1
|
Dhas N, Kudarha R, Tiwari R, Tiwari G, Garg N, Kumar P, Kulkarni S, Kulkarni J, Soman S, Hegde AR, Patel J, Garkal A, Sami A, Datta D, Colaco V, Mehta T, Vora L, Mutalik S. Recent advancements in nanomaterial-mediated ferroptosis-induced cancer therapy: Importance of molecular dynamics and novel strategies. Life Sci 2024; 346:122629. [PMID: 38631667 DOI: 10.1016/j.lfs.2024.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a novel type of controlled cell death resulting from an imbalance between oxidative harm and protective mechanisms, demonstrating significant potential in combating cancer. It differs from other forms of cell death, such as apoptosis and necrosis. Molecular therapeutics have hard time playing the long-acting role of ferroptosis induction due to their limited water solubility, low cell targeting capacity, and quick metabolism in vivo. To this end, small molecule inducers based on biological factors have long been used as strategy to induce cell death. Research into ferroptosis and advancements in nanotechnology have led to the discovery that nanomaterials are superior to biological medications in triggering ferroptosis. Nanomaterials derived from iron can enhance ferroptosis induction by directly releasing large quantities of iron and increasing cell ROS levels. Moreover, utilizing nanomaterials to promote programmed cell death minimizes the probability of unfavorable effects induced by mutations in cancer-associated genes such as RAS and TP53. Taken together, this review summarizes the molecular mechanisms involved in ferroptosis along with the classification of ferroptosis induction. It also emphasized the importance of cell organelles in the control of ferroptosis in cancer therapy. The nanomaterials that trigger ferroptosis are categorized and explained. Iron-based and noniron-based nanomaterials with their characterization at the molecular and cellular levels have been explored, which will be useful for inducing ferroptosis that leads to reduced tumor growth. Within this framework, we offer a synopsis, which traverses the well-established mechanism of ferroptosis and offers practical suggestions for the design and therapeutic use of nanomaterials.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi road, Bhauti, Kanpur 208020, Uttar Pradesh, India
| | - Gaurav Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi road, Bhauti, Kanpur 208020, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Aswathi R Hegde
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, New BEL Road, MSR Nagar, Bangalore 560054, Karnataka, India
| | | | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Liu Y, Zhu X, Wei Z, Wu K, Zhang J, Mutti FG, Zhang H, Loeffler FF, Zhou J. Multi-Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi-Tumor Cases. Angew Chem Int Ed Engl 2023:e202303570. [PMID: 37186020 DOI: 10.1002/anie.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Simultaneous photothermal ablation of multiple tumors is limited by unpredictable photo-induced apoptosis, caused by individual intratumoral differences. Here, a multi-channel lanthanide nanocomposite was used to achieve tailored synergistic treatment of multiple subcutaneous orthotopic tumors under non-uniform whole-body infrared irradiation prescription. The nanocomposite reduces intratumoral glutathione by simultaneously activating the fluorescence and photothermal channels. The fluorescence provides individual information on different tumors, allowing customized prescriptions to be made. This enables optimal induction of hyperthermia and dosage of chemo drugs, to ensure treatment efficacy, while avoiding overtherapy. With an accessional therapeutic laser system, customized synergistic treatment of subcutaneous orthotopic cancer cases with multiple tumors is possible with both high efficacy and minimized side effects.
