DOI: 10.1016/j.jbiomech.2012.07.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 04/18/2012] [Accepted: 07/16/2012] [Indexed: 11/22/2022]
|
4
|
Palmer ML, Claflin DR, Faulkner JA, Panchangam A. Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle. J Muscle Res Cell Motil 2011; 32:39-48. [PMID: 21710358 PMCID: PMC3184522 DOI: 10.1007/s10974-011-9250-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Tension and regional average sarcomere length (L(s)) behavior were examined during repeated stretches of single, permeabilized, relaxed muscle fibers isolated from the soleus muscles of rats. We tested the hypothesis that during stretches of single permeabilized fibers, the global fiber strain is distributed non-uniformly along the length of a relaxed fiber in a repeatable pattern. Each fiber was subjected to eight constant-velocity stretch and release cycles with a strain of 32% and strain rate of 54% s(-1). Stretch-release cycles were separated by a 4.5 min interval. Throughout each stretch-release cycle, sarcomere lengths were measured using a laser diffraction technique in which 20 contiguous sectors along the entire length of a fiber segment were scanned within 2 ms. The results revealed that: (1) the imposed length change was not distributed uniformly along the fiber, (2) the first stretch-release cycle differed from subsequent cycles in passive tension and in the distribution of global fiber strain, and (3) a characteristic "signature" for the L(s) response emerged after cycle 3. The findings support the conclusions that longitudinal heterogeneity exists in the passive stiffness of individual muscle fibers and that preconditioning of fibers with stretch-release cycles produces a stable pattern of sarcomere strains.
Collapse
Affiliation(s)
- Mark L Palmer
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
5
|
Janecki D, Jarocka E, Jaskólska A, Marusiak J, Jaskólski A. Muscle passive stiffness increases less after the second bout of eccentric exercise compared to the first bout. J Sci Med Sport 2011; 14:338-43. [DOI: 10.1016/j.jsams.2011.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 02/11/2011] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
|
6
|
|
7
|
Hoang P, Saboisky JP, Gandevia SC, Herbert RD. Passive mechanical properties of gastrocnemius in people with multiple sclerosis. Clin Biomech (Bristol, Avon) 2009; 24:291-8. [PMID: 19185961 DOI: 10.1016/j.clinbiomech.2008.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 10/24/2008] [Accepted: 12/19/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is evidence to suggest that contractile properties of muscles in people with multiple sclerosis change as a consequence of demyelination in central nervous system. However, passive properties of muscles in people with multiple sclerosis have not been previously investigated. The purpose of this study was to characterise passive mechanical properties of gastrocnemius in people with multiple sclerosis and to compare these properties with those of gastrocnemius in neurologically normal people. METHODS Ten people with multiple sclerosis having signs and symptoms of weakness in the legs (Disease step 1-3) and 10 age- and sex-matched healthy people participated in the study. Ultrasound images of muscle fascicles of medial gastrocnemius as well as passive ankle torque and ankle angle data were obtained simultaneously as the ankle was rotated through its full range with the knee in a range of positions. Analysis of ultrasound images and passive ankle torque-angle relations allowed us to derive the slack lengths and maximal strains of whole muscle-tendon units, muscle fascicles and tendons. Paired-samples t-tests were used to compare these variables in the two groups. RESULT There was no difference between subjects with multiple sclerosis and healthy controls in the mean slack lengths and mean maximal strains of the whole muscle-tendon units or of their fascicles or tendons. INTERPRETATIONS These data suggests that typically, in people with multiple sclerosis who have impaired lower limbs but are still ambulatory, the passive mechanical properties of the gastrocnemius muscles are normal.
Collapse
Affiliation(s)
- P Hoang
- Prince of Wales Medical Research Institute, University of New South Wales, Cnr. Barker Street and Easy Street, Randwick, Sydney, NSW 2031, Australia
| | | | | | | |
Collapse
|
8
|
Opitz CA, Kulke M, Leake MC, Neagoe C, Hinssen H, Hajjar RJ, Linke WA. Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proc Natl Acad Sci U S A 2003; 100:12688-93. [PMID: 14563922 PMCID: PMC240679 DOI: 10.1073/pnas.2133733100] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by using a high-speed charge-coupled device-line camera and a nanonewtonrange force sensor. Application of a slack-test protocol revealed that the passive shortening velocity (Vp) of nonactivated cardiomyofibrils depends on: (i) initial sarcomere length, (ii) release-step amplitude, and (iii) temperature. Selective digestion of titin, with low doses of trypsin, decelerated myofibrillar passive recoil and eventually stopped it. Selective extraction of actin filaments with a Ca2+-independent gelsolin fragment greatly reduced the dependency of Vp on release-step size and temperature. These results are explained by the presence of viscous forces opposing myofibrillar passive recoil that are caused mainly by weak actin-titin interactions. Thus, Vp is determined by two distinct factors: titin elastic recoil and internal viscous drag forces. The recoil could be modeled as that of a damped entropic spring consisting of independent worm-like chains. The functional importance of myofibrillar elastic recoil was addressed by comparing instantaneous Vp to unloaded shortening velocity, which was measured in demembranated, fully Ca2+-activated, human cardiac fibers. Titin-driven passive recoil was much faster than active unloaded shortening velocity in early phases of isotonic contraction. Damped myofibrillar elastic recoil could help accelerate active contraction speed of human myocardium during early systolic shortening.
