1
|
Law CT, Burns KH. Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.635956. [PMID: 39975348 PMCID: PMC11838501 DOI: 10.1101/2025.02.02.635956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Long interspersed element-1 (LINE-1, L1) retrotransposons are the most abundant protein-coding transposable elements (TE) in mammalian genomes, and have shaped genome content over 170 million years of evolution. LINE-1 is self-propagating and mobilizes other sequences, including Alu elements. Occasionally, LINE-1 forms chimeric insertions with non-coding RNAs and mRNAs. U6 spliceosomal small nuclear RNA/LINE-1 chimeras are best known, though there are no comprehensive catalogs of LINE-1 chimeras. To address this, we developed TiMEstamp, a computational pipeline that leverages multiple sequence alignments (MSA) to estimate the age of LINE-1 insertions and identify candidate chimeric insertions where an adjacent sequence arrives contemporaneously. Candidates were refined by detecting hallmark features of L1 retrotransposition, such as target site duplication (TSD). Applying this pipeline to the human genome, we recovered all known species of LINE-1 chimeras and discovered new chimeric insertions involving small RNAs, Alu elements, and mRNA fragments. Some insertions are compatible with known mechanisms, such as RNA ligation. Other structures nominate novel mechanisms, such as trans-splicing. We also see evidence that LINE-1 loci with defunct promoters can acquire regulatory elements from nearby genes to restore retrotransposition activity. These discoveries highlight the recombinatory potential of LINE-1 RNA with implications for genome evolution and TE domestication.
Collapse
Affiliation(s)
- Cheuk-Ting Law
- Corresponding authors: Cheuk-Ting Law (), Kathleen H. Burns ()
| | | |
Collapse
|
2
|
Cardoso Soares S, Schmidt Eler E, Eduardo Faresin E Silva C, Francisco Souza E Sousa J, Nazareth Ferreira da Silva M, Pereira Araújo N, Svartman M, Feldberg E. Mapping of SINEs in the genome of Proechimys (Mammalia: Rodentia). Gene 2024; 928:148781. [PMID: 39029769 DOI: 10.1016/j.gene.2024.148781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
This study aimed to analyze the distribution of short interspersed elements (SINEs) in the chromosomes of five species of rodents of the genus Proechimys and in a variant karyotype of P. guyannensis. Molecular cytogenetic techniques were used to characterize the sequences of the B1, B4, MAR and THER SINEs, which were used as probes for hybridization in metaphase chromosomes. A wide distribution of SINEs was observed in the chromosomes of the Proechimys species examined, thus indicating differentiation of these retroelements. The signal of the B4 SINE was more evident than that of the B1 SINE, especially in P. echinothrix, P. longicaudatus, and P. cuvieri. Although the signal of the MAR SINE was more explosive than that of the THER SINE, in the species P. echinothrix, P. guyannensis (2n = 46) and P. longicaudatus, its distribution in the karyotypes was similar. The signals of these retroelements occurred at specific heterochromatic sites and were centromeric/pericentromeric and at the terminal regions in most chromosomes. This appears to be a typical distribution pattern of the SINEs and may indicate involvement with rearrangements during karyotypic diversification in Proechimys. The variation of the SINEs in the genome of Proechimys species demonstrates that these elements are distributed in a specific way in this genus and the preference for some sites, considered hotspots for chromosomal breakage, allows us to propose that these elements are related to the karyotypic evolution of Proechimys.
Collapse
Affiliation(s)
- Simone Cardoso Soares
- Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil.
| | - Eduardo Schmidt Eler
- Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil; Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São José dos Campos, São Paulo, Brazil
| | - Carlos Eduardo Faresin E Silva
- Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - José Francisco Souza E Sousa
- Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | | | - Naiara Pereira Araújo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Rondônia Campus Jaru, Jaru, RO, Brazil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliana Feldberg
- Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil; Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| |
Collapse
|
3
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
4
|
Longo MS, Brown JD, Zhang C, O'Neill MJ, O'Neill RJ. Identification of a recently active mammalian SINE derived from ribosomal RNA. Genome Biol Evol 2015; 7:775-88. [PMID: 25637222 PMCID: PMC4994717 DOI: 10.1093/gbe/evv015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3'-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes.
