1
|
Wang D, Zhang LJ, Liu MH, Du FF, Shen ZY, He L, Wang LL. Aggregation enhanced FRET: A simple but efficient strategy for the ratiometric detection of uranyl ion. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131497. [PMID: 37119574 DOI: 10.1016/j.jhazmat.2023.131497] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Uranium is one of the most important radionuclides but could also cause potential health risks to human beings due to its radioactive and chemical toxicity. It is an urgent task to develop a simple but efficient sensing platform for UO22+, the main existing form of uranium in environment. Herein, a rhodamine-functionalized carbon dots (o-CDs-Rho) was synthesized and applied for UO22+ sensing through a simple but novel aggregation-enhanced FRET strategy. The weak FRET efficiency (16.2%) of o-CDs-Rho in dispersed solution is significantly enhanced (>77.2%) after UO22+ triggered aggregation due to the increased number of rhodamine acceptors around each CDs from dispersed 80 to aggregated 2800. This is the first ratiometric fluorescence sensor with an inverse change of fluorescence intensity at dual emission wavelengths under single-wavelength excitation for UO22+. Under optimized experiment conditions, o-CDs-Rho nanosensor shows a low detection limit of 53 nM and excellent selectivity. Meanwhile, the as-prepared nanosensor also shows high reliability and stability. These excellent properties make it successful in detecting uranium content in real samples.
Collapse
Affiliation(s)
- Dan Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li-Jie Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ming-Hui Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fang-Fang Du
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ze-Ya Shen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Li-Li Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Kumar R S, Venkatesan V, Bhaskar R, Kumar SKA, Sivaramakrishna A, Vijayakrishna K, Brahmmananda Rao CVS, Sivaraman N, Sahoo SK. Rapid detection strategies for the ultra-level chemosensing of uranyl ions. Dalton Trans 2021; 50:14706-14713. [PMID: 34585704 DOI: 10.1039/d1dt01803e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A simple and reliable colorimetric probe N,N'-bis-(4-diethylamino-2-hydroxybenzylidene)-1,10-phenanthroline-2,9-carbohydrazide (L) has been synthesised by reacting 4-(diethylamino)salicylaldehyde with 1,10-phenanthroline-2,9-dicarbohydrazide. The sensing ability of L was studied by its interactions with various f-block metal ions and other selected metal ions from s- and d-block by colorimetry, UV-visible spectrophotometry, and smartphone integrated red-green-blue (RGB) model in DMSO : H2O (7 : 3, v/v). The pale-yellow colour of L turns to wine-red upon interaction with uranyl ions (UO22+) and yellow-orange in the presence of Th4+, Zr4+, Fe3+, and Lu3+ ions. Other tested metal ions did not show any colour change of L. This color change offered a simple, quick, and consistent method for the selective and sensitive visual detection of trace levels of UO22+ ions without any need for sophisticated instruments. Sensor L exhibits two absorption bands at 358 and 389 nm due to ligand-to-ligand charge transfer (LLCT). Upon interaction of L with UO22+ and Th4+ ions, absorption bands are exhibited at 480 nm and 422 nm, respectively, due to ligand-to-metal charge transfer (LMCT). The UV-vis spectral studies indicated the formation of a 1 : 2 ligand-to-metal complex between L and UO22+ with an estimated association constant of 1.0 × 104 M-2. Using L, the concentration of UO22+ can be detected as low as 73 nM and 150 nM by spectrophotometry and RGB methods, respectively, without any interference from other tested ions with an RSD < 5% (n = 3). The binding mechanism was studied by 1H NMR titration, ESI mass, and FT-IR spectral analysis and was well supported by theoretical results. Overall, sensor L demonstrates promising analytical applicability for the detection of UO22+ ions in a semi-aqueous medium.