Collapse
Affiliation(s)
- Christiane A. Opitz
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany; Department of Biochemical Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany; and Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Michael Kulke
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany; Department of Biochemical Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany; and Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mark C. Leake
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany; Department of Biochemical Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany; and Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Ciprian Neagoe
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany; Department of Biochemical Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany; and Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Horst Hinssen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany; Department of Biochemical Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany; and Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Roger J. Hajjar
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany; Department of Biochemical Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany; and Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Wolfgang A. Linke
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany; Department of Biochemical Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany; and Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Minajeva A, Neagoe C, Kulke M, Linke WA. Titin-based contribution to shortening velocity of rabbit skeletal myofibrils. J Physiol 2002; 540:177-88. [PMID: 11927678 PMCID: PMC2290211 DOI: 10.1113/jphysiol.2001.013154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 01/07/2002] [Indexed: 11/08/2022] Open
Abstract
The shortening velocity of skeletal muscle fibres is determined principally by actomyosin cross-bridges. However, these contractile elements are in parallel with elastic elements, whose main structural basis is thought to be the titin filaments. If titin is stretched, it may contribute to sarcomere shortening simply because it can recoil 'passively'. The titin-based contribution to shortening velocity (V(p)) was quantified in single rabbit psoas myofibrils. Non-activated specimens were rapidly released from different initial sarcomere lengths (SLs) by various step amplitudes sufficient to buckle the myofibrils; V(p) was calculated from the release amplitude and the time to slack reuptake. V(p) increased progressively (upper limit of detection, approximately 60 microm s(-1) sarcomere(-1)) between 2.0 and 3.0 microm SL, albeit more steeply than passive tension. At very low passive tension levels already (< 1-2 mN mm(-2)), V(p) could greatly exceed the unloaded shortening velocity measured in fully Ca(2+)-activated skinned rabbit psoas fibres. Degradation of titin in relaxed myofibrils by low doses of trypsin (5 min) drastically decreased V(p). In intact myofibrils, average V(p) was faster, the smaller the release step applied. Also, V(p) was much higher at 30 degrees C than at 15 degrees C (Q(10): 2.0, 3.04 or 6.15, for release steps of 150, 250 or 450 nm sarcomere(-1), respectively). Viscous forces opposing the shortening are likely to be involved in determining these effects. The results support the idea that the contractile system imposes a braking force onto the passive recoil of elastic structures. However, elastic recoil may aid active shortening during phases of high elastic energy utilization, i.e. immediately after the onset of contraction under low or zero load or during prolonged shortening from greater physiological SLs.
Collapse
Affiliation(s)
- Ave Minajeva
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
10
|
Gregory JE, Brockett CL, Morgan DL, Whitehead NP, Proske U. Effect of eccentric muscle contractions on Golgi tendon organ responses to passive and active tension in the cat. J Physiol 2002; 538:209-18. [PMID: 11773329 PMCID: PMC2290032 DOI: 10.1113/jphysiol.2001.012785] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To investigate the possibility of a peripheral contribution to the perturbations of force sensation reported to occur after eccentric exercise, responses to passive and active tension were recorded from Golgi tendon organs in the medial gastrocnemius muscle of the anaesthetised cat, before and after a series of eccentric contractions. After the eccentric contractions, nearly all tendon organs commenced firing at a shorter muscle length during slow passive stretch than before, probably because of a rise in whole muscle passive tension. There was a small drop in the sensitivity to incremental tension, but no mean change in tension threshold. Following the eccentric contractions, there was a small, but not significant, increase in tendon organ sensitivity to active tension, which was graded using a method of optimised, distributed stimulation of divided ventral roots. Sensitivity was estimated as the mean response over a range of tensions and as the change in discharge rate in response to incremental tension. The experiments provided the opportunity of comparing tendon organ sensitivities to graded passive and active whole muscle tension. In agreement with previous work in which whole muscle nerve stimulation was employed, little difference was found. It was concluded that the peripheral contribution to perturbations of force perception after eccentric exercise is likely to be small and that the centrally derived sense of effort plays the dominant role. Tendon organs appear to be remarkably reliable in signalling whole muscle tension, whether passive or active, and even after the muscle's force production has been disturbed by fatigue or eccentric exercise.