Collapse
Affiliation(s)
- Mark S Longo
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Judy D Brown
- Department of Allied Health Sciences and Institute for Systems Genomics, University of Connecticut
| | - Chu Zhang
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Michael J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| |
Collapse
|
5
|
Foltz DW. An Ancient Repeat Sequence in the ATP Synthase β-Subunit Gene of Forcipulate Sea Stars. J Mol Evol 2007; 65:564-73. [PMID: 17909692 DOI: 10.1007/s00239-007-9036-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/10/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
A novel repeat sequence with a conserved secondary structure is described from two nonadjacent introns of the ATP synthase beta-subunit gene in sea stars of the order Forcipulatida (Echinodermata: Asteroidea). The repeat is present in both introns of all forcipulate sea stars examined, which suggests that it is an ancient feature of this gene (with an approximate age of 200 Mya). Both stem and loop regions show high levels of sequence constraint when compared to flanking nonrepetitive intronic regions. The repeat was also detected in (1) the family Pterasteridae, order Velatida and (2) the family Korethrasteridae, order Velatida. The repeat was not detected in (1) the family Echinasteridae, order Spinulosida, (2) the family Astropectinidae, order Paxillosida, (3) the family Solasteridae, order Velatida, or (4) the family Goniasteridae, order Valvatida. The repeat lacks similarity to published sequences in unrestricted GenBank searches, and there are no significant open reading frames in the repeat or in the flanking intron sequences. Comparison via parametric bootstrapping to a published phylogeny based on 4.2 kb of nuclear and mitochondrial sequence for a subset of these species allowed the null hypothesis of a congruent phylogeny to be rejected for each repeat, when compared separately to the published phylogeny. In contrast, the flanking nonrepetitive sequences in each intron yielded separate phylogenies that were each congruent with the published phylogeny. In four species, the repeat in one or both introns has apparently experienced gene conversion. The two introns also show a correlated pattern of nucleotide substitutions, even after excluding the putative cases of gene conversion.
Collapse
Affiliation(s)
- David W Foltz
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA.
| |
Collapse
|
6
|
Abstract
During the past 65 million years, Alu elements have propagated to more than one million copies in primate genomes, which has resulted in the generation of a series of Alu subfamilies of different ages. Alu elements affect the genome in several ways, causing insertion mutations, recombination between elements, gene conversion and alterations in gene expression. Alu-insertion polymorphisms are a boon for the study of human population genetics and primate comparative genomics because they are neutral genetic markers of identical descent with known ancestral states.
Collapse
Affiliation(s)
- Mark A Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
7
|
Deininger PL, Tiedge H, Kim J, Brosius J. Evolution, expression, and possible function of a master gene for amplification of an interspersed repeated DNA family in rodents. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:67-88. [PMID: 8821258 DOI: 10.1016/s0079-6603(08)60964-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P L Deininger
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | | | |
Collapse
|
8
|
Jobse C, Buntjer JB, Haagsma N, Breukelman HJ, Beintema JJ, Lenstral JA. Evolution and recombination of bovine DNA repeats. J Mol Evol 1995. [DOI: 10.1007/bf01215174] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Coltman DW, Wright JM. Can SINEs: a family of tRNA-derived retroposons specific to the superfamily Canoidea. Nucleic Acids Res 1994; 22:2726-30. [PMID: 8052527 PMCID: PMC308240 DOI: 10.1093/nar/22.14.2726] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A repetitive element of approximately 200 bp was cloned from harbour seal (Phoca vitulina concolour) genomic DNA. The sequence of the element revealed putative RNA polymerase III control boxes, a poly A tail and direct terminal repeats characteristic of SINEs. Sequence and secondary structural similarities suggest that the SINE is derived from a tRNA, possibly tRNA-alanine. Southern blot analysis indicated that the element is predominately dispersed in unique regions of the seal genome, but may also be present in other repetitive sequences, such as tandemly arrayed satellite DNA. Based on slot-blot hybridization analysis, we estimate that 1.3 x 10(6) copies of the SINE are present in the harbour seal genome; SINE copy number based on the number of clones isolated from a size-selected library, however, is an order of magnitude lower (1-3 x 10(5) copies), an estimate consistent with the abundance of SINEs in other mammalian genomes. Database searches found similar sequences have been isolated from dog (Canis familiaris) and mink (Mustela vison). These, and the seal SINE sequences are characterized by an internal CT dinucleotide microsatellite in the tRNA-unrelated region. Hybridization of genomic DNA from representative species of a wide range of mammalian orders to an oligonucleotide (30mer) probe complementary to a conserved region of the SINE confirmed that the element is unique to carnivores of the superfamily Canoidea.
Collapse
Affiliation(s)
- D W Coltman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|