1
|
Wang W, Li J, Wang K, Zhang Z, Zhang W, Zhou G, Cao Y, Ye M, Zou H, Liu W. Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-β and elongated cell shape. Am J Physiol Cell Physiol 2015; 310:C357-72. [PMID: 26632599 DOI: 10.1152/ajpcell.00300.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023]
Abstract
Micropattern topography is widely investigated for its role in mediating stem cell differentiation, but remains unexplored for phenotype switch between mature cell types. This study investigated the potential of inducing tenogenic phenotype in human dermal fibroblasts (hDFs) by artificial elongation of cultured cells. Our results showed that a parallel microgrooved topography could convert spread hDFs into an elongated shape and induce a predominant tenogenic phenotype as the expression of biomarkers was significantly enhanced, such as scleraxis, tenomodulin, collagens I, III, VI, and decorin. It also enhanced the expression of transforming growth factor (TGF)-β1, but not α-smooth muscle actin. Elongated hDFs failed to induce other phenotypes, such as adiopogenic, chondrogenic, neurogenic, and myogenic lineages. By contrast, no tenogenic phenotype could be induced in elongated human chondrocytes, although chondrogenic phenotype was inhibited. Exogenous TGF-β1 could enhance the tenogenic phenotype in elongated hDFs at low dose (2 ng/ml), but promoted myofibroblast transdifferentiation of hDFs at high dose (10 ng/ml), regardless of cell shape. Elongated shape also resulted in decreased RhoA activity and increased Rho-associated protein kinase (ROCK) activity. Antagonizing TGF-β or inhibiting ROCK activity with Y27632 or depolymerizing actin with cytochalasin D could all significantly inhibit tenogenic phenotype induction, particularly in elongated hDFs. In conclusion, elongation of cultured dermal fibroblasts can induce a predominant tenogenic phenotype likely via synergistic effect of TGF-β and cytoskeletal signaling.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyun Wang
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China
| | - Mingliang Ye
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Hanfa Zou
- National Chromatography R&A Centre, CAS Key Lab of Separation for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Tissue Engineering Center of China, Shanghai, China;
| |
Collapse
|
2
|
Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors. PLoS One 2013; 8:e77365. [PMID: 24146984 PMCID: PMC3797820 DOI: 10.1371/journal.pone.0077365] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/02/2013] [Indexed: 01/21/2023] Open
Abstract
The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon) cells from human dermal fibroblast (HDF) culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.
Collapse
|
3
|
Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest 2011; 121:640-57. [PMID: 21293062 DOI: 10.1172/jci44605] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/17/2010] [Indexed: 11/17/2022] Open
Abstract
Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells.
Collapse
Affiliation(s)
- Kunihiko Hiramatsu
- Department of Bone and Cartilage Biology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Argentin G, Cicchetti R. In vitro proliferation of achondroplastic and normal mouse chondrocytes, before and after basic fibroblast growth factor stimulation. Cell Prolif 2008; 33:397-405. [PMID: 11101011 PMCID: PMC6496596 DOI: 10.1046/j.1365-2184.2000.00185.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achondroplasia in mice is a recessive genetic disorder, characterized by disproportionate dwarfism with reduced bone growth. The cause of this chondrodystrophy is unknown. In this study normal and achondroplastic mouse chondrocytes were cultured in monolayer primary culture, their differentiation was verified by immunofluorescence and their growth was compared. The results showed that achondroplastic cells exhibited a higher proliferative activity than control cells of the same age, confirmed also by a thymidine incorporation assay. Furthermore, basic fibroblast growth factor treatment was found to induce a strong increase in growth of normal mouse chondrocytes, while it did not stimulate statistically significant proliferation of achondroplastic mouse cells. We suppose that this different growth rate could play a role in achondroplastic phenotype development.
Collapse
Affiliation(s)
- G Argentin
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Italy.