Collapse
Affiliation(s)
- Yuxin Liu
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, GERMANY
| | - Xingjun Zhu
- ShanghaiTech University, School of Physical Science and Technology, CHINA
| | - Zheng Wei
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Kefan Wu
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Junfang Zhang
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, GERMANY
| | - Francesco G Mutti
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Hong Zhang
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, Am Mühlenberg 1, 14476, Potsdam, GERMANY
| | - Jing Zhou
- Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, CHINA
| |
Collapse
|
3
|
Gong C, Ji Q, Wu M, Tu Z, Lei K, Luo M, Liu J, Lin L, Li K, Li J, Huang K, Zhu X. Ferroptosis in tumor immunity and therapy. J Cell Mol Med 2022; 26:5565-5579. [DOI: 10.1111/jcmm.17529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chuandong Gong
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Qiankun Ji
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Miaojing Wu
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Zewei Tu
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Kunjian Lei
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Min Luo
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Junzhe Liu
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Li Lin
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Kuangxun Li
- College of Queen Mary Nanchang University Nanchang China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit Second Affiliated Hospital of Nanchang University Nanchang China
| | - Kai Huang
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Xingen Zhu
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| |
Collapse
|
4
|
Wu Y, Yu C, Luo M, Cen C, Qiu J, Zhang S, Hu K. Ferroptosis in Cancer Treatment: Another Way to Rome. Front Oncol 2020; 10:571127. [PMID: 33102227 PMCID: PMC7546896 DOI: 10.3389/fonc.2020.571127] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is a newly described type of programmed cell death and intensively related to both maintaining homeostasis and the development of diseases, especially cancers. Inducing ferroptosis leads to mitochondrial dysfunction and toxic lipid peroxidation in cells, which plays a pivotal role in suppressing cancer growth and progression. Here, we reviewed the existing studies about the molecular mechanisms of ferroptosis involved in different antitumor treatments, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy. We focused in particular on the distinct combinatorial therapeutic effects such as the synergistic sensitization effect and the drug-resistance reversal achieved when using ferroptosis inducers with conventional cancer therapy. Finally, we discussed the challenges and opportunities in clinical applications of ferroptosis. The application of nanotechnolgy and other novel technologies may provide a new direction in ferroptosis-driven cancer therapies.
Collapse
Affiliation(s)
- Yinan Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, The Second Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Cen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jili Qiu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaimin Hu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Sleire L, Skeie BS, Netland IA, Førde HE, Dodoo E, Selheim F, Leiss L, Heggdal JI, Pedersen PH, Wang J, Enger PØ. Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion. Oncogene 2015; 34:5951-9. [PMID: 25798841 DOI: 10.1038/onc.2015.60] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/27/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022]
Abstract
Glioblastomas (GBMs) are aggressive brain tumors that always recur after radiotherapy. Cystine, mainly provided by the system X(c)(-) antiporter, is a requirement for glioma cell synthesis of glutathione (GSH) which has a critical role in scavenging free radicals, for example, after radiotherapy. Thus, we hypothesized that the X(c)(-)-inhibitor sulfasalazine (SAS) could potentiate the efficacy of radiotherapy against gliomas. Here, we show that the catalytic subunit of system X(c)(-), xCT, was uniformly expressed in a panel of 30 human GBM biopsies. SAS treatment significantly reduced cystine uptake and GSH levels, whereas it significantly increased the levels of reactive oxygen species (ROS) in glioma cells in vitro. Furthermore, SAS and radiation synergistically increased DNA double-strand breaks and increased glioma cell death, whereas adding the antioxidant N-acetyl-L-cysteine (NAC) reversed cell death. Moreover, SAS and gamma knife radiosurgery (GKRS) synergistically prolonged survival in nude rats harboring human GBM xenografts, compared with controls or either treatment alone. In conclusion, SAS effectively blocks cystine uptake in glioma cells in vitro, leading to GSH depletion and increased ROS levels, DNA damage and cell death. Moreover, it potentiates the anti-tumor efficacy of GKRS in rats with human GBM xenografts, providing a survival benefit. Thus, SAS may have a role as a radiosensitizer to enhance the efficacy of current radiotherapies for glioma patients.
Collapse
Affiliation(s)
- L Sleire
- Department of Biomedicine, Oncomatrix Research Lab, University of Bergen, Bergen, Norway
| | - B S Skeie
- Department of Clinical Medicine, K1, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - I A Netland
- Department of Biomedicine, Oncomatrix Research Lab, University of Bergen, Bergen, Norway
| | - H E Førde
- Department of Biomedicine, Oncomatrix Research Lab, University of Bergen, Bergen, Norway
| | - E Dodoo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - F Selheim
- Department of Biomedicine, Proteomics Unit (PROBE), University of Bergen, Bergen, Norway
| | - L Leiss
- Department of Biomedicine, Oncomatrix Research Lab, University of Bergen, Bergen, Norway.,Neuro Clinic, Haukeland University Hospital, Bergen, Norway
| | - J I Heggdal
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - P-H Pedersen
- Department of Clinical Medicine, K1, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - J Wang
- Department of Biomedicine, Oncomatrix Research Lab, University of Bergen, Bergen, Norway
| | - P Ø Enger
- Department of Biomedicine, Oncomatrix Research Lab, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Abstract
This review summarizes clinical studies in which glutathione was measured in tumor tissue from patients with brain, breast, gastrointestinal, gynecological, head and neck and lung cancer. Glutathione tends to be elevated in breast, ovarian, head and neck, and lung cancer and lower in brain and liver tumors compared to disease-free tissue. Cervical, colorectal, gastric, and esophageal cancers show both higher and lower levels of tumor glutathione. Some studies show an inverse relationship between patient survival and tumor glutathione. Based on this survey, we recommend approaches that may improve the clinical value of glutathione as a biomarker.
