1
|
Bin Jassar M, Yao Q, Siro Brigiano F, Chen W, Pezzotti S. Chemistry at Oxide/Water Interfaces: The Role of Interfacial Water. J Phys Chem Lett 2024; 15:11961-11968. [PMID: 39579133 DOI: 10.1021/acs.jpclett.4c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Oxide-water interfaces host many chemical reactions in nature and industry. There, reaction free energies markedly differ from those of the bulk. While we can experimentally and theoretically measure these changes, we are often unable to address the fundamental question: what catalyzes these reactions? Recent studies suggest that surface and electrostatic contributions are an insufficient answer. The interface modulates chemistry in subtle ways. Revealing them is essential to understanding interfacial reactions, hence improving industrial processes. Here, we introduce a thermodynamic approach combined with cavitation free energy analysis to disentangle the driving forces at play. We find that water dictates chemistry via large variations of cavitation free energies across the interface. The resulting driving forces are both large enough to determine reaction output and highly tunable by adjusting interface composition, as showcased for silica-water interfaces. These findings shift the focus from common interpretations based on surface and electrostatics and open exciting perspectives for regulating interfacial chemistry.
Collapse
Affiliation(s)
- Mohammed Bin Jassar
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Qiwei Yao
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Flavio Siro Brigiano
- Laboratoire de Chimie Theorique, Sorbonne Universite, UMR 7616, CNRS, 75005 Paris, France
| | - Wanlin Chen
- Department of Physical Chemistry II, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| |
Collapse
|
2
|
Rimola A, Balucani N, Ceccarelli C, Ugliengo P. Tracing the Primordial Chemical Life of Glycine: A Review from Quantum Chemical Simulations. Int J Mol Sci 2022; 23:4252. [PMID: 35457069 PMCID: PMC9030215 DOI: 10.3390/ijms23084252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022] Open
Abstract
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally. Thus, Gly is a paradigmatic system for biomolecular building blocks to investigate how they can be synthesized in astrophysical environments, transported and delivered by fragments of asteroids (meteorites, once they land on Earth) and comets (interplanetary dust particles that land on Earth) to the primitive Earth, and there react to form biopolymers as a step towards the emergence of life. Quantum chemical investigations addressing these Gly-related events have been performed, providing fundamental atomic-scale information and quantitative energetic data. However, they are spread in the literature and difficult to harmonize in a consistent way due to different computational chemistry methodologies and model systems. This review aims to collect the work done so far to characterize, at a quantum mechanical level, the chemical life of Gly, i.e., from its synthesis in the interstellar medium up to its polymerization on Earth.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
- Osservatorio Astrosico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
| | - Cecilia Ceccarelli
- CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, 38000 Grenoble, France;
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| |
Collapse
|
3
|
Brigiano FS, Gierada M, Tielens F, Pietrucci F. Mechanism and Free-Energy Landscape of Peptide Bond Formation at the Silica–Water Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Flavio Siro Brigiano
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Maciej Gierada
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Frederik Tielens
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Fabio Pietrucci
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| |
Collapse
|
4
|
Pantaleone S, Rimola A, Sodupe M. Canonical, deprotonated, or zwitterionic? II. A computational study on amino acid interaction with the TiO 2(110) rutile surface: comparison with the anatase (101) surface. Phys Chem Chem Phys 2020; 22:16862-16876. [PMID: 32666992 DOI: 10.1039/d0cp01429j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of 11 amino acids (Gly, Leu, Met, Phe, Ser, Cys, Glu, Gln, Arg, Lys, and His) on the TiO2(110) rutile surface is investigated adopting a theoretical approach, using the PBE-D2* functional as implemented in the periodic VASP code. The adsorption of the amino acids is considered in their canonical, deprotonated and zwitterionic forms. For all cases, the most stable adsorption mode adopts a bidentate (O,O) binding with surface undercoordinated Ti atoms, in agreement with previous experimental and computational studies using glycine as a test case. Such a binding mode is possible due to the surface morphology, because the Ti-Ti distances match very well with the carboxylic O-O distance. The most stable adsorption states are the deprotonated and the zwitterionic ones, the canonical one lying significantly above in energy. The relative stability between the deprotonated and the zwitterionic states results in a delicate trade-off among dative interactions (O, N, and S atoms of the amino acids with Ti atoms of the surface), H-bond interactions, dispersive forces and, to a lesser extent, steric hindrance of the amino acidic lateral chains. Finally, the difference in the amino acid adsorption between the (110) rutile and the (101) anatase surfaces is discussed both from the energetic and surface morphological standpoints, highlighting the larger reactivity of the rutile polymorph in adsorbing and deprotonating the amino acids compared with the anatase one.
