1
|
Kocak G, Tamfu AN, Bütün V, Ceylan O. Synthesis of quaternary piperazine methacrylate homopolymers and their antibiofilm and anti‐quorum sensing effects on pathogenic bacteria. J Appl Polym Sci 2021. [DOI: 10.1002/app.50466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gökhan Kocak
- Department of Chemistry and Chemical Process Technologies Vocational School of Higher Education, Adiyaman University Adiyaman Turkey
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering School of Chemical Engineering and Mineral Industries, University of Ngaoundere Ngaoundere Cameroon
| | - Vural Bütün
- Department of Chemistry, Faculty of Science and Letters Eskisehir Osmangazi University Eskisehir Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program Ula Ali Kocman Vocational School, Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
2
|
Xiao C, Lin J. Efficient Removal of Cr(VI) Ions by a Novel Magnetic 4-Vinyl Pyridine Grafted Ni 3Si 2O 5(OH) 4 Multiwalled Nanotube. ACS OMEGA 2020; 5:23099-23110. [PMID: 32954160 PMCID: PMC7495723 DOI: 10.1021/acsomega.0c02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The contamination of water systems by heavy metals greatly threatens human health and ecological safety. An efficient adsorbent is critical for the removal of these contaminants. In this work, magnetic Ni3Si2O5(OH)4 nanotubes (NTs) have been synthesized via in situ hydrothermal reduction and further functionalized by grafting poly(4-vinyl pyridine) (P4VP) brushes on its surface via atom transfer radical polymerization. Characterizations by Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, and X-ray photoelectron spectroscopy proved that P4VP was successfully grafted on the surface of magnetic Ni3Si2O5(OH)4 NTs. The resultant Ni3Si2O5(OH)4-g-P4VP NTs are efficient nanosorbents for removing Cr(VI) anions from water. The Cr(VI) adsorption capacity of Ni3Si2O5(OH)4-g-P4VP NTs reaches 1.49 mmol/g at a pH of 3. The pseudo-second-order kinetic model and the Freundlich isothermal model are suitable to describe the adsorption process. The analysis using Weber-Morris and Boyd models indicates that both intraparticle diffusion and external film diffusion affect the Cr(VI) adsorption process. The adsorption enthalpy is estimated to be 18.37 kJ/mol. More than 90% of the Cr(VI) adsorption capacity of the Ni3Si2O5(OH)4-g-P4VP NTs remains after eight adsorption and desorption cycles.
Collapse
Affiliation(s)
- Chunmei Xiao
- College
of Materials Science & Engineering, Huaqiao University, Xiamen Campus, Xiamen 361021, China
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362002, China
| | - Jianming Lin
- College
of Materials Science & Engineering, Huaqiao University, Xiamen Campus, Xiamen 361021, China
| |
Collapse
|
3
|
Li R, Yang X. Computational Study of the Substituent Effects for the Spectroscopic Properties of Thiazolo[5,4- d]thiazole Derivatives. J Phys Chem A 2019; 123:10102-10108. [PMID: 31661965 DOI: 10.1021/acs.jpca.9b08638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the structure and optical properties of N,N'-dialkylated/dibenzylated 2,5-bis(4-pyridinium)thiazolo[5,4-d]thiazole, we proposed a series of disubstituted thiazolo[5,4-d]thiazole derivatives as promising materials for multifunctional optoelectronic, electron transfer sensing, and other photochemical applications. Density functional theory study of the electronic structures and transition properties of those newly proposed molecules indicates that the electron-donating and electron-withdrawing groups introduced to the peripheral pyridyl ligands extend the distributions of molecular frontier orbitals, increase the electron density in thiazolo[5,4-d]thiazolea, and therefore lead to remarkable red-shifts of their absorption and emission peaks.