Collapse
Affiliation(s)
- Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC 27695-7115, USA.
| | | | | | | |
Collapse
|
7
|
Bridges RJ, Natale NR, Patel SA. System xc⁻ cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 2012; 165:20-34. [PMID: 21564084 DOI: 10.1111/j.1476-5381.2011.01480.x] [Citation(s) in RCA: 414] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
System x(c)(-) is an amino acid antiporter that typically mediates the exchange of extracellular l-cystine and intracellular L-glutamate across the cellular plasma membrane. Studied in a variety of cell types, the import of L-cystine through this transporter is critical to glutathione production and oxidative protection. The exchange-mediated export of L-glutamate takes on added significance within the CNS, as it represents a non-vesicular route of release through which this excitatory neurotransmitter can participate in either neuronal signalling or excitotoxic pathology. When both the import of L-cystine and the export of L-glutamate are taken into consideration, system x(c)(-) has now been linked to a wide range of CNS functions, including oxidative protection, the operation of the blood-brain barrier, neurotransmitter release, synaptic organization, viral pathology, drug addiction, chemosensitivity and chemoresistance, and brain tumour growth. The ability to selectively manipulate system x(c)(-), delineate its function, probe its structure and evaluate it as a therapeutic target is closely linked to understanding its pharmacology and the subsequent development of selective inhibitors and substrates. Towards that goal, this review will examine the current status of our understanding of system x(c)(-) pharmacology and the structure-activity relationships that have guided the development of an initial pharmacophore model, including the presence of lipophilic domains adjacent to the substrate binding site. A special emphasis is placed on the roles of system x(c)(-) within the CNS, as it is these actions that are among the most exciting as potential long-range therapeutic targets.
Collapse
Affiliation(s)
- Richard J Bridges
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|
8
|
Backos DS, Franklin CC, Reigan P. The role of glutathione in brain tumor drug resistance. Biochem Pharmacol 2011; 83:1005-12. [PMID: 22138445 DOI: 10.1016/j.bcp.2011.11.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/24/2022]
Abstract
Chemotherapy is central to the current treatment modality for primary human brain tumors, but despite high-dose and intensive treatment regimens there has been little improvement in patient outcome. The development of tumor chemoresistance has been proposed as a major contributor to this lack of response. While there have been some improvements in our understanding of the molecular mechanisms underlying brain tumor drug resistance over the past decade, the contribution of glutathione (GSH) and the GSH-related enzymes to drug resistance in brain tumors have been largely overlooked. GSH constitutes a major antioxidant defense system in the brain and together with the GSH-related enzymes plays an important role in protecting cells against free radical damage and dictating tumor cell response to adjuvant cancer therapies, including irradiation and chemotherapy. Glutamate cysteine ligase (GCL), glutathione synthetase (GS), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferases (GST), and GSH complex export transporters (GS-X pumps) are major components of the GSH-dependent enzyme system that function in a dynamic cascade to maintain redox homeostasis. In many tumors, the GSH system is often dysregulated, resulting in a more drug resistant phenotype. This is commonly associated with GST-mediated GSH conjugation of various anticancer agents leading to the formation of less toxic GSH-drug complexes, which can be readily exported from the cell. Advances in our understanding of the mechanisms of drug resistance and patient selection based on biomarker profiles will be crucial to adapt therapeutic strategies and improve outcomes for patients with primary malignant brain tumors.