| | | |
Collapse
|
5
|
Salvat C, Pigenet A, Humbert L, Berenbaum F, Thirion S. Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthritis Cartilage 2005; 13:243-9. [PMID: 15727891 DOI: 10.1016/j.joca.2004.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 11/22/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Many genetically modified animal models are providing new keys for unlocking the pathophysiology of cartilage degradation. To produce a tool for cellular and molecular studies in genetically engineered murine models, we defined the optimal culture conditions for primary cultures of articular chondrocytes from newborn mice (C57Bl/6). METHODS To determine whether the cultured cells exhibited the typical articular chondrocyte phenotype, we examined several morphological, biochemical, and functional features. RESULTS The cells had the typical chondrocyte morphology, with a rounded or polygonal shape. Immunolocalization studies showed high levels of type II collagen and aggrecan expression, together with sulfated glycosaminoglycan accumulation. Type II collagen and aggrecan expression decreased with passaging. In contrast, type I collagen expression was low in primary cultures and high after four passages, indicating a fibroblast phenotype. To evaluate the functional integrity of our cultured cells, we evaluated their ability to produce prostaglandin E2 (PGE2) and nitric oxide (NO) in response to the catabolic cytokine interleukin (IL)-1beta (10 ng/ml). Production of both PGE2 and NO increased significantly as compared to untreated controls. In addition, IL-1beta induced COX-2 expression by the cultured cells, as shown by Western blotting. CONCLUSIONS Since functional and molecular parameters can be measured readily in mice, the immature murine articular chondrocyte (iMAC) model described here should prove a powerful tool for research, particularly as many transgenic and knockout mouse strains are available, even if iMACs are not optimal substitutes for human chondrocytes.
Collapse
Affiliation(s)
- Colette Salvat
- UMR CNRS 7079 Physiology and Pathophysiology Laboratory, Paris 6 University, 7 quai St Bernard, 75252 Paris Cedex 5, France
| | | | | | | | | |
Collapse
|
6
|
Girdler NM. In vitro synthesis and characterization of a cartilaginous meniscus grown from isolated temporomandibular chondroprogenitor cells. Scand J Rheumatol 1998; 27:446-53. [PMID: 9855216 DOI: 10.1080/030097498442280] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Internal derangement of the temporomandibularjoint can lead to perforation of the intra-articular meniscus and osteoarthritic degeneration. Current methods of repairing damaged menisci are limited by lack of biological compatibility of graft materials. This project aimed to synthesise and characterise a primate cartilaginous meniscus in vitro from harvested mandibular chondroprogenitor cells. Isolated cells from the mandibular cartilage of 12 young adult marmosets, aged 9-12 months, were grown in monolayer culture. After 21 days confluent colonies were resuspended and dispersed into a unpolymerised solution of type I collagen and fibrinogen. The resultant cell suspension was infiltrated into a resorbable type I collagen sponge carrier and allowed to polymerise. Aliquots of the cell-infiltrated sponge were maintained in organ culture for a further 14 days. Cultures were characterised using histochemical and immunocytochemical localisation of collagen and proteoglycan species. Two-thirds of cells in confluent 21-day monolayers expressed cartilage-specific type II collagen and chondroitin-4-sulphate. After 35 days organ cultures had formed a viable, organised, three-dimensional tissue mass consisting of mature chondrocytic cells interspersed in a dense cartilaginous matrix. The cartilaginous tissue generated in vitro may have potential application in the repair or replacement of damaged menisci in vivo.
Collapse
Affiliation(s)
- N M Girdler
- University of Newcastle Dental School & Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Lefebvre V, Garofalo S, Zhou G, Metsäranta M, Vuorio E, De Crombrugghe B. Characterization of primary cultures of chondrocytes from type II collagen/beta-galactosidase transgenic mice. Matrix Biol 1994; 14:329-35. [PMID: 7827756 DOI: 10.1016/0945-053x(94)90199-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studies on the function of extracellular matrix components of cartilages and on chondrocyte-specific regulatory mechanisms will benefit from approaches in which transgenic mice and cell cultures will complement each other. We therefore established and extensively characterized primary cultures of mouse chondrocytes isolated from rib growth plates of newborn mice harboring a transgene in which type II collagen gene regulatory sequences were driving expression of an E. coli beta-galactosidase reporter gene. Primary chondrocytes expressed a fully differentiated phenotype in monolayer culture, producing mRNAs for the collagen types II, IX and X, and for the transgene. Transgenic cells also synthesized high levels of E. coli beta-galactosidase, easily quantifiable and also detectable in individual cells by X-gal staining. When chondrocytes were isolated from transgenic mice in which beta-galactosidase was fused to the product of the neomycin resistance gene, they displayed resistance to G418. After one to two weeks in culture, chondrocytes progressively lost expression of the transgenes, in parallel with that of cartilage-specific genes, and started expressing high levels of type I collagen RNA. The use of transgenic chondrocytes allowed us to easily score phenotypic changes by assaying beta-galactosidase activity and neomycin resistance. Cultures of mouse chondrocytes, such as those reported here, should also help characterize biochemically the phenotypes of other transgenic mice in studies of genetic diseases of cartilages and of mechanisms involved in chondrogenesis.
Collapse
Affiliation(s)
- V Lefebvre
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston
| | | | | | | | | | | |
Collapse
|