1
|
Müller-Deile J, Sarau G, Kotb AM, Jaremenko C, Rolle-Kampczyk UE, Daniel C, Kalkhof S, Christiansen SH, Schiffer M. Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis. Sci Rep 2021; 11:4577. [PMID: 33633212 PMCID: PMC7907124 DOI: 10.1038/s41598-021-83883-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Idiopathic forms of Focal Segmental Glomerulosclerosis (FSGS) are caused by circulating permeability factors, which can lead to early recurrence of FSGS and kidney failure after kidney transplantation. In the past three decades, many research endeavors were undertaken to identify these unknown factors. Even though some potential candidates have been recently discussed in the literature, "the" actual factor remains elusive. Therefore, there is an increased demand in FSGS research for the use of novel technologies that allow us to study FSGS from a yet unexplored angle. Here, we report the successful treatment of recurrent FSGS in a patient after living-related kidney transplantation by removal of circulating factors with CytoSorb apheresis. Interestingly, the classical published circulating factors were all in normal range in this patient but early disease recurrence in the transplant kidney and immediate response to CytoSorb apheresis were still suggestive for pathogenic circulating factors. To proof the functional effects of the patient's serum on podocytes and the glomerular filtration barrier we used a podocyte cell culture model and a proteinuria model in zebrafish to detect pathogenic effects on the podocytes actin cytoskeleton inducing a functional phenotype and podocyte effacement. We then performed Raman spectroscopy in the < 50 kDa serum fraction, on cultured podocytes treated with the FSGS serum and in kidney biopsies of the same patient at the time of transplantation and at the time of disease recurrence. The analysis revealed changes in podocyte metabolome induced by the FSGS serum as well as in focal glomerular and parietal epithelial cell regions in the FSGS biopsy. Several altered Raman spectra were identified in the fractionated serum and metabolome analysis by mass spectrometry detected lipid profiles in the FSGS serum, which were supported by disturbances in the Raman spectra. Our novel innovative analysis reveals changed lipid metabolome profiles associated with idiopathic FSGS that might reflect a new subtype of the disease.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.
| | - George Sarau
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - Ahmed M Kotb
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Asyût, Egypt
| | - Christian Jaremenko
- Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Institute of Optics, Information and Photonics, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Ulrike E Rolle-Kampczyk
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, University of Applied Sciences Coburg, Coburg, Germany.,Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Silke H Christiansen
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
2
|
Kidney Lipidomics by Mass Spectrometry Imaging: A Focus on the Glomerulus. Int J Mol Sci 2019; 20:ijms20071623. [PMID: 30939806 PMCID: PMC6480965 DOI: 10.3390/ijms20071623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid disorders have been associated with glomerulopathies, a distinct type of renal pathologies, such as nephrotic syndrome. Global analyses targeting kidney lipids in this pathophysiologic context have been extensively performed, but most often regardless of the architectural and functional complexity of the kidney. The new developments in mass spectrometry imaging technologies have opened a promising field in localized lipidomic studies focused on this organ. In this article, we revisit the main works having employed the Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) technology, and the few reports on the use of TOF-Secondary Ion Mass Spectrometry (TOF-SIMS). We also present a first analysis of mouse kidney cortex sections by cluster TOF-SIMS. The latter represents a good option for high resolution lipid imaging when frozen unfixed histological samples are available. The advantages and drawbacks of this developing field are discussed.
Collapse
|
3
|
Chang CT, Liao HY, Huang WH, Lin SY, Tsai TY, Yang CY, Tsai FJ, Chen CJ. Early prediction of severe acute pancreatitis by urinary β-2 microglobulin/saposin B peak ratios on MALDI-TOF. Clin Chim Acta 2014; 440:115-22. [PMID: 25447703 DOI: 10.1016/j.cca.2014.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/18/2014] [Accepted: 11/10/2014] [Indexed: 01/01/2023]
Abstract
The current methods for predicting severe acute pancreatitis (severe AP) are either complicated or lack efficient sensitivity and specificity. In this study, a simple and practical approach was developed to predict severe AP by using peak intensity ratio of urinary β-2 microglobulin (B2M) to saposin B (SB) on MALDI-TOF MS. Patients with B2M/SB ratio higher than 1.127 present severe AP symptom with a higher Ranson score, computed tomography (CT) grade and longer hospitalization with a sensitivity of 83.7% and specificity of 74.3%. Label-free quantitative proteomics by nanoLC-MS/MS was applied to urine of severe AP patients and found that severe AP is accompanied with kidney injury and inflammation. The measurement of B2M/SB ratios by MALDI-TOF MS could be a simple, accurate and rapid method to diagnose severe AP as well as to monitor AP progression.