Collapse
Affiliation(s)
- Donald S Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, 80045, United States
| | | | | |
Collapse
|
9
|
Pino MA, Billack B. Reduction of vesicant toxicity by butylated hydroxyanisole in A-431 skin cells. Cutan Ocul Toxicol 2008; 27:161-72. [DOI: 10.1080/15569520802092070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Murray D, Mirzayans R, Scott AL, Allalunis-Turner MJ. Influence of Oxygen on the Radiosensitivity of Human Glioma Cell Lines. Am J Clin Oncol 2003; 26:e169-77. [PMID: 14528093 DOI: 10.1097/01.coc.0000091359.11281.f4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the influence of hypoxia on the radiosensitivity of 4 early-passage tumor cell lines that were established from malignant glioma patients at our Institute. These cell lines were M006, M059J (a highly radiosensitive line), M059K (a radioresistant line derived from the same biopsy as M059J), and M010b. The GM637 human fibroblast cell line was used as a normal control. The oxygen enhancement ratios (OERs) for these cell lines, determined using a clonogenic survival assay, were approximately 3.6 (GM637), approximately 3.7 (M006), approximately 2.5 (M010b), approximately 2.1 (M059K), and approximately 3.5 (M059J). The broad range of OERs for these glioma lines was not related to cellular glutathione levels or to differences in intrinsic cellular radiosensitivity. Because studies with rodent cell lines indicate that defects in certain DNA repair genes, including ERCC1, can greatly influence cellular OERs, and because several such repair genes, including ERCC1, localize to a region of chromosome 19q that is close to a common deletion in human glioma, we reasoned that such deletions might contribute to the diverse OERs of these tumor cell lines. However, measurements of ERCC1 protein levels using immunofluorescence staining or Western blotting, of ERCC1 mRNA levels using Northern blotting, and of functional nucleotide excision repair capability using the UV/adenovirus reactivation assay, failed to indicate any deficit in these activities. Thus, although the effect of hypoxia on the radiosensitivity of different human glioma cell lines can vary widely, the mechanism of this effect remains unknown. The potential implications of this finding for radiation therapy, and especially for hypoxia imaging-guided intensity-modulated radiation therapy (IMRT) treatment planning, are discussed.
Collapse
Affiliation(s)
- David Murray
- Division of Experimental Oncology, Department of Oncology, The University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
11
|
Perek N, Koumanov F, Denoyer D, Boudard D, Dubois F. Modulation of the multidrug resistance of glioma by glutathione levels depletion--interaction with Tc-99M-Sestamibi and Tc-99M-Tetrofosmin. Cancer Biother Radiopharm 2002; 17:291-302. [PMID: 12136521 DOI: 10.1089/10849780260179251] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the effect of glutathione (GSH) depletion on the chemosensitivity of human malignant glioma cell lines: G111, G5 and G152. All the cell lines showed a multidrug resistant (MDR) phenotype associated with MRP1 expression, high intracellular levels of GSH, and depolarized plasma membranes. Tc-99M-Sestamibi (MIBI) and Tc-99M-Tetrofosmin (Tfos) were used for monitoring the MDR mechanisms. Modulation of GSH content was performed with butoxysulfoximide (BSO) pre-treatment alone or in combination with GSH ethyl ester. MIBI and Tfos accumulation in the cells was inversely correlated to the GSH content, a higher accumulation was found after BSO pre-treatment and addition of GSH ethyl ester reversed this process. BSO could therefore play a role as a chemosensitizing drug and thus help to overcome MDR. However, higher accumulation of MIBI and Tfos was observed even in the sensitive cells suggesting another effect of BSO on the cell physiological characteristics. No sign of apoptosis has been found indicating a possible direct effect on the plasma membrane fluidity and permeability. MIBI and Tfos don't follow the expected behavior of a MDR probe in the glioma cells and given the particular morpho-physiological characteristics of these types of tumors, Tfos could be rather used as a marker of the tumor growth and proliferation.
Collapse
Affiliation(s)
- Nathalie Perek
- Department of Biophysics and Image Treatment, Faculty of Medicine, Jacques Lisfranc, Saint Etienne, France.
