1
|
Luzuriaga J, Pastor-Alonso O, Encinas JM, Unda F, Ibarretxe G, Pineda JR. Human Dental Pulp Stem Cells Grown in Neurogenic Media Differentiate Into Endothelial Cells and Promote Neovasculogenesis in the Mouse Brain. Front Physiol 2019; 10:347. [PMID: 30984027 PMCID: PMC6447688 DOI: 10.3389/fphys.2019.00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have the capacity to give rise to cells with neuronal-like phenotypes, suggesting their use in brain cell therapies. In the present work, we wanted to address the phenotypic fate of adult genetically unmodified human DPSCs cultured in NeurocultTM (Stem Cell Technologies), a cell culture medium without serum which can be alternatively supplemented for the expansion and/or differentiation of adult neural stem cells (NSCs). Our results show that non-genetically modified human adult DPSCs cultured with Neurocult NS-A proliferation supplement generated neurosphere-like dentospheres expressing the NSC markers Nestin and glial fibrillary acidic protein (GFAP), but also the vascular endothelial cell marker CD31. Remarkably, 1 month after intracranial graft into athymic nude mice, human CD31+/CD146+ and Nestin+ DPSC-derived cells were found tightly associated with both the endothelial and pericyte layers of brain vasculature, forming full blood vessels of human origin which showed an increased laminin staining. These results are the first demonstration that DPSC-derived cells contributed to the generation of neovasculature within brain tissue, and that Neurocult and other related serum-free cell culture media may constitute a fast and efficient way to obtain endothelial cells from human DPSCs.
Collapse
Affiliation(s)
- Jon Luzuriaga
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Fernando Unda
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Gaskon Ibarretxe
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jose Ramon Pineda
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
2
|
Bauman E, Granja PL, Barrias CC. Fetal bovine serum-free culture of endothelial progenitor cells-progress and challenges. J Tissue Eng Regen Med 2018; 12:1567-1578. [PMID: 29701896 DOI: 10.1002/term.2678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Two decades after the first report on endothelial progenitor cells (EPC), their key role in postnatal vasculogenesis and vascular repair is well established. The therapeutic potential of EPC and their growing use in clinical trials calls for the development of more robust, reproducible, and safer methods for the in vitro expansion and maintenance of these cells. Despite many limitations associated with its usage, fetal bovine serum (FBS) is still widely applied as a cell culture supplement. Although different approaches aiming at establishing FBS-free culture have been developed for many cell types, adequate solutions for endothelial cells, and for EPC in particular, are still scarce, possibly due to the multiple challenges that have to be faced when culturing these cells. In this review, we provide a brief overview on the therapeutic relevance of EPC and critically analyse the available literature on FBS-free endothelial cell culture methods, including xeno-free, serum-free, and chemically defined systems.
Collapse
Affiliation(s)
- E Bauman
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| | - P L Granja
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - C C Barrias
- Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Raekiansyah M, Espada-Murao LA, Okamoto K, Kubo T, Morita K. Dengue virus neither directly mediates hyperpermeability nor enhances tumor necrosis factor-α-induced permeability in vitro. Jpn J Infect Dis 2014; 67:86-94. [PMID: 24647249 DOI: 10.7883/yoken.67.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanisms of endothelial barrier dysfunction in dengue disease remain poorly understood. Endothelial cell (EC) death due to virus infection or in combination with an infection-induced cytokine storm is deemed as one of the major causes of plasma leakage. Using an in vitro model of human endothelia and several dengue virus (DENV) strains (including a clinical isolate), the direct consequence of infection on endothelial permeability was investigated throughout the course of the infection. All employed DENV-2 strains were able to infect and replicate in ECs. Rather than increase endothelial permeability, DENV infection alone enhanced cell barrier integrity up to 7 days postinfection. Improved cell barrier function was mediated by type I interferon activation at the early phase of infection and by the survival advantage of the infected cells at the late phase of infection. Consistent with this phenomenon, DENV infection did not augment tumor necrosis factor-α-induced permeability. Our results prove that DENV infection does not directly account for vascular permeability; DENV neither induces hyperpermeability nor exacerbates the permeabilizing effect of cytokines. The contributory role of other factors on plasma leakage during dengue disease warrants further investigation.