Collapse
Affiliation(s)
- S Pantaleone
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.
| | | | | |
Collapse
|
5
|
Sakhno Y, Battistella A, Mezzetti A, Jaber M, Georgelin T, Michot L, Lambert JF. One Step up the Ladder of Prebiotic Complexity: Formation of Nonrandom Linear Polypeptides from Binary Systems of Amino Acids on Silica. Chemistry 2019; 25:1275-1285. [PMID: 30284764 DOI: 10.1002/chem.201803845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/17/2022]
Abstract
Evidence for the formation of linear oligopeptides with nonrandom sequences from mixtures of amino acids coadsorbed on silica and submitted to a simple thermal activation is presented. The amino acid couples (glutamic acid+leucine) and (aspartic acid+valine) were deposited on a fumed silica and submitted to a single heating step at moderate temperature. The evolution of the systems was characterized by X-ray diffraction, infrared spectroscopy, thermosgravimetric analysis, HPLC, and electrospray ionization mass spectrometry (ESI-MS). Evidence for the formation of amide bonds was found in all systems studied. While the products of single amino acids activation on silica could be considered as evolutionary dead ends, (glutamic acid+leucine) and, at to some extent, (aspartic acid+valine) gave rise to the high yield formation of linear peptides up to the hexamers. Oligopeptides of such length have not been observed before in surface polymerization scenarios (unless the amino acids had been deposited by chemical vapor deposition, which is not realistic in a prebiotic environment). Furthermore, not all possible amino acid sequences were present in the activation products, which is indicative of polymerization selectivity. These results are promising for origins of life studies because they suggest the emergence of nonrandom biopolymers in a simple prebiotic scenario.
Collapse
Affiliation(s)
- Yuriy Sakhno
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Alice Battistella
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Alberto Mezzetti
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Maguy Jaber
- Laboratoire d'Archéologie Moléculaire et Structurale, UMR 8220, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Thomas Georgelin
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France.,Temporary address: Centre de Biophysique Moléculaire, UPR 4301, CNRS, Rue Charles Sadron CS 80054, 45071, Orléans CEDEX 2, France
| | - Laurent Michot
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, UMR 8234, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Jean-François Lambert
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Case Courrier 178, 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| |
Collapse
|
6
|
Rimola A, Sodupe M, Ugliengo P. Role of Mineral Surfaces in Prebiotic Chemical Evolution. In Silico Quantum Mechanical Studies. Life (Basel) 2019; 9:E10. [PMID: 30658501 PMCID: PMC6463156 DOI: 10.3390/life9010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 01/07/2023] Open
Abstract
There is a consensus that the interaction of organic molecules with the surfaces of naturally-occurring minerals might have played a crucial role in chemical evolution and complexification in a prebiotic era. The hurdle of an overly diluted primordial soup occurring in the free ocean may have been overcome by the adsorption and concentration of relevant molecules on the surface of abundant minerals at the sea shore. Specific organic⁻mineral interactions could, at the same time, organize adsorbed molecules in well-defined orientations and activate them toward chemical reactions, bringing to an increase in chemical complexity. As experimental approaches cannot easily provide details at atomic resolution, the role of in silico computer simulations may fill that gap by providing structures and reactive energy profiles at the organic⁻mineral interface regions. Accordingly, numerous computational studies devoted to prebiotic chemical evolution induced by organic⁻mineral interactions have been proposed. The present article aims at reviewing recent in silico works, mainly focusing on prebiotic processes occurring on the mineral surfaces of clays, iron sulfides, titanium dioxide, and silica and silicates simulated through quantum mechanical methods based on the density functional theory (DFT). The DFT is the most accurate way in which chemists may address the behavior of the molecular world through large models mimicking chemical complexity. A perspective on possible future scenarios of research using in silico techniques is finally proposed.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS), Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
7
|
Pantaleone S, Ugliengo P, Sodupe M, Rimola A. When the Surface Matters: Prebiotic Peptide-Bond Formation on the TiO 2 (101) Anatase Surface through Periodic DFT-D2 Simulations. Chemistry 2018; 24:16292-16301. [PMID: 30212609 DOI: 10.1002/chem.201803263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/13/2022]
Abstract
The mechanism of the peptide-bond formation between two glycine (Gly) molecules has been investigated by means of PBE-D2* and PBE0-D2* periodic simulations on the TiO2 (101) anatase surface. This is a process of great relevance both in fundamental prebiotic chemistry, as the reaction univocally belongs to one of the different organizational events that ultimately led to the emergence of life on Earth, as well as from an industrial perspective, since formation of amides is a key reaction for pharmaceutical companies. The efficiency of the surface catalytic sites is demonstrated by comparing the reactions in the gas phase and on the surface. At variance with the uncatalyzed gas-phase reaction, which involves a concerted nucleophilic attack and dehydration step, on the surface these two steps occur along a stepwise mechanism. The presence of surface Lewis and Brönsted sites exerts some catalytic effect by lowering the free energy barrier for the peptide-bond formation by about 6 kcal mol-1 compared to the gas-phase reaction. Moreover, the co-presence of molecules acting as proton-transfer assistants (i.e., H2 O and Gly) provide a more significant kinetic energy barrier decrease. The reaction on the surface is also favorable from a thermodynamic standpoint, involving very large and negative reaction energies. This is due to the fact that the anatase surface also acts as a dehydration agent during the condensation reaction, since the outermost coordinatively unsaturated Ti atoms strongly anchor the released water molecules. Our theoretical results provide a comprehensive atomistic interpretation of the experimental results of Martra et al. (Angew. Chem. Int. Ed. 2014, 53, 4671), in which polyglycine formation was obtained by successive feedings of Gly vapor on TiO2 surfaces in dry conditions and are, therefore, relevant in a prebiotic context envisaging dry and wet cycles occurring, at mineral surfaces, in a small pool.