Collapse
Affiliation(s)
- Selva Kumar R
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India. .,Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, (SIMATS), Chennai - 602105, Tamil Nadu, India
| | - Vetriarasu Venkatesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - R Bhaskar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Kari Vijayakrishna
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneshwar, Odisha 752050, India
| | | | - N Sivaraman
- Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam-603102, Tamil Nadu, India
| | - Suban K Sahoo
- Department of Applied Chemistry, S. V. National Institute Technology, Surat-395007, Gujarat, India
| |
Collapse
|
3
|
Farzin L, Shamsipur M, Sheibani S, Samandari L, Hatami Z. A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation. Mikrochim Acta 2019; 186:289. [PMID: 30997559 DOI: 10.1007/s00604-019-3426-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
This review (with 177 refs) gives an overview on nanomaterial-based methods for the determination of uranyl ion (UO22+) by different types of transducers. Following an introduction into the field, a first large section covers the fundamentals of selective recognition of uranyl ion by receptors such as antibodies, aptamers, DNAzymes, peptides, microorganisms, organic ionophores (such as salophens, catechols, phenanthrolines, annulenes, benzo-substituted macrocyclic diamides, organophosphorus receptors, calixarenes, crown ethers, cryptands and β-diketones), by ion imprinted polymers, and by functionalized nanomaterials. A second large section covers the various kinds of nanomaterials (NMs) used, specifically on NMs for electrochemical signal amplification, on NMs acting as signal tags or carriers for signal tags, on fluorescent NMs, on NMs for colorimetric assays, on light scattering NMs, on NMs for surface enhanced Raman scattering (SERS)-based assays and wireless magnetoelastic detection systems. We then discuss detection strategies, with subsections on electrochemical methods (including ion-selective and potentiometric systems, voltammetric systems and impedimetric systems). Further sections treat colorimetric, fluorometric, resonance light scattering-based, SERS-based and photoacoustic methods, and wireless magnetoelastic detection. The current state of the art is summarized, and current challenges are discussed at the end. Graphical abstract An overview is given on nanomaterial-based methods for the detection of uranyl ion by different types of transducers (such as electrochemical, optical, photoacoustic, magnetoelastic, etc) along with a critical discussion of their limitations, benefits and application to real samples.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P. O. Box, Kermanshah, 67149-67346, Iran.
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| | - Leila Samandari
- Department of Chemistry, Razi University, P. O. Box, Kermanshah, 67149-67346, Iran
| | - Zahra Hatami
- Department of Chemistry, Razi University, P. O. Box, Kermanshah, 67149-67346, Iran
| |
Collapse
|
4
|
Akl ZF, Ali TA. A novel modified screen-printed electrode with triazole surfactant assembled on silver nanoparticles for potentiometric determination of uranium. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5524-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Hu L, Yan XW, Li Q, Zhang XJ, Shan D. Br-PADAP embedded in cellulose acetate electrospun nanofibers: Colorimetric sensor strips for visual uranyl recognition. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:205-210. [PMID: 28178635 DOI: 10.1016/j.jhazmat.2017.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 05/21/2023]
Abstract
In this work, a new visual colorimetric strip based on cellulose acetate nanofiber mats modified by 2-(5-Bromo-2-pyridylazo)-5-(diethylamino) phenol was successfully prepared via electrospinning technology. The prepared colorimetric strip showed high sensitivity towards UO22+ with the yellow-to-purple color change signal. Upon the optimal conditions of solution pH at 6.0 and response time for 80min, the detection limit for UO22+ can reach 50 ppb. Moreover, the strip also exhibited excellent anti-interference ability in the presence of other metal ions. In order to achieve the quantitative detection for UO22+, a color-differentiation map was established, which was prepared from converted H values. Finally, the strip was also used to detect UO22+ in the seawater and showed high sensitivity.
