1
|
Krayem I, Sohrabi Y, Havelková H, Gusareva ES, Strnad H, Čepičková M, Volkova V, Kurey I, Vojtíšková J, Svobodová M, Demant P, Lipoldová M. Functionally distinct regions of the locus Leishmania major response 15 control IgE or IFNγ level in addition to skin lesions. Front Immunol 2023; 14:1145269. [PMID: 37600780 PMCID: PMC10437074 DOI: 10.3389/fimmu.2023.1145269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/02/2023] [Indexed: 08/22/2023] Open
Abstract
Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more than 1 billion people living in endemic countries and has three clinical forms: cutaneous, mucocutaneous, and visceral. Understanding of individual differences in susceptibility to infection and heterogeneity of its pathology is largely lacking. Different mouse strains show a broad and heterogeneous range of disease manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased serum levels of immunoglobulin E and several cytokines. Genome-wide mapping of these strain differences detected more than 30 quantitative trait loci (QTLs) that control the response to Leishmania major. Some control different combinations of disease manifestations, but the nature of this heterogeneity is not yet clear. In this study, we analyzed the L. major response locus Lmr15 originally mapped in the strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the genetic background of the susceptible strain BALB/c. For this analysis, we used the advanced intercross line K3FV between the strains BALB/c and STS. We confirmed the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32 and 17.4 Mbp, respectively, and analyzed their response to L. major infection. These experiments revealed at least two linked but functionally distinct chromosomal regions controlling IFNγ response and IgE response, respectively, in addition to the control of skin lesions. Bioinformatics and expression analysis identified the potential candidate gene Top3a. This finding further clarifies the genetic organization of factors relevant to understanding the differences in the individual risk of disease.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Elena S. Gusareva
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of The Czech Academy of Sciences, Prague, Czechia
| | - Marie Čepičková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Valeryia Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Iryna Kurey
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
2
|
Slapničková M, Volkova V, Čepičková M, Kobets T, Šíma M, Svobodová M, Demant P, Lipoldová M. Gene-specific sex effects on eosinophil infiltration in leishmaniasis. Biol Sex Differ 2016; 7:59. [PMID: 27895891 PMCID: PMC5120444 DOI: 10.1186/s13293-016-0117-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
Background Sex influences susceptibility to many infectious diseases, including some manifestations of leishmaniasis. The disease is caused by parasites that enter to the skin and can spread to the lymph nodes, spleen, liver, bone marrow, and sometimes lungs. Parasites induce host defenses including cell infiltration, leading to protective or ineffective inflammation. These responses are often influenced by host genotype and sex. We analyzed the role of sex in the impact of specific gene loci on eosinophil infiltration and its functional relevance. Methods We studied the genetic control of infiltration of eosinophils into the inguinal lymph nodes after 8 weeks of Leishmania major infection using mouse strains BALB/c, STS, and recombinant congenic strains CcS-1,-3,-4,-5,-7,-9,-11,-12,-15,-16,-18, and -20, each of which contains a different random set of 12.5% genes from the parental “donor” strain STS and 87.5% genes from the “background” strain BALB/c. Numbers of eosinophils were counted in hematoxylin-eosin-stained sections of the inguinal lymph nodes under a light microscope. Parasite load was determined using PCR-ELISA. Results The lymph nodes of resistant STS and susceptible BALB/c mice contained very low and intermediate numbers of eosinophils, respectively. Unexpectedly, eosinophil infiltration in strain CcS-9 exceeded that in BALB/c and STS and was higher in males than in females. We searched for genes controlling high eosinophil infiltration in CcS-9 mice by linkage analysis in F2 hybrids between BALB/c and CcS-9 and detected four loci controlling eosinophil numbers. Lmr14 (chromosome 2) and Lmr25 (chromosome 5) operate independently from other genes (main effects). Lmr14 functions only in males, the effect of Lmr25 is sex independent. Lmr15 (chromosome 11) and Lmr26 (chromosome 9) operate in cooperation (non-additive interaction) with each other. This interaction was significant in males only, but sex-marker interaction was not significant. Eosinophil infiltration was positively correlated with parasite load in lymph nodes of F2 hybrids in males, but not in females. Conclusions We demonstrated a strong influence of sex on numbers of eosinophils in the lymph nodes after L. major infection and present the first identification of sex-dependent autosomal loci controlling eosinophilic infiltration. The positive correlation between eosinophil infiltration and parasite load in males suggests that this sex-dependent eosinophilic infiltration reflects ineffective inflammation.