Collapse
Affiliation(s)
- Chiz-Tzung Chang
- College of Medicine, China Medical University, Taichung, Taiwan; Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yi Liao
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Wen-Hsin Huang
- College of Medicine, China Medical University, Taichung, Taiwan; Division of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Yi Lin
- College of Medicine, China Medical University, Taichung, Taiwan; Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Yu Tsai
- Division of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Yuh Yang
- L5 Research Center, China Medical University Hospital, Taichung, Taiwan; Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Fuu-Jen Tsai
- Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
4
|
Merscher S, Fornoni A. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol (Lausanne) 2014; 5:127. [PMID: 25126087 PMCID: PMC4115628 DOI: 10.3389/fendo.2014.00127] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are components of the lipid rafts in plasma membranes, which are important for proper function of podocytes, a key element of the glomerular filtration barrier. Research revealed an essential role of sphingolipids and sphingolipid metabolites in glomerular disorders of genetic and non-genetic origin. The discovery that glucocerebrosides accumulate in Gaucher disease in glomerular cells and are associated with clinical proteinuria initiated intensive research into the function of other sphingolipids in glomerular disorders. The accumulation of sphingolipids in other genetic diseases including Tay-Sachs, Sandhoff, Fabry, hereditary inclusion body myopathy 2, Niemann-Pick, and nephrotic syndrome of the Finnish type and its implications with respect to glomerular pathology will be discussed. Similarly, sphingolipid accumulation occurs in glomerular diseases of non-genetic origin including diabetic kidney disease (DKD), HIV-associated nephropathy, focal segmental glomerulosclerosis (FSGS), and lupus nephritis. Sphingomyelin metabolites, such as ceramide, sphingosine, and sphingosine-1-phosphate have also gained tremendous interest. We recently described that sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is expressed in podocytes where it modulates acid sphingomyelinase activity and acts as a master modulator of danger signaling. Decreased SMPDL3b expression in post-reperfusion kidney biopsies from transplant recipients with idiopathic FSGS correlates with the recurrence of proteinuria in patients and in experimental models of xenotransplantation. Increased SMPDL3b expression is associated with DKD. The consequences of differential SMPDL3b expression in podocytes in these diseases with respect to their pathogenesis will be discussed. Finally, the role of sphingolipids in the formation of lipid rafts in podocytes and their contribution to the maintenance of a functional slit diaphragm in the glomerulus will be discussed.
Collapse
Affiliation(s)
- Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 628, Miami, FL 33136, USA e-mail: ; Alessia Fornoni, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 633, Miami, FL 33136, USA e-mail:
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 628, Miami, FL 33136, USA e-mail: ; Alessia Fornoni, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 633, Miami, FL 33136, USA e-mail:
| |
Collapse
|
5
|
Mandal C, Chatterjee M, Sinha D. Investigation of 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblastic leukaemia. Br J Haematol 2000; 110:801-12. [PMID: 11054061 DOI: 10.1046/j.1365-2141.2000.02105.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Mandal
- Indian Institute of Chemical Biology, Immunobiology Division, 4, Raja S. C. Mullick Road, Calcutta 700032, India.
| | | | | |
Collapse
|
6
|
Schepers U, Lemm T, Herzog V, Sandhoff K. Characterization of regulatory elements in the 5'-flanking region of the GM2 activator gene. Biol Chem 2000; 381:531-44. [PMID: 10987359 DOI: 10.1515/bc.2000.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lysosomal degradation of the ganglioside GM2 by human beta-hexosaminidase A requires the presence of the GM2 activator protein as an essential cofactor. Here we demonstrate that GM2 activator mRNA is differentially expressed and mainly localized to the apical part of the epithelial cells of distal renal tubules and the collecting duct. In order to understand the mechanism underlying the regulation of the GM2 activator gene, we analyzed the genomic organization upstream exon 2 as well as the 5'-flanking region. The GM2 activator gene spans about 16.8 kb with a first intron of 6.5 kb, and the transcription start is located at position -96 upstream from the ATG. DNA elements responsible for GM2 activator expression were identified in a PCR-based method of long-distance DNA walking. Sequence analysis revealed a 2.9 kb region upstream of the ATG that contained regulatory elements like CAAT boxes, Sp1 binding sites as well as AP1, and AP2 sites. Transfection experiments in COS-1 cells with a series of chimeras of 5'-stepwise deletion mutants of the GM2 activator gene 5'-flanking region and the secretory alkaline phosphatase (SEAP)-reporter gene indicated that a genomic fragment encompassing -323 to +1 bp had significant promoter activity. EMSA experiments showed that Sp1 and other transcription factors like AP1, AP2 and CCAAT-Box binding proteins are involved in GM2 activator gene regulation.
Collapse
Affiliation(s)
- U Schepers
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | | | |
Collapse
|