Collapse
Affiliation(s)
- Stefano Pantaleone
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS), Inter-Departmental centre, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| |
Collapse
|
8
|
Yu SS, Solano MD, Blanchard MK, Soper-Hopper MT, Krishnamurthy R, Fernández FM, Hud NV, Schork FJ, Grover MA. Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01569] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sheng-Sheng Yu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, United States
| | - Martin D. Solano
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, United States
| | - Matthew K. Blanchard
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, United States
| | - Molly T. Soper-Hopper
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, United States
| | - Ramanarayanan Krishnamurthy
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- NSF/NASA Center for Chemical Evolution, United States
| | - Facundo M. Fernández
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, United States
| | - Nicholas V. Hud
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, United States
| | - F. Joseph Schork
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, United States
| | - Martha A. Grover
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, United States
| |
Collapse
|
9
|
Kitadai N, Oonishi H, Umemoto K, Usui T, Fukushi K, Nakashima S. Glycine Polymerization on Oxide Minerals. ORIGINS LIFE EVOL B 2017; 47:123-143. [PMID: 27473494 DOI: 10.1007/s11084-016-9516-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022]
Abstract
It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3+ group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.
Collapse
Affiliation(s)
- Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Hiroyuki Oonishi
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Koichiro Umemoto
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tomohiro Usui
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Satoru Nakashima
- Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
10
|
Guo C, Jordan JS, Yarger JL, Holland GP. Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17653-17661. [PMID: 28452465 DOI: 10.1021/acsami.7b04887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.
Collapse
Affiliation(s)
- Chengchen Guo
- School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Jacob S Jordan
- School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Jeffery L Yarger
- School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University , 5500 Campanile Drive, San Diego, California 92182-1030, United States
| |
Collapse
|
11
|
Iqubal MA, Sharma R, Jheeta S, Kamaluddin. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario. Life (Basel) 2017; 7:E15. [PMID: 28346388 PMCID: PMC5492137 DOI: 10.3390/life7020015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 11/17/2022] Open
Abstract
The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe₂O₄), cobalt ferrite (CoFe₂O₄), copper ferrite (CuFe₂O₄), zinc ferrite (ZnFe₂O₄), and manganese ferrite (MnFe₂O₄) nanoparticles surfaces, in the temperature range from 50-120 °C for 1-35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe₂O₄ produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe₂O₄ was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C.
Collapse
Affiliation(s)
- Md Asif Iqubal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Rachana Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Sohan Jheeta
- Network of Researchers on Horizontal Gene Transfer and Last Universal, Common Ancestor Leeds, Leeds LS7 3RB, UK.