Collapse
Affiliation(s)
- Rongrong Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
4
|
Synthesis and Antibacterial Activities of Boronic Acid-Based Recyclable Spherical Polymer Brushes. Macromol Res 2019. [DOI: 10.1007/s13233-019-7084-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Cicek H, Kocak G, Ceylan Ö, Kutluca EA, Dikmen Z, Bütün V. Antibacterial poly{(4-vinyl phenylboronic acid)-co-[2-(dimethylamino)ethyl methacrylate]} copolymers and their application in water-based paints. J Appl Polym Sci 2018. [DOI: 10.1002/app.46245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hüseyin Cicek
- Department of Chemistry, Faculty of Sciences; Mugla Sitki Kocman University; Mugla 48000 Turkey
| | - Gökhan Kocak
- Department of Chemistry; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
- Department of Chemistry; Adiyaman University; Adiyaman 02040 Turkey
| | - Özgür Ceylan
- Food Quality Control and Analysis Program; Ula Ali Kocman Vocational School, Mugla Sitki Kocman University; Mugla 48147 Turkey
| | - Emir Ahmet Kutluca
- Department of Chemistry, Faculty of Sciences; Mugla Sitki Kocman University; Mugla 48000 Turkey
| | - Zeynep Dikmen
- Department of Polymer Science and Technology; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Vural Bütün
- Department of Chemistry; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
- Department of Polymer Science and Technology; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| |
Collapse
|
6
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
7
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
9
|
Shen X, Zhao Y, Chen L. Polycation-Grafted Poly(vinylidene fluoride) Membrane with Biofouling Resistance. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201400582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Miller KP, Wang L, Benicewicz BC, Decho AW. Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 2015; 44:7787-807. [DOI: 10.1039/c5cs00041f] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotics delivered to bacteria using engineered nanoparticles (NP), offer a powerful and efficient means to kill or control bacteria, especially those already resistant to antibiotics.
Collapse
Affiliation(s)
- Kristen P. Miller
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
- USA
| | - Lei Wang
- Department of Chemistry and Biochemistry
- College of Arts and Sciences
- University of South Carolina
- Columbia
- USA
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry
- College of Arts and Sciences
- University of South Carolina
- Columbia
- USA
| | - Alan W. Decho
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
11
|
Abdolahi A, Hamzah E, Ibrahim Z, Hashim S. Application of Environmentally-Friendly Coatings Toward Inhibiting the Microbially Influenced Corrosion (MIC) of Steel: A Review. POLYM REV 2014. [DOI: 10.1080/15583724.2014.946188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Dong Z, Wei H, Mao J, Wang D, Yang M, Bo S, Ji X. Synthesis and responsive behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes grafted on silica nanoparticles and their quaternized derivatives. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Abstract
The emergence of multi-drug-resistant bacteria such as methicillin-resistant strains of Staphylococcus aureus (MRSA), vancomycin-resistant enterococci, Pseudomonas aeruginosa, Acinetobacter baumannii and extended-spectrum β-lactamase (carbapenemase)-producing Enterobacteriaceae is becoming a serious threat. New-generation antimicrobial agents need to be developed. This includes the design of novel antimicrobial compounds and drug-delivery systems. This review provides an introduction into different classes of antimicrobial materials. The main focus is on strategies for the introduction of antimicrobial properties in polymer materials. These can be roughly divided into surface modification, inclusion of antimicrobial compounds that can leach from the polymer, and the introduction of polymer-bound moieties that provide the polymer with antimicrobial properties. One of the main challenges in the development of antimicrobial polymers for the use in contact with human tissue is the concomitant demand of non-cytotoxicity. Current research is strongly focused on the latter aspect.
Collapse
|
14
|
Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok HA. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 2010; 109:5437-527. [PMID: 19845393 DOI: 10.1021/cr900045a] [Citation(s) in RCA: 1240] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raphaël Barbey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Yuan SJ, Xu FJ, Pehkonen SO, Ting YP, Neoh KG, Kang ET. Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans. Biotechnol Bioeng 2009; 103:268-81. [PMID: 19170239 DOI: 10.1002/bit.22252] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well-defined functional polymer brushes were grafted via surface-initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS-OH) substrates for surface-initiated ATRP of (2-dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen-quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants.
Collapse
Affiliation(s)
- S J Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | | | | | | | |
Collapse
|