Collapse
Affiliation(s)
- Martina Slapničková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Marie Čepičková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tatyana Kobets
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Matyáš Šíma
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Milena Svobodová
- Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Peter Demant
- Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
3
|
Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis 2012; 6:e1667. [PMID: 22679519 PMCID: PMC3367980 DOI: 10.1371/journal.pntd.0001667] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/17/2012] [Indexed: 01/12/2023] Open
Abstract
Background Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. Methods We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. Principal Findings Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. Conclusion Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes. Several hundred million people are exposed to the risk of leishmaniasis, a disease caused by intracellular protozoan parasites of several Leishmania species and transmitted by phlebotomine sand flies. In humans, L. tropica causes cutaneous form of leishmaniasis with painful and long-persisting lesions in the site of the insect bite, but the parasites can also penetrate to internal organs. The relationship between the host genes and development of the disease was demonstrated for numerous infectious diseases. However, the search for susceptibility genes in the human population could be a difficult task. In such cases, animal models may help to discover the role of different genes in interactions between the parasite and the host. Unfortunately, the literature contains only a few publications about the use of animals for L. tropica studies. Here, we report an animal model suitable for genetic, pathological and drug studies in L. tropica infection. We show how the host genotype influences different disease symptoms: skin lesions, parasite dissemination to the lymph nodes, spleen and liver, and increase of levels of chemokines CCL2, CCL3 and CCL5 in serum.
Collapse
|
4
|
Loci controlling lymphocyte production of interferon c after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunol Immunother 2011; 59:203-13. [PMID: 19655140 PMCID: PMC2776939 DOI: 10.1007/s00262-009-0739-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 07/02/2009] [Indexed: 12/11/2022]
Abstract
Low infiltration of lymphocytes into cancers is associated with poor prognosis, but the reasons why some patients exhibit a low and others a high infiltration of tumors are unknown. Previously we mapped four loci (Lynf1–Lynf4) controlling lymphocyte infiltration of mouse lung tumors. These loci do not encode any of the molecules that are involved in traffic of lymphocytes. Here we report a genetic relationship between these loci and the control of production of IFNγ in allogeneic mixed lymphocyte cultures (MLC). We found that IFNγ production by lymphocytes of O20/A mice is lower than by lymphocytes of OcB-9/Dem mice (both H2pz) stimulated in MLC by irradiated splenocytes of C57BL/10SnPh (H2b) or BALB/cHeA (H2d) mice, or by ConA. IFNγ production in MLCs of individual (O20 × OcB-9)F2 mice stimulated by irradiated C57BL/10 splenocytes and genotyped for microsatellite markers revealed four IFNγ-controlling loci (Cypr4-Cypr7), each of which is closely linked with one of the four Lynf loci and with a cluster of susceptibility genes for different tumors. This suggests that inherited differences in certain lymphocyte responses may modify their propensity to infiltrate tumors and their capacity to affect tumor growth.
Collapse
|
5
|
Holáň V, Kuffová L, Zajícová A, Krulová M, Filipec M, Holler P, Jančárek A. Urocanic Acid Enhances IL-10 Production in Activated CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.7.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The immunosuppressive effects of UV radiation have been well documented. This suppression has been attributed to the action of the cis form of urocanic acid (UCA), a photoproduct of trans-UCA, a natural constituent of the skin. Here, we show that mouse spleen cells preincubated with cis-UCA have a diminished proliferative response to allogeneic cells in MLC and to stimulation with anti-CD3 mAb. Cells preincubated with cis-UCA also had a decreased ability to serve as APC and to stimulate the proliferation of allogeneic lymphocytes in MLC. Simultaneously, the production of IL-2 and IFN-γ by cells preincubated with cis-UCA was decreased. However, IL-10 gene expression and IL-10 protein secretion by spleen cells stimulated in the presence of cis-UCA were significantly enhanced. The principal cell population displaying the cis-UCA-induced elevated production of IL-10 was CD4+ T cells, which were shown to be a direct target of cis-UCA action. This was also supported by the observation that production of IL-10 by stimulated splenic non-T cells or by macrophages was not altered by cis-UCA. The enhanced production of IL-10 by activated CD4+ T cells may represent a novel pathway of UVB radiation-induced, cis-UCA-mediated immunosuppression. We suggest that the elevated production of IL-10 by activated CD4+ T cells may account for the suppressor T cell phenomena described in UV-irradiated recipients.