| | - Kamaluddin
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| |
Collapse
|
12
|
Dass AV, Hickman-Lewis K, Brack A, Kee TP, Westall F. Stochastic Prebiotic Chemistry within Realistic Geological Systems. ChemistrySelect 2016. [DOI: 10.1002/slct.201600829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - André Brack
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| | - Terence P. Kee
- School of Chemistry; University of Leeds; Leeds LS2 9JT UK
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| |
Collapse
|
13
|
|
14
|
Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 2013; 113:4216-313. [PMID: 23289428 DOI: 10.1021/cr3003054] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | | |
Collapse
|
15
|
Georgelin T, Jaber M, Bazzi H, Lambert JF. Formation of activated biomolecules by condensation on mineral surfaces--a comparison of peptide bond formation and phosphate condensation. ORIGINS LIFE EVOL B 2013; 43:429-43. [PMID: 24277128 DOI: 10.1007/s11084-013-9345-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/15/2013] [Indexed: 12/29/2022]
Abstract
Many studies have reported condensation reactions of prebiotic molecules, such as the formation of peptide bonds between amino acids, to occur to some degree on mineral surfaces. We have studied several such reactions on the same divided silica. When drying steps are applied, the equilibria of peptide formation from glycine, and polyphosphate formation from monophosphate, are displaced to the right because these reactions are dehydrating condensations, accompanied by the emission of water. In contrast, the equilibrium of AMP dismutation is not significantly favored by drying. The silica surface plays little role (if any) in the thermochemistry of the condensation reactions, but is does play a significant kinetic role by acting as a catalyst, lowering the condensation temperatures with respect to bulk solids. Of course, the surface also catalyzes the inverse hydrolysis reactions.
Collapse
Affiliation(s)
- Thomas Georgelin
- Laboratoire de Réactivité de Surface (UMR 7197 CNRS), UPMC Univ Paris 06, Case courrier 178, 3 Rue Galilée, Ivry-sur-Seine, 94200, Paris, France
| | | | | | | |
Collapse
|
16
|
Kumar A, Kamaluddin. Possible role of metal(II) octacyanomolybdate(IV) in chemical evolution: interaction with ribose nucleotides. ORIGINS LIFE EVOL B 2013; 43:1-17. [PMID: 23254853 DOI: 10.1007/s11084-012-9319-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
We have proposed that double metal cyanide compounds (DMCs) might have played vital roles as catalysts in chemical evolution and the origin of life. We have synthesized a series of metal octacyanomolybdates (MOCMos) and studied their interactions with ribose nucleotides. MOCMos have been shown to be effective adsorbents for 5'-ribonucleotides. The maximum adsorption level was found to be about 50 % at neutral pH under the conditions studied. The zinc(II) octacyanomolybdate(IV) showed larger adsorption compared to other MOCMos. The surface area seems to important parameter for the adsorption of nucleotides. The adsorption followed a Langmuir adsorption isotherms with an overall adsorption trends of the order of 5'-GMP > 5'-AMP > 5'-CMP > 5'-UMP. Purine nucleotides were adsorbed more strongly than pyrimidine nucleotides on all MOCMos possibly because of the additional binding afforded by the imidazole ring in purines. Infrared spectral studies of adsorption adducts indicate that adsorption takes place through interaction between adsorbate molecules and outer divalent ions of MOCMos.
Collapse
Affiliation(s)
- Anand Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247 667, U.K
| | | |
Collapse
|
17
|
Lambert JF, Jaber M, Georgelin T, Stievano L. A comparative study of the catalysis of peptide bond formation by oxide surfaces. Phys Chem Chem Phys 2013; 15:13371-80. [DOI: 10.1039/c3cp51282g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Kumar A, Kamaluddin. Oligomerization of glycine and alanine on metal(II) octacynaomolybdate(IV): role of double metal cyanides in prebiotic chemistry. Amino Acids 2012; 43:2417-29. [DOI: 10.1007/s00726-012-1320-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022]
|
19
|
Shanker U, Bhushan B, Bhattacharjee G, Kamaluddin. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry. ORIGINS LIFE EVOL B 2012; 42:31-45. [PMID: 22373603 DOI: 10.1007/s11084-012-9266-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/14/2011] [Indexed: 10/28/2022]
Abstract
Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.
Collapse
Affiliation(s)
- Uma Shanker
- Department of Chemistry, Indian Institute of Technology Roorkee, India
| | | | | | | |
Collapse
|
20
|
Beck W. Metal Complexes of Biologically Important Ligands, CLXXVI.[1] Formation of Peptides within the Coordination Sphere of Metal Ions and of Classical and Organometallic Complexes and Some Aspects of Prebiotic Chemistry. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Phuakkong O, Bobuatong K, Pantu P, Boekfa B, Probst M, Limtrakul J. Glycine peptide bond formation catalyzed by faujasite. Chemphyschem 2011; 12:2160-8. [PMID: 21698739 DOI: 10.1002/cphc.201100047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Indexed: 11/10/2022]
Abstract
The catalysis of peptide bond formation between two glycine molecules on H-FAU zeolite was computationally studied by the M08-HX density functional. Two reaction pathways, the concerted and the stepwise mechanism, starting from three differently adsorbed reactants, amino-bound, carboxyl-bound, and hydroxyl-bound, are studied. Adsorption energies, activation energies, and reaction energies, as well as the corresponding intrinsic rate constants were calculated. A comparison of the computed energetics of the various reaction paths for glycine indicates that the catalyzed reaction proceeds preferentially via the concerted reaction mechanism of the hydroxyl-bound configuration. This involves an eight-membered ring of the transition structure instead of the four-membered ring of the others. The step from the amino-bound configuration to glycylglycine is the rate-determining step of the concerted mechanism. It has an estimated activation energy of 51.2 kcal mol(-1). Although the catalytic reaction can also occur via the stepwise reaction mechanism, this path is not favored.