Collapse
Affiliation(s)
- Muhareva Raekiansyah
- Department of Virology, Institute of Tropical Medicine, Nagasaki University and GCOE Program
| | | | | | | | | |
Collapse
|
4
|
Murakami T, Saitoh I, Inada E, Kurosawa M, Iwase Y, Noguchi H, Terao Y, Yamasaki Y, Hayasaki H, Sato M. STO Feeder Cells Are Useful for Propagation of Primarily Cultured Human Deciduous Dental Pulp Cells by Eliminating Contaminating Bacteria and Promoting Cellular Outgrowth. CELL MEDICINE 2013; 6:75-81. [PMID: 26858883 DOI: 10.3727/215517913x674234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
STO feeder cells, a line established from mouse SIM embryonic fibroblasts, have been frequently used for establishing embryonic stem cells and maintaining them in an undifferentiated state. There are some reports demonstrating that fibroblastic cells have the ability to phagocytose Gram-positive bacterium (e.g., streptococci and staphylococci). In this study, we examined the possibility that STO cells could phagocytose Streptococcus mutans (a bacteria causing tooth decay), which always contaminates cultures of primarily isolated human deciduous dental pulp cells (HDDPCs). Simple cultivation of the primary HDDPCs in the absence of STO cells allowed S. mutans to massively propagate in the medium, thus leading to an opaque medium. In contrast, there was no bacterial contamination in the cultures containing mitomycin C (MMC)-inactivated STO cells. Furthermore, STO cells indicated bacterial phagocytic activity under fluorescent microscopy with the dye pHrodo. Besides removal of contaminating bacteria, STO feeder cells allowed the HDDPCs to spread out. These data suggest that MMC-treated STO cells can be useful for propagation of HDDPCs by eliminating contaminating bacteria and by promoting cellular outgrowth.
Collapse
Affiliation(s)
- Tomoya Murakami
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Emi Inada
- † Department of Pediatric Dentistry, Kagashima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Mie Kurosawa
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Hirofumi Noguchi
- ‡ Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yutaka Terao
- § Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Youichi Yamasaki
- † Department of Pediatric Dentistry, Kagashima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences , Niigata , Japan
| | - Masahiro Sato
- ¶ Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University , Kagoshima , Japan
| |
Collapse
|
5
|
Zieris A, Chwalek K, Prokoph S, Levental K, Welzel P, Freudenberg U, Werner C. Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels. J Control Release 2011; 156:28-36. [DOI: 10.1016/j.jconrel.2011.06.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
6
|
Labitzke R, Friedl P. A serum-free medium formulation supporting growth of human umbilical cord vein endothelial cells in long-term cultivation. Cytotechnology 2011; 35:87-92. [PMID: 19003285 DOI: 10.1023/a:1017551218007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A serum-free medium formulation - TUD-1 - was developed supporting growth of HUVEC in tissue culture. Special features of the basal medium formulation are highly elevated levels of glutamine and serine as well as the inclusion of N-acetylcysteine and phosphoascorbic acid. The cellular mitogenic needs are satisfied by bFGF, VEGF, EGF and liver growth factor. Further hormone supplementation consists of insulin and hydrocortisone. A protocoll for serum-free passage of HUVEC was established for serum-free long-term cultivation of freshly isolated HUVEC for up to 20 cumulative population doublings without significant differences in final cell density compared to controls cultivated with serum.