Collapse
Affiliation(s)
- Lin Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Wu Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
6
|
Raut VV, Jeyakumar S, Das MK, Chandane A, Tomar BS. Separation and determination of trace thorium in uranium matrix using chelation ion chromatography. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2016.1262420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vaibhavi V. Raut
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - S. Jeyakumar
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - M. K. Das
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - A. Chandane
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - B. S. Tomar
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Nazari Serenjeh F, Hashemi P, Naeimi H, Zakerzadeh E, Ghiasvand AR. Spherical agarose-coated magnetic nanoparticles functionalized with a new salen for magnetic solid-phase extraction of uranyl ion. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1882-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Li N, English C, Eaton A, Gillespie A, Ence T, Christensen TJ, Sego A, Harrison RG, Lamb JD. Cation separation and preconcentration using columns containing cyclen and cyclen–resorcinarene derivatives. J Chromatogr A 2012; 1245:83-9. [DOI: 10.1016/j.chroma.2012.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/20/2012] [Accepted: 05/01/2012] [Indexed: 11/24/2022]
|
9
|
Jeyakumar S, Mishra VG, Das MK, Raut VV, Sawant RM, Ramakumar KL. Separation behavior of U(VI) and Th(IV) on a cation exchange column using 2,6-pyridine dicarboxylic acid as a complexing agent and its application for the rapid separation and determination of U and Th by ion chromatography. J Sep Sci 2011; 34:609-16. [PMID: 21328536 DOI: 10.1002/jssc.201000907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 11/11/2022]
Abstract
The retention behavior of U and Th as their 2,6-pyridine dicarboxylic acid (PDCA) complexes on a cation exchange column was investigated under low pH conditions. Based on the observed retention characteristics, an ion chromatographic method for the rapid separation of uranium and thorium in isocratic elution mode using 0.08 mM PDCA and 0.24 M KNO(3) in 0.22 M HNO(3) as the eluent was developed. Both uranium and thorium were eluted as their PDCA complexes within 2 min, whereas the transition and lanthanide metal cations were eluted as an unresolved broad peak after thorium. Under the optimized conditions both U and Th have no interference either from alkali and alkaline earth elements up to a concentration ratio of 1:500 or from other elements up to 1:100. The detection limits (LOD) of U and Th were calculated as 0.04 and 0.06 ppm, respectively (S/N=3). The precision in the measurement of peak area of 0.5 ppm of both U and Th was better than 5% and a linear calibration in the concentration range of 0.25-25 ppm of U and Th was obtained. The method was successfully applied to determine U and Th in effluent water samples.
Collapse
Affiliation(s)
- Subbiah Jeyakumar
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | | | | | | | |
Collapse
|
10
|
Anodic stripping voltammetric determination of uranium at a thin palladium film-aluminum electrode: Analysis of some uranium mineral ores. RADIOCHIM ACTA 2010. [DOI: 10.1524/ract.2010.1711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Constant current anodic stripping chronopotentiometric determination of uranium in uranium mineral ores via accumulation of K2UO2[Fe(CN)6] on the palladium plated aluminum electrode. J Radioanal Nucl Chem 2009. [DOI: 10.1007/s10967-009-0060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Nesterenko PN, Jones P. Recent developments in the high-performance chelation ion chromatography of trace metals. J Sep Sci 2007; 30:1773-93. [PMID: 17623454 DOI: 10.1002/jssc.200700126] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There have been a number of significant developments in the high-performance chelation ion chromatography (HPCIC) of trace metals in recent years. This review focuses on these developments, while giving important information on the fundamental parameters controlling the chelation sorption mechanism, including type of chelating group, stability constants, kinetics, and column temperature. The discussion pays particular attention to the types and properties of efficient chelating stationary phases which have been fabricated for certain groups of metals. The review also describes a number of major improvements in postcolumn reaction detection including the use of the latest reagents and noise reduction strategies to improve sensitivity and reduce LOD. In the final section, an indication of the applicability of HPCIC to a range of complex sample types is given with some key examples and chromatograms using the latest high-efficiency chelating phases.
Collapse
Affiliation(s)
- Pavel N Nesterenko
- Australian Centre for Research on Separation Sciences, University of Tasmania, Hobart, Australia.
| | | |
Collapse
|
13
|
Shervedani RK, Mozaffari SA. Impedimetric sensing of uranyl ion based on phosphate functionalized cysteamine self-assembled monolayers. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2006.01.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Paull B, Nesterenko PN. Novel ion chromatographic stationary phases for the analysis of complex matrices. Analyst 2004; 130:134-46. [PMID: 15665965 DOI: 10.1039/b406355b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion chromatography (IC) has a proven track record in the determination of inorganic and organic anions and cations in complex matrices. Recently, application of IC to the separation and determination of bio-molecules such as amino acids, carbohydrates, nucleotides, proteins and peptides has also received much attention. The key to the determination of all of the above species in the most analytically challenging complex matrices is the ability to manipulate selectivity through control of stationary phase chemistry, mobile phase chemistry and the choice of detection method. This Tutorial Review summarises some of the most significant recent advances made in IC stationary phase technology. In particular, the review details stationary phases specifically designed for ion analysis in complex sample matrices, and considers in which direction future stationary phase development might proceed.