Collapse
Affiliation(s)
- Oranit Phuakkong
- Laboratory for Computational and Applied Chemistry, Department of Chemistry, Faculty of Science, Kasetsart University Research and Development Institute, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
22
|
Kawamura K, Takeya H, Kushibe T, Koizumi Y. Mineral-enhanced hydrothermal oligopeptide formation at the second time scale. ASTROBIOLOGY 2011; 11:461-469. [PMID: 21671764 DOI: 10.1089/ast.2011.0620] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Accumulation of biopolymers should have been an essential step for the emergence of life on primitive Earth. However, experimental simulations for submarine hydrothermal vent systems in which high-temperature water spouts through minerals within a short time scale have not been attempted. Here, we show that enhancement of hydrothermal oligopeptide elongation by naturally occurring minerals was successfully verified for the first time by using a mineral-mediated hydrothermal flow reactor system (MMHF). MMHF consists of a narrow tubular reactor packed with mineral particles, and the enhancement or inhibitory activities of 10 types of naturally occurring minerals were successfully evaluated for an elongation reaction from (Ala)(4) to (Ala)(5) and higher oligopeptides in the absence of condensation reagents. It was unexpected that calcite and dolomite facilitated the elongation from (Ala)(4) to (Ala)(5) and higher oligopeptides with 28% yield at pH 7, while tourmaline, galena, apatite, mica, sphalerite, quartz, chalcopyrite, and pyrite did not show enhancement activities. These facts suggest the importance of carbonate minerals for the accumulation of peptide in primitive Earth environments.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , Sakai, Japan .
| | | | | | | |
Collapse
|
23
|
Rimola A, Civalleri B, Ugliengo P. Neutral vs zwitterionic glycine forms at the water/silica interface: structure, energies, and vibrational features from B3LYP periodic simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:14027-14034. [PMID: 19360956 DOI: 10.1021/la8029352] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
B3LYP periodic calculations with a triple-xi-polarized Gaussian basis set have been used to study adsorption of glycine on a hydroxylated silica surface (2.2 OH/nm2) model derived from the (001) surface of edingtonite. The simulation envisages glycine adsorbed either as a gas-phase molecule or when microsolvated by up to five H20 molecules. Both neutral and zwitterionic forms of glycine have been considered and their structural, energetic, and spectroscopic vibrational features compared internally and with experiments. As a gas phase glycine sticks in its neutral form at the silica surface, the zwitterion being highly unstable and with transition-state character. When glycine is microsolvated at the silica interface, two H20 molecules render the zwitterion population comparable to that of the neutral form whereas with four H2O molecules the neutral glycine population is wiped out in favor of the zwitterion. With four H20 molecules the most stable structure shows no direct contact between glycine and the silica surface, H20 acting as a mediator via H-bond interactions. The B3LYP energies and structural data were also supported by comparing the scaled harmonic vibrational features with literature FTIR data of glycine adsorbed on an amorphous silica surface either from the gas phase or in water solution.
Collapse
Affiliation(s)
- Albert Rimola
- Dipartimento di Chimica IFM and Nanostructured Interfaces and Surfaces, Centre of Excellence and INSTM (Materials Science and Technology) National Consortium, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | | | | |
Collapse
|
24
|
Lambert JF. Adsorption and polymerization of amino acids on mineral surfaces: a review. ORIGINS LIFE EVOL B 2008; 38:211-42. [PMID: 18344011 DOI: 10.1007/s11084-008-9128-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The present paper offers a review of recent (post-1980) work on amino acid adsorption and thermal reactivity on oxide and sulfide minerals. This review is performed in the general frame of evaluating Bernal's hypothesis of prebiotic polymerization in the adsorbed state, but written from a surface scientist's point of view. After a general discussion of the thermodynamics of the problem and exactly what effects surfaces should have to make adsorbed-state polymerization a viable scenario, we examine some practical difficulties in experimental design and their bearing on the conclusions that can be drawn from extant works, including the relevance of the various available characterization techniques. We then present the state of the art concerning the mechanisms of the interactions of amino acids with mineral surfaces, including results from prebiotic chemistry-oriented studies, but also from several different fields of application, and discuss the likely consequences for adsorption selectivities. Finally, we briefly summarize the data concerning thermally activated amide bond formation of adsorbed amino acids without activating agents. The reality of the phenomenon is established beyond any doubt, but our understanding of its mechanism and therefore of its prebiotic potential is very fragmentary. The review concludes with a discussion of future work needed to fill the most conspicuous gaps in our knowledge of amino acids/mineral surfaces systems and their reactivity.