Collapse
Affiliation(s)
- R Labitzke
- Institut für Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287, Darmstadt, Germany
| | | |
Collapse
|
7
|
Abstract
Lepidopteran insect cell culture technology has progressed to the point of becoming an essential part of one of the most successful eukaryotic expression systems and is increasingly used industrially on a large scale. Therefore, there is a constant need for convenient and low-cost culture media capable of supporting good insect cell growth and ensuring high yield of baculovirus as well as the strong expression of recombinant proteins. Vertebrate sera or invertebrate hemolymph were essential supplements in first-generation insect cell media. These supplements, however, are cumbersome and expensive for routine large-scale culture; thus, their use is now circumvented by substituting the essential growth factors present in these supplements with serum-free substances. Such non-serum supplements are typically of non-animal origin and include protein hydrolysates, lipid emulsions, and specialized substances (e.g., surfactants and shear damage protecting chemicals). These supplements need to complement the defined, synthetic basal medium to ensure that the fundamental nutritional needs of the cells are satisfied. Although there is a significant number of proprietary serum-free and low-protein or protein-free media on the market, the lack of information concerning their detailed composition is a drawback in their adoption for different applications, including their adaptation to the metabolic and kinetic analysis and monitoring of a given insect cell based bioprocess. Hence, there is wide appeal for formulating serum-free media based on a rational assessment of the metabolic requirements of the lepidopteran cells during both the growth and the production phases. Techniques such as statistical experimental design and genetic algorithms adapted to the cellular behavior and the bioreactor operation mode (batch, fed-batch, or perfusion) permit the formulation of versatile serum- and protein-free media. These techniques are illustrated with recent developments of serum-free media for the cultivation of commercially important Spodoptera frugiperda and Trichoplusia ni cell lines.
Collapse
Affiliation(s)
- Spiros N Agathos
- Unit of Bioengineering, University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Innocenti M, Thoreson AC, Ferrero RL, Strömberg E, Bölin I, Eriksson L, Svennerholm AM, Quiding-Järbrink M. Helicobacter pylori-induced activation of human endothelial cells. Infect Immun 2002; 70:4581-90. [PMID: 12117971 PMCID: PMC128191 DOI: 10.1128/iai.70.8.4581-4590.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori infection causes active chronic inflammation with a continuous recruitment of neutrophils to the inflamed gastric mucosa. To evaluate the role of endothelial cells in this process, we have examined adhesion molecule expression and chemokine and cytokine production from human umbilical vein endothelial cells stimulated with well-characterized H. pylori strains as well as purified proteins. Our results indicate that endothelial cells actively contribute to neutrophil recruitment, since stimulation with H. pylori bacteria induced upregulation of the adhesion molecules VCAM-1, ICAM-1, and E-selectin as well as the chemokines interleukin 8 (IL-8) and growth-related oncogene alpha (GRO-alpha) and the cytokine IL-6. However, there were large variations in the ability of the different H. pylori strains to stimulate endothelial cells. These interstrain variations were seen irrespective of whether the strains had been isolated from patients with duodenal ulcer disease or asymptomatic carriers and were not solely related to the expression of known virulence factors, such as the cytotoxin-associated gene pathogenicity island, vacuolating toxin A, and Lewis blood group antigens. In addition, one or several unidentified proteins which act via NF-kappaB activation seem to induce endothelial cell activation. In conclusion, human endothelial cells produce neutrophil-recruiting factors and show increased adhesion molecule expression after stimulation with certain H. pylori strains. These effects probably contribute to the continuous recruitment of neutrophils to H. pylori-infected gastric mucosa and may also contribute to tissue damage and ulcer formation.
Collapse
Affiliation(s)
- M Innocenti
- Department of Medical Microbiology and Immunology, Sahlgrenska Academy at Göteborg University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
de Boer A, Breimer D. Reconstitution of the blood-brain barrier in cell culture for studies of drug transport and metabolism. Adv Drug Deliv Rev 1996. [DOI: 10.1016/s0169-409x(96)00421-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|