Collapse
Affiliation(s)
- J E Gregory
- Department of Physiology, Monash University, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
11
|
Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 2001; 537:333-45. [PMID: 11731568 PMCID: PMC2278966 DOI: 10.1111/j.1469-7793.2001.00333.x] [Citation(s) in RCA: 829] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2001] [Accepted: 09/27/2001] [Indexed: 11/27/2022] Open
Abstract
In eccentric exercise the contracting muscle is forcibly lengthened; in concentric exercise it shortens. While concentric contractions initiate movements, eccentric contractions slow or stop them. A unique feature of eccentric exercise is that untrained subjects become stiff and sore the day afterwards because of damage to muscle fibres. This review considers two possible initial events as responsible for the subsequent damage, damage to the excitation-contraction coupling system and disruption at the level of the sarcomeres. Other changes seen after eccentric exercise, a fall in active tension, shift in optimum length for active tension, and rise in passive tension, are seen, on balance, to favour sarcomere disruption as the starting point for the damage. As well as damage to muscle fibres there is evidence of disturbance of muscle sense organs and of proprioception. A second period of exercise, a week after the first, produces much less damage. This is the result of an adaptation process. One proposed mechanism for the adaptation is an increase in sarcomere number in muscle fibres. This leads to a secondary shift in the muscle's optimum length for active tension. The ability of muscle to rapidly adapt following the damage from eccentric exercise raises the possibility of clinical applications of mild eccentric exercise, such as for protecting a muscle against more major injuries.
Collapse
Affiliation(s)
- U Proske
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
12
|
Amodeo P, Fraternali F, Lesk AM, Pastore A. Modularity and homology: modelling of the titin type I modules and their interfaces. J Mol Biol 2001; 311:283-96. [PMID: 11478861 DOI: 10.1006/jmbi.2001.4797] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Titin is a giant muscle protein with a highly modular architecture consisting of multiple repeats of two sequence motifs, named type I and type II. Type I motifs are homologous to members of the fibronectin type 3 (Fn3) superfamily, one of the motifs most widespread in modular proteins. Fn3 domains are thought to mediate protein-protein interactions and to act as spacers. In titin, Fn3 modules are present in two different super-repeated patterns, likely to be involved in sarcomere assembly through interactions with A-band proteins. Here, we discuss results from homology modelling the whole family of Fn3 domains in titin. Homology modelling is a powerful tool that will play an increasingly important role in the post-genomic era. It is particularly useful for extending experimental structure determinations of parts of multidomain proteins that contain multiple copies of the same motif. The 3D structures of a representative titin type I domain and of other extracellular Fn3 modules were used as a template to model the structures of the 132 copies in titin. The resulting models suggest residues that contribute to the fold stability and allow us to distinguish these from residues likely to have functional importance. In particular, analysis of the models and mapping of the consensus sequence onto the 3D structure suggest putative surfaces of interaction with other proteins. From the structures of isolated modules and the pattern of conservation in the multiple alignment of the whole titin Ig and Fn3 families, it is possible to address the question of how tandem modules are assembled. Our predictions can be validated experimentally.
Collapse
Affiliation(s)
- P Amodeo
- Istituto di Chimica MIB, CNR, Via Toiano 6, Arco Felice, I-80072, Italy
| | | | | | | |
Collapse
|
13
|
Trombitás K. Connecting filaments: a historical prospective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:1-23. [PMID: 10987063 DOI: 10.1007/978-1-4615-4267-4_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
This short review covers the development of the extensible filament research from the very beginning until the most recent results. This work emphasizes the milestones of discovery, which led us from initial observations that were solely ultrastructural to the molecular understanding of the extensible process of these filaments.
Collapse
Affiliation(s)
- K Trombitás
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, USA
| |
Collapse
|
14
|
Trombitás K, Freiburg A, Greaser M, Labeit S, Granzier H. From connecting filaments to co-expression of titin isoforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:405-18. [PMID: 10987086 DOI: 10.1007/978-1-4615-4267-4_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The molecular basis of elasticity in insect flight muscle has been analyzed using both the mechanism of extensibility of titin filaments (Trombitás et al., J. Cell Biol. 1998;140:853-859), and the sequence of projectin (Daley et al., J. Mol. Biol. 1998;279:201-210). Since a PEVK-like domain is not found in the projectin sequence, it is suggested that the sarcomere elongation causes the slightly "contracted" projectin extensible region to straighten without requiring Ig/Fn domain unfolding. Thus, the extensible region of the projectin may be viewed as a single entropic spring. The serially linked entropic spring model developed for skeletal muscle titin was applied to titin in the heart. The discovery of unique N2B sequence extension in physiological sarcomere length range (Helmes et al., Circ. Res. 1999;84:1339-1352) suggests that cardiac titin can be characterized as a serially linked three-spring system. Two different cardiac titin isoform (N2BA and N2B) co-exist in the heart. These isoforms can be differentiated by immunoelectron microscopy using antibody against sequences C-terminal of the unique N2B sequence, which is present in both isoforms. Immunolabeling experiments show that the two different isoform are co-expressed within the same sarcomere.
Collapse
Affiliation(s)
- K Trombitás
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, USA
| | | | | | | | | |
Collapse
|
15
|
Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2000. [PMID: 11106807 DOI: 10.1016/b978-008044031-6/50032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).
Collapse
Affiliation(s)
- M Carrion-Vazquez
- Department of Physiology and Biophysics, Mayo Foundation, 1-159 Medical Sciences Building, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|