| | | | | | | | | |
Collapse
|
12
|
Bredel M. Anticancer drug resistance in primary human brain tumors. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:161-204. [PMID: 11336781 DOI: 10.1016/s0165-0173(01)00045-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The difficult clinical situation still associated with most types of primary human brain tumors has fostered significant interest in defining novel therapeutic modalities for this heterogeneous group of neoplasms. Beginning in the 1980s chemotherapy has been incorporated into the treatment protocol of a number of intractable brain tumors. However, it has predominantly failed to improve patient outcome. The unsatisfactory results with chemotherapeutic intervention have chiefly been attributed to tumor cell resistance. In recent years, there has been a literal explosion in our understanding about the mechanisms by which cancer cells become chemoresistant. During the course of their evolution (intrinsic resistance) or in response to chemotherapy (acquired resistance) these cells may follow a number of pathways of genetic alterations to possess a common (multidrug) or drug-specific (individual drug) resistant phenotype. Genomic aberrations, deregulation of membrane transporting proteins and cellular enzymes, and an altered susceptibility to commit to apoptosis are among the steps on the way that contribute to the genesis of chemotherapeutic treatment failure. Although, through the years we have come to yield information and inferences as to the roles that different molecular events may have in the resistance phenotype of cancer cells, the actual involvement of single genetic alterations in conferring drug resistance in primary brain tumors remains debatable. This uncertainty and, besides, the lack of proper drug resistance diagnostics, in a vicious circle, hinder the development of effective resistance-modulation strategies. Clinical non-responsiveness to chemotherapy remains a formidable obstacle to the successful treatment of brain tumors and one of the most serious problems to be solved in the therapy of these lesions. Future advances in the chemotherapeutic management of these neoplasms will come with an improved understanding of the significance and interrelationship of the multiple biological systems operative in promoting resistance to this treatment modality. The focus of this review is to summarize current knowledge concerning major drug resistance-related markers, to describe their functional interaction en route to chemoresistance, and to discuss their implication in rendering human brain tumor cells resistant to chemotherapy.
Collapse
Affiliation(s)
- M Bredel
- Department of General Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Sipos EP, Witham TF, Ratan R, Burger PC, Baraban J, Li KW, Piantadosi S, Brem H. L-buthionine sulfoximine potentiates the antitumor effect of 4-hydroperoxycyclophosphamide when administered locally in a rat glioma model. Neurosurgery 2001; 48:392-400. [PMID: 11220384 DOI: 10.1097/00006123-200102000-00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE L-buthionine sulfoximine (BSO) inhibits glutathione synthesis and may modulate tumor resistance to some alkylating agents, but it has not been proven effective in the treatment of intracranial neoplasms. To evaluate this drug for the treatment of brain tumors, we studied the use of BSO for potentiating the antineoplastic effect of 4-hydroxyperoxycyclophosphamide (4-HC) in the rat 9L glioma model. METHODS The survival of male Fischer 344 rats with intracranial 9L gliomas was measured after implantation of controlled-release polymers containing one of the following: no drug, BSO, 4-HC, or both BSO and 4-HC. The efficacy of intracranial 4-HC treatment was assessed with and without serial systemic intraperitoneal BSO injections. Tissue glutathione levels were measured in the brains, tumors, and livers of animals treated with intraperitoneal injections or local delivery of BSO. RESULTS The median survival of animals treated with intracranial polymers containing 4-HC was 2.3 times greater than that of controls. This survival benefit was doubled by local delivery of BSO. In contrast, systemic BSO therapy did not improve survival time. In animals that were treated systemically, both liver and tumor glutathione levels were significantly lower than they were in control animals. In the locally treated animals, glutathione levels were reduced in the brain tumor but not in the liver. CONCLUSION These results demonstrate that local but not systemic delivery of BSO enhances the antineoplastic effect of 4-HC in this rat 9L glioma model. In addition, because local delivery of BSO within the brain did not deplete glutathione levels systemically, this method of treatment may be safer than systemic administration of BSO.