Collapse
Affiliation(s)
- Jean-François Lambert
- Laboratoire de Réactivité de Surface, UMR CNRS 7609, UPMC Univ Paris 06 and CNRS, Paris, France.
| |
Collapse
|
25
|
Rimola A, Sodupe M, Ugliengo P. Aluminosilicate surfaces as promoters for peptide bond formation: an assessment of Bernal's hypothesis by ab initio methods. J Am Chem Soc 2007; 129:8333-44. [PMID: 17552521 DOI: 10.1021/ja070451k] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role in prebiotic chemistry that Brønsted and Lewis sites, both present at the surface of common aluminosilicates, may have played in favoring the peptide bond formation has been addressed by ab initio methods within a cluster approach. B3LYP/6-31+G(d,p) free energy potential energy surfaces have been fully characterized for the model reaction glycine + NH3 --> 2-NH2 acetamide (mimicking the true 2 Gly --> GlyGly one) occurring on (i) a Lewis site, (ii) a Brønsted site, and (iii) a combined action of Lewis/Brønsted sites. Compared to the gas-phase (gp) activation free energy of 50 kcal/mol, the Lewis site alone reduces the gp barrier to 41 kcal/mol, whereas the activation by the Brønsted site dramatically reduces the barrier to about 18 kcal/mol. Nevertheless, formation of the prereactant complex in this latter case will rarely occur, since water will easily displace the glycine molecule interacting with the Brønsted site. However, if a realistic feldspar surface with neighboring Brønsted and Lewis sites is considered, the proper prereactant complex is highly stabilized by a simultaneous interaction with the Lewis and the Brønsted sites, in such a way that the Lewis site strongly attaches the glycine molecule to the surface whereas the Brønsted site efficiently catalyzes the condensation reaction, showing that the interplay between Lewis/Brønsted sites is an important issue. The free energy barrier computed for the realistic feldspar surface model is 26 kcal/mol. The role of dispersive interactions on the free energy barrier and the stabilization of the final product, not accounted for by the B3LYP functional, have been estimated and shown to be substantial. Speculations about further elongation of the formed dipeptide have been put forward on the basis of the relatively strong interaction energy of the formed GlyGly dipeptide with the aluminosilicate surface.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
26
|
Rimola A, Rodríguez-Santiago L, Ugliengo P, Sodupe M. Is the Peptide Bond Formation Activated by Cu2+ Interactions? Insights from Density Functional Calculations. J Phys Chem B 2007; 111:5740-7. [PMID: 17469869 DOI: 10.1021/jp071071o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The catalytic role that Cu(2+) cations play in the peptide bond formation has been addressed by means of density functional calculations. First, the Cu(2+)-(glycine)2 --> Cu(2+)-(glycylglycine) + H2O reaction was investigated since mass spectrometry low collision activated dissociation (CAD) spectra of Cu(2+)-(glycine)2 led to the elimination of a water molecule, which suggested that an intracomplex peptide bond formation might have occurred. Results show that this intracomplex condensation is associated to a very high free energy barrier (97 kcal mol(-1)) and reaction free energy (66 kcal mol(-1)) because of the loss of metal coordination during the reaction. Second, on the basis of the salt-induced peptide formation theory, the condensation reaction between two glycines was studied in aqueous solution using discrete water molecules and the conductor polarized continuum model (CPCM) continuous method. It is found that the synergy between the interaction of glycines with Cu(2+) and the presence of water molecules acting as proton-transfer helpers significantly lower the activation barrier (from 55 kcal/mol for the uncatalyzed system to 20 kcal/mol for the Cu(2+) solvated system) which largely favors the formation of the peptide bond.