Collapse
Affiliation(s)
- Vladimír Holáň
- *Institute of Molecular Genetics, Academy of Sciences of the Czech Republic,
| | - Lucia Kuffová
- *Institute of Molecular Genetics, Academy of Sciences of the Czech Republic,
- †Second Department of Ophthalmology, Charles University,
| | - Alena Zajícová
- *Institute of Molecular Genetics, Academy of Sciences of the Czech Republic,
| | - Magdaléna Krulová
- *Institute of Molecular Genetics, Academy of Sciences of the Czech Republic,
| | - Martin Filipec
- †Second Department of Ophthalmology, Charles University,
| | - Petr Holler
- ‡Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, and
| | | |
Collapse
|
6
|
Moen CJ, Stoffers HJ, Hart AA, Westerhoff HV, Demant P. Simulation of the distribution of parental strains' genomes in RC strains of mice. Mamm Genome 1997; 8:884-9. [PMID: 9383279 DOI: 10.1007/s003359900605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recombinant Congenic strains (RC strains) were developed to facilitate mapping of genes influencing complex traits controlled by multiple genes. They were produced by inbreeding of the progeny derived from a second backcross from a common 'donor' inbred strain to a common 'background' inbred strain. Each RC strain contains a random subset of approximately 12.5% of genes from the donor strain and 87.5% of genes from the background strain. In this way the genetic control of a complex disease may be dissected into its individual components. We simulated the production of the RC strains to study to what extent they have to be characterized in order to obtain sufficient information about the distribution of the parental strains' genomes in these strains and to acquire insight into parameters influencing their effectiveness in mapping quantitative trait loci (QTLs). The donor strain genome in the RC strains is fragmented into many segments. Genetic characterization of these strains with one polymorphic marker per 3.3 centiMorgans (cM) is needed to detect 95% of the donor strain genome. The probability of a donor strain segment being located entirely in between two markers of background strain origin that are 3 cM apart (and hence escaping detection) is 0.003. Although the donor strain genome in the RC strains is split into many segments, the largest part still occurs in relatively long stretches that are mostly concentrated in fewer than 13 autosomes, the median being 9 autosomes. Thus, in mapping QTLs, the use of RC strains facilitates the detection of linkage.
Collapse
Affiliation(s)
- C J Moen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Krulová M, Havelková H, Kosarová M, Holán V, Hart AA, Demant P, Lipoldová M. IL-2-induced proliferative response is controlled by loci Cinda1 and Cinda2 on mouse chromosomes 11 and 12: a distinct control of the response induced by different IL-2 concentrations. Genomics 1997; 42:11-5. [PMID: 9177770 DOI: 10.1006/geno.1997.4694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lymphocytes of mouse strains BALB/cHeA (BALB/c) and STS/A (STS) differ in the IL-2-induced proliferative response, STS being a high and BALB/c a low responder in the range of concentrations 125-2000 IE/ml. We analyzed the genetic basis of this strain difference using the recombinant congenic (RC) strains of the BALB/c-c-STS/Dem (CcS/Dem) series. This series comprises 20 homozygous strains all derived from two parental inbred strains: the "background" strain BALB/c and the "donor" strain STS. Each CcS/Dem strain contains a different, random set of approximately 12.5% genes of the donor strain STS and approximately 87.5% genes of the background strain BALB/c. In this way, the STS genes controlling the IL-2-induced response became separated into individual CcS/Dem strains, as indicated by differences in the magnitude of the IL-2-induced response among CcS/Dem strains (M. Lipoldová et al., 1995, Immunogenetics 41: 301-311). To map some of these genes, we tested F2 hybrids between one of the high-responder RC strains, CcS-4, and the low-responder parental strain BALB/c. We found that the response to high IL-2 concentrations is controlled by a locus, Cinda1 (cytokine-induced activation 1), on chromosome 11 near the marker D11Mit4. The response to a lower dose of IL-2 tested on lymphocytes of the same mice was found to be controlled by another locus, Cinda2, in the centromeric part of chromosome 12, the higher response being linked to the STS allele of the marker D12Mit37. Understanding the action of genetic factors, such as Cinda1 and Cinda2, that control T cell function is expected to contribute to the efficient analysis of the genetic control of susceptibility to infections and autoimmune diseases.
Collapse
Affiliation(s)
- M Krulová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
8
|
Havelková H, Krulová M, Kosarová M, Holán V, Hart AA, Demant P, Lipoldová M. Genetic control of T-cell proliferative response in mice linked to chromosomes 11 and 15. Immunogenetics 1996; 44:475-7. [PMID: 8824160 DOI: 10.1007/bf02602810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H Havelková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Fleming. nám. 2, 16637 Praha 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|