Collapse
Affiliation(s)
- E P Sipos
- Department of Neurological Surgery, Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sipos EP, Witham TF, Ratan R, Burger PC, Baraban J, Li KW, Piantadosi S, Brem H. l-Buthionine Sulfoximine Potentiates the Antitumor Effect of 4-Hydroperoxycyclophosphamide When Administered Locally in a Rat Glioma Model. Neurosurgery 2001. [DOI: 10.1227/00006123-200102000-00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Parliament MB, Allalunis-Turner MJ, Franko AJ, Olive PL, Mandyam R, Santos C, Wolokoff B. Vascular endothelial growth factor expression is independent of hypoxia in human malignant glioma spheroids and tumours. Br J Cancer 2000; 82:635-41. [PMID: 10682677 PMCID: PMC2363312 DOI: 10.1054/bjoc.1999.0975] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We recently showed that severe hypoxia was not universally present adjacent to necrosis in human glioma xenografts and spheroids established from the M059K, M006, M006X, M006XLo and M010b cell lines. Using these glioma models, we wished to test whether oxygen serves as a regulator of cellular VEGF expression in situ. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to detect vascular endothelial growth factor (VEGF) mRNA and protein expression in sections of glioma xenografts and spheroids in which hypoxic regions and regions with well-oxygenated necrosis were identified on contiguous sections by use of the hypoxia-specific marker, 3H-misonidazole. Independent validation of the presence of radiobiologically hypoxic cells in M006 xenografts was undertaken using the comet assay. Northern blotting analyses of monolayer cells demonstrated significant up-regulation of VEGF mRNA in the M006X line at oxygen concentrations of 6% and below. ISH analysis of VEGF mRNA showed unexpectedly strong staining for VEGF mRNA across the entire viable rim of M006X and M006XLo glioma spheroids. Similarly, in virtually all xenograft tumours of the M059K, M006 and M010b lines, VEGF ISH showed similar staining across all regions of healthy cells up to the border of necrosis. Only in one M006X tumour was there a suggestion of increased VEGF expression in cells adjacent to necrosis. IHC for VEGF showed good concordance with the ISH results. IHC analysis of the VEGF receptor flt-1 showed strong tumour cell staining in M006XLo glioma cells. In human glioma spheroids and xenograft tumours, regions of severe hypoxia do not correspond to areas of up-regulated VEGF expression; in fact, VEGF expression is quite uniform. Furthermore, this and our previous study demonstrate that levels of VEGF expression vary among sublines (M006, M006X and M006XLo) derived from a single human glioma specimen.
Collapse
Affiliation(s)
- M B Parliament
- Divisions of Radiation, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Reber U, Wüllner U, Trepel M, Baumgart J, Seyfried J, Klockgether T, Dichgans J, Weller M. Potentiation of treosulfan toxicity by the glutathione-depleting agent buthionine sulfoximine in human malignant glioma cells: the role of bcl-2. Biochem Pharmacol 1998; 55:349-59. [PMID: 9484802 DOI: 10.1016/s0006-2952(97)00480-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Median survival of human malignant glioma patients is less than one year even with cytoreductive surgery and postoperative radiotherapy. Adjuvant chemotherapy has been rather ineffective. Here, we studied the potentiation by L-buthionine-[S,R]-sulfoximine (BSO), a glutathione-depleting agent, of anticancer drug actions on two human malignant glioma cell lines, LN-229 and T98G. LN-229 has wild-type p53 status, T98G is mutant for p53. Glutathione levels were depleted by BSO with similar kinetics in both cell lines. Only LN-229 cells were growth-inhibited by BSO. BSO had minor effects on the toxicity of doxorubicin, ACNU (1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosou rea, nimustine) and vincristine. BSO failed to alter teniposide or cytarabine toxicity. BSO induced prominent sensitization to the alkylating agent, treosulfan, in both cell lines, as assessed by viability assays, in situ DNA end labeling and quantitative DNA fragmentation. Treosulfan is thought to mediate toxicity via formation of reactive epoxides. In the absence of BSO, treosulfan had little acute cytotoxic and moderate antiproliferative effects. Synergistic glioma cell cytotoxicity induced by treosulfan and BSO was not associated with reactive oxygen species formation. Ectopic expression of bcl-2 did not alter basal glutathione levels but attenuated glutathione depletion induced by BSO. Bcl-2 provided only moderate protection from synergistic induction of glioma cell death by treosulfan and BSO. Glutathione depletion may play a role in BSO-mediated chemosensitization, but other mechanisms are probably involved as well. BSO may be a useful agent for glioma cell sensitization to specific chemotherapeutic drugs such as treosulfan.