Collapse
Affiliation(s)
- A Rimola
- Departament de Química, Universitat Autonoma de Barcelona, Bellaterra 08193, Spain
| | | | | | | |
Collapse
|
27
|
Rimola A, Sodupe M, Tosoni S, Civalleri B, Ugliengo P. Interaction of glycine with isolated hydroxyl groups at the silica surface: first principles B3LYP periodic simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:6593-604. [PMID: 16831002 DOI: 10.1021/la0610203] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The adsorption of a glycine molecule on a model silica surface terminated by an isolated hydroxyl group has been studied ab initio using a double-zeta polarized Gaussian basis set, the hybrid B3LYP functional, and a full periodic treatment of the silica surface/glycine system. The hydroxylated silica surface has been simulated using either a 2D slab or a single polymer strand cut out from the (001) surface of an all-silica edingtonite. A number of B3LYP-optimized structures have been found by docking glycine on the silica surface exploiting all possible hydrogen bond patterns. Whereas glycine is generally adsorbed in its neutral form, two structures show glycine adsorbed as a zwitterion, the surface playing the role of a "solid solvent" whereas intrastrand hydrogen bond cooperativity stabilizes the zwitterions. The adsorbed zwitterionic structures are no longer formed at a lower glycine coverage as simulated by enlarging the unit cell so as to break intrastrand hydrogen bonds, showing the importance of H-bond cooperativity in stabilizing the zwitterionic forms. Each structure has been characterized by computing its harmonic vibrational spectrum at the Gamma point, which also allowed us to calculate the free energy of adsorption. The experimental infrared features of chemical-vapor-deposited glycine on a silica surface are in agreement with those computed for glycine adsorbed in its neutral form and engaging three hydrogen bonds with the surface silanols, two of them involving the C=O bond and one originating from the glycine OH group. The NH(2) group plays only a minor role as a weak hydrogen bond donor.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | | | | | | |
Collapse
|
28
|
Contreras-Torres FF, Basiuk VA. Imidazo[1,2-a]pyrazine-3,6-diones derived from alpha-amino acids: a theoretical mechanistic study of their formation via pyrolysis and silica-catalyzed process. J Phys Chem A 2006; 110:7431-40. [PMID: 16759132 DOI: 10.1021/jp061331m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imidazo[1,2-a]pyrazine-3,6-diones are unusual compounds composed of three alpha-amino acid fragments. These bicyclic amidines (BCAs) form under high temperatures or with the use of strong dehydrating reagents. We gave insight into the mechanisms of BCA formation via gas-phase pyrolytic and silica-catalyzed reactions of glycine (Gly) and alpha-aminoisobutyric acid (AIB) with related diketopiperazines (DKPs), using quantum chemical calculations. The entire process requires four steps: (1) O-acylation of DKP with free or silica-bonded amino acid, (2) acyl transfer from the oxygen to the nitrogen atom, (3) intramolecular condensation of the N-acyl DKP into a cyclol, and (4) elimination of water. To study step (1) at silica surface (modeled by H7Si8O12-OH cluster), we employed two-level ONIOM calculations (AM1:UFF, B3LYP/3-21G:UFF and B3LYP/6-31G(d):UFF); all gas-phase reactions were studied at the AM1, B3LYP/3-21G and B3LYP/6-31G(d) levels. The catalytic effect of silica was observed for both Gly and AIB: the activation energy in the O-acylation at the surface was lower by more than 9 kcal mol(-1) as compared to the gas-phase process. Contrary to the exothermic O-acylation, the gas-phase transfer reaction (step 2) was exothermic in both cases, but more favorable for Gly. The cyclocondensation of N-acylated DKPs into BCAs (steps 3 and 4) is endothermic for Gly and exothermic for AIB.
Collapse
Affiliation(s)
- Flavio F Contreras-Torres
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., A. Postal 70-543, 04510 México D.F., Mexico
| | | |
Collapse
|
29
|
Rimola A, Tosoni S, Sodupe M, Ugliengo P. Peptide bond formation activated by the interplay of Lewis and Brønsted catalysts. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Meng M, Stievano L, Lambert JF. Adsorption and thermal condensation mechanisms of amino acids on oxide supports. 1. Glycine on silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:914-923. [PMID: 15773123 DOI: 10.1021/la035336b] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glycine was adsorbed on the surface of a well-defined silica from aqueous solutions of variable concentrations and pHs. The adsorbed molecules were characterized using middle-IR and UV-vis-NIR spectroscopies. Except at the lowest pH (2.0), they were predominantly present on the surface as zwitterions. Two successive deposition mechanisms were evidenced with increasing glycine concentration. At low concentrations, glycine is specifically adsorbed on silica surface sites, probably through its NH3+ moiety. The pH dependence suggests that these sites may be silanolate groups (approximately equal to Si-O-). At higher concentrations, specific adsorption sites are saturated and surface-induced precipitation of beta-glycine is observed. The thermal reactivity of adsorbed/deposited glycine was then investigated by thermogravimetric analysis, in situ diffuse reflectance IR spectroscopy, and thermoprogrammed desorption coupled with mass spectrometry. Adsorbed glycine molecules react to form peptide bonds at a temperature considerably lower than that for bulk crystalline alpha-glycine. The main reaction product is the cyclic dimer diketopiperazine, with no evidence of the linear dimer. The activation mechanism is not diffusionally limited; the formation of "surface acyls", previously proposed for related systems, has not been evidenced here. These findings are of relevance for the evaluation of prebiotic peptide synthesis scenarios.