Collapse
Affiliation(s)
- Brett Paull
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | |
Collapse
|
15
|
Shaw MJ, Haddad PR. The determination of trace metal pollutants in environmental matrices using ion chromatography. ENVIRONMENT INTERNATIONAL 2004; 30:403-431. [PMID: 14987873 DOI: 10.1016/j.envint.2003.09.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 09/23/2003] [Indexed: 05/24/2023]
Abstract
A review is presented detailing the development of ion chromatography (IC) as a selective analytical tool for the determination of toxic metals and their organic species in many environmental sample matrices. A brief outline of ion chromatographic principles, together with an overview of the stationary phases used to separate metals, namely ion exchangers, modified ion pair sorbents and chelating ion exchangers, and the methods for detecting metal ions including hyphenation with spectroscopy and sample preparation schemes are also given, prior to a critical examination of developed methods for various metals including arsenic, chromium, cadmium, lead, mercury, beryllium, aluminium and uranium since 1990.
Collapse
Affiliation(s)
- Matthew J Shaw
- Australian Centre for Research on Separation Science, School of Chemistry, University of Tasmania, GPO Box 252-75, Private Bag 75, Hobart 7001, Tasmania, Australia
| | | |
Collapse
|
16
|
Shaw MJ, Jone P, Nesterenko PN. Dynamic chelation ion chromatography of transition and heavy metal ions using a mobile phase containing 4-chlorodipicolinic acid. J Chromatogr A 2002; 953:141-50. [PMID: 12058928 DOI: 10.1016/s0021-9673(02)00103-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chromatographic behaviour of selected transition and heavy metal ions, the lanthanides, uranium and aluminium, on a neutral polystyrene-divinylbenzene (PS-DVB) stationary phase (7 microm Hamilton PRP-1) dynamically modified with 4-chlorodipicolinic acid, was investigated to evaluate retention characteristics. Complicated retention factor against pH plots were found for these metals demonstrating changes in retention order. It was concluded that complexation between the metal ions and the ligand adsorbed on the resin was strongly influenced by the decrease in dynamic loading with increase in pH, coinciding with changes in the metal-to-ligand ratio in the mobile phase. Possible reversed-phase interactions between metal-chlorodipicolinic acid complexes and the hydrophobic PS-DVB stationary phase also could not be ruled out. An eluent of 0.25 mM chlorodipicolinic acid, I M potassium nitrate at pH 2.2 was suitable for the separation of seven transition and heavy metal ions in under 20 min on a 250 x 4.6 mm column (with 50-mm guard column), determined in a certified water sample with good accuracy (R2 > or = 0.994) and reproducibility (RSD 1-4.2%). Pb(II), Cd(II) and Cu(II) were additionally analysed in <10 min in a more complicated certified rice flour matrix, using the same eluent but adjusted to pH 1.5, again with good accuracy (R2 > or = 0.998) and reproducibility (RSD 0.48-1.38%).
Collapse
Affiliation(s)
- Matthew J Shaw
- Department of Environmental Sciences, University of Plymouth, Devon, UK
| | | | | |
Collapse
|
17
|
Truscott JB, Jones P, Fairman BE, Evans EH. Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry. J Chromatogr A 2001; 928:91-8. [PMID: 11589474 DOI: 10.1016/s0021-9673(01)01120-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-performance chelation ion chromatography, using a neutral polystyrene substrate dynamically loaded with 0.1 mM dipicolinic acid, coupled with sector-field inductively coupled plasma mass spectrometry has been successfully used for the separation of the actinides thorium, uranium, americium, neptunium and plutonium. Using this column it was possible to separate the various actinides from each other and from a complex sample matrix. In particular, it was possible to separate plutonium and uranium to facilitate the detection of the former free of spectral interference. The column also exhibited some selectivity for different oxidation states of Np, Pu and U. Two oxidation states each for plutonium and neptunium were found, tentatively identified as Np(V) and Pu(III) eluting at the solvent front, and Np(IV) and Pu(IV) eluting much later. Detection limits were 12, 8, and 4 fg for 237Np, 239Pu, and 241Am, respectively, for a 0.5 ml injection. The system was successfully used for the determination of 239Pu in NIST 4251 Human Lung and 4353 Rocky Flats Soil, with results of 570+/-29 and 2939+/-226 fg g(-1), respectively, compared with a certified range of 227-951 fg g(-1) for the former and a value of 3307+/-248 fg g(-1) for the latter.
Collapse
Affiliation(s)
- J B Truscott
- University of Plymouth, Plymouth Environmental Research Centre, Department of Environmental Sciences, Drake Circus, UK
| | | | | | | |
Collapse
|