Collapse
Affiliation(s)
- U Reber
- Department of Neurology, University of Tübingen, School of Medicine, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Egyházi S, Edgren MR, Hansson J, Kröckel D, Mannervik B, Ringborg U. Role of O6-methylguanine-DNA methyltransferase, glutathione transferase M3-3 and glutathione in resistance to carmustine in a human non-small cell lung cancer cell line. Eur J Cancer 1997; 33:447-52. [PMID: 9155531 DOI: 10.1016/s0959-8049(97)89021-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
O6-methylguanine-DNA methyltransferase (MGMT), glutathione transferase (GST) M3-3 and glutathione (GSH) have all been implicated in the resistance of cells to the cytostatic drug carmustine. U1810, a human non-small cell lung cancer cell line, expresses all of these putative resistance factors. The U1810 cells show a 4.4-fold lower sensitivity to carmustine compared with the U1690 cell line, a human small cell lung cancer cell line lacking detectable levels of both MGMT and GST M3-3. We investigated the effect of the MGMT inhibitor O6-benzylguanine, the GST inhibitor ethacrynic acid and the GSH synthesis inhibitor D,L-buthionine-S,R-sulfoximine (BSO) on the cytotoxicity of carmustine to U1810 cells. No potentiation to carmustine was observed after treatment with ethacrynic acid, while a 2-fold potentiation was found after exposure to O6-benzylguanine. Depletion of GSH with BSO showed a similar sensitising effect as that obtained with O6-benzylguanine. Thus, MGMT and GSH are the predominant resistance factors to carmustine in the U1810 cell line, whereas it is unclear whether GST M3-3 plays any role.
Collapse
Affiliation(s)
- S Egyházi
- Department of Oncology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Parliament MB, Franko AJ, Allalunis-Turner MJ, Mielke BW, Santos CL, Wolokoff BG, Mercer JR. Anomalous patterns of nitroimidazole binding adjacent to necrosis in human glioma xenografts: possible role of decreased oxygen consumption. Br J Cancer 1997; 75:311-8. [PMID: 9020473 PMCID: PMC2063364 DOI: 10.1038/bjc.1997.52] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In contrast to reports of extensive hypoxia in human gliomas in situ measured by pO2 histography, non-invasive methods of assessing glioma oxygenation, including nitroimidazole binding, have yielded surprisingly contradictory results. In order to investigate the relationship of necrosis, hypoxia, nitroreductase activity and cellular respiration in human gliomas, subcutaneous models using the human glioma cell lines M059K, M006 and M010b were developed in the murine SCID host. Intracranial growth of the M006 line was achieved in nude rats. The nitroreductive capacity of glioma cell lines was assessed and found to be similar to transplanted tumours previously reported in the literature. This suggests that if substantial numbers of viable hypoxic cells were present in situ in gliomas, then nitroimidazole-binding techniques should be capable of identifying them. Inter-tumour variability in the amount of necrosis was seen. M006 xenografts growing in subcutaneous and intracranial sites revealed extensive necrotic regions histologically, some of which were surrounded by cells labelled heavily for [3H]misonidazole, while other areas were lightly labelled. Similar binding patterns were seen for subcutaneous M059K tumours, while subcutaneous M010b tumours display necroses of which almost all were surrounded by heavily labelled cells. The oxygen consumption rates of tumour cell lines grown in vivo, in which venous pO2 concentrations are of the order of 2-5%, were two to sevenfold less than those of the same lines grown as monolayers in vitro under oxygen concentrations of 18%. We postulate that glioma cell lines behave as 'oxygen conformers', in that their rate of oxygen consumption appears to vary with the availability of oxygen. Together with the misonidazole-binding data, the results in this glioma tumour model are consistent with coordinate inhibition or down-regulation of respiration under moderate hypoxia.
Collapse
Affiliation(s)
- M B Parliament
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
First-line treatment of malignant gliomas invariably includes surgery when feasible, and often adjuvant radiotherapy with or without chemotherapy; at progression or recurrence, the only remaining possibility is chemotherapy. While the role of first-line treatment has been established by many randomized studies, second-line treatment is not as well defined. To analyze the difficulties encountered with cytotoxic drugs in relation to both the blood-brain barrier and drug resistance, we examined the results obtained by single-agent chemotherapy, drug combinations, and biological response modifiers. Our findings confirmed that the nitrosoureas are the most active substances at the time of recurrence; these agents give an approximately 30% global response rate, with about 20 weeks' survival. Although no comparative randomized studies regarding single- versus multiple-agent chemotherapy are available, the latter approach, including nitrosourea, can obtain an up to 40% rate of response, with survival ranging from 30 to 50 weeks. The role of interferons has been very controversial; individually, alpha- and beta-interferons seem to give a 20% response rate, with 20 weeks' survival. To date, they have never been used in combination with cytotoxic drugs, but they may prove synergistic without increasing toxicity. Studies addressing the quality of life of these patients are not available, and it is clear that we need more basic research in this field.
Collapse
Affiliation(s)
- A A Brandes
- Department of Oncology, Ospedale Civile, Padua, Italy
| | | |
Collapse
|