Collapse
Affiliation(s)
- Ming Meng
- Laboratoire de Réactivité de Surface, UMR CNRS 7609, Université Pierre et Marie Curie, case courrier 178, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
31
|
Bujdák J, Rode BM. Preferential amino acid sequences in alumina-catalyzed peptide bond formation. J Inorg Biochem 2002; 90:1-7. [PMID: 12009249 DOI: 10.1016/s0162-0134(02)00395-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The catalytic effect of activated alumina on amino acid condensation was investigated. The readiness of amino acids to form peptide sequences was estimated on the basis of the yield of dipeptides and was found to decrease in the order glycine (Gly), alanine (Ala), leucine (Leu), valine (Val), proline (Pro). For example, approximately 15% Gly was converted to the dipeptide (Gly(2)), 5% to cyclic anhydride (cyc(Gly(2))) and small amounts of tri- (Gly(3)) and tetrapeptide (Gly(4)) were formed after 28 days. On the other hand, only trace amounts of Pro(2) were formed from proline under the same conditions. Preferential formation of certain sequences was observed in the mixed reaction systems containing two amino acids. For example, almost ten times more Gly-Val than Val-Gly was formed in the Gly+Val reaction system. The preferred sequences can be explained on the basis of an inductive effect that side groups have on the nucleophilicity and electrophilicity, respectively, of the amino and carboxyl groups. A comparison with published data of amino acid reactions in other reaction systems revealed that the main trends of preferential sequence formation were the same as those described for the salt-induced peptide formation (SIPF) reaction. The results of this work and other previously published papers show that alumina and related mineral surfaces might have played a crucial role in the prebiotic formation of the first peptides on the primitive earth.
Collapse
Affiliation(s)
- J Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, 842 36 Bratislava, Slovak Republic.
| | | |
Collapse
|
32
|
Basiuk VA, Sainz-Rojas J. Catalysis of peptide formation by inorganic oxides: high efficiency of alumina under mild conditions on the Earth-like planets. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:225-230. [PMID: 11605636 DOI: 10.1016/s0273-1177(01)00051-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Amino acid condensation catalyzed by inorganic oxides is a widely recognized way for prebiotic peptide formation. Silica and alumina are widely distributed in the Earth-like planets' crust as minerals of different complexity, and thus are attractive model catalysts for the studies of abiotic peptide synthesis. Experiments performed in other laboratories have shown that this process can be efficient at > 80 degrees C, which is not easy to find on the planetary surface in combination with sufficient concentrations of amino acids and necessary catalysts. In the present work we tested catalytic activity of three forms of alumina (which proved to be an efficient catalyst for this process) in the intermolecular condensation of L-alanine. We expanded the temperature interval down to 55 degrees C and used the simplest permanent heating procedure, without employing fluctuating drying/wetting conditions. The most important finding is that even under the lowest temperature considered (i.e. 55 degrees C), short peptide formation can be detected already after 10-30 days of heating. This fact implies that the abiotic peptide formation might occur in a wide variety of planetary environments, without need for high temperatures, given the presence of amino acid building blocks and alumina-containing minerals.
Collapse
Affiliation(s)
- V A Basiuk
- Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior C.U., A. Postal 70-543, 04510 Mexico D.F., Mexico.
| | | |
Collapse
|
33
|
|
34
|
Abstract
Considering the state-of-the-art views of the geochemical conditions of the primitive earth, it seems most likely that peptides were produced ahead of all other oligomer precursors of biomolecules. Among all the reactions proposed so far for the formation of peptides under primordial earth conditions, the salt-induced peptide formation reaction in connection with adsorption processes on clay minerals would appear to be the simplest and most universal mechanism known to date. The properties of this reaction greatly favor the formation of biologically relevant peptides within a wide variation of environmental conditions such as temperature, pH, and the presence of inorganic compounds. The reaction-inherent preferences of certain peptide linkages make the argument of 'statistical impossibility' of the evolutionary formation of the 'right' peptides and proteins rather insignificant. Indeed, the fact that these sequences are reflected in the preferential sequences of membrane proteins of archaebacteria and prokaryonta distinctly indicates the relevance of this reaction for chemical peptide evolution. On the basis of these results and the recent findings of self-replicating peptides, some ideas have been developed as to the first steps leading to life on earth.
Collapse
Affiliation(s)
- B M Rode
- Department of Theoretical Chemistry, Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Austria.
| |
Collapse
|