1
|
Xiao S, Yang D, Li F, Tian X, Li Z. The EIN3/EIL-ERF9-HAK5 transcriptional cascade positively regulates high-affinity K + uptake in Gossypium hirsutum. THE NEW PHYTOLOGIST 2024; 241:2090-2107. [PMID: 38168024 DOI: 10.1111/nph.19500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
High-affinity K+ (HAK) transporters play essential roles in facilitating root K+ uptake in higher plants. Our previous studies revealed that GhHAK5a, a member of the HAK family, is crucial for K+ uptake in upland cotton. Nevertheless, the precise regulatory mechanism governing the expression of GhHAK5a remains unclear. The yeast one-hybrid screening was performed to identify the transcription factors responsible for regulating GhHAK5a, and ethylene response factor 9 (GhERF9) was identified as a potential candidate. Subsequent dual-luciferase and electrophoretic mobility shift assays confirmed that GhERF9 binds directly to the GhHAK5a promoter, thereby activating its expression. Silencing of GhERF9 decreased the expression of GhHAK5a and exacerbated K+ deficiency symptoms in leaves, also decreased K+ uptake rate and K+ content in roots. Additionally, it was observed that the application of ethephon (an ethylene-releasing reagent) resulted in a significant upregulation of GhERF9 and GhHAK5a, accompanied by an increased rate of K+ uptake. Expectedly, GhEIN3b and GhEIL3c, the two key components involved in ethylene signaling, bind directly to the GhERF9 promoter. These findings provide valuable insights into the molecular mechanisms underlying the expression of GhHAK5a and ethylene-mediated K+ uptake and suggest a potential strategy to genetically enhance cotton K+ uptake by exploiting the EIN3/EILs-ERF9-HAK5 module.
Collapse
Affiliation(s)
- Shuang Xiao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Doudou Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Fangjun Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| |
Collapse
|
2
|
Yang D, Li F, Yi F, Eneji AE, Tian X, Li Z. Transcriptome Analysis Unravels Key Factors Involved in Response to Potassium Deficiency and Feedback Regulation of K + Uptake in Cotton Roots. Int J Mol Sci 2021; 22:3133. [PMID: 33808570 PMCID: PMC8003395 DOI: 10.3390/ijms22063133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023] Open
Abstract
To properly understand cotton responses to potassium (K+) deficiency and how its shoot feedback regulates K+ uptake and root growth, we analyzed the changes in root transcriptome induced by low K+ (0.03 mM K+, lasting three days) in self-grafts of a K+ inefficient cotton variety (CCRI41/CCRI41, scion/rootstock) and its reciprocal grafts with a K+ efficient variety (SCRC22/CCRI41). Compared with CCRI41/CCRI41, the SCRC22 scion enhanced the K+ uptake and root growth of CCRI41 rootstock. A total of 1968 and 2539 differently expressed genes (DEGs) were identified in the roots of CCRI41/CCRI41 and SCRC22/CCRI41 in response to K+ deficiency, respectively. The overlapped and similarly (both up- or both down-) regulated DEGs in the two grafts were considered the basic response to K+ deficiency in cotton roots, whereas the DEGs only found in SCRC22/CCRI41 (1954) and those oppositely (one up- and the other down-) regulated in the two grafts might be the key factors involved in the feedback regulation of K+ uptake and root growth. The expression level of four putative K+ transporter genes (three GhHAK5s and one GhKUP3) increased in both grafts under low K+, which could enable plants to cope with K+ deficiency. In addition, two ethylene response factors (ERFs), GhERF15 and GhESE3, both down-regulated in the roots of CCRI41/CCRI41 and SCRC22/CCRI41, may negatively regulate K+ uptake in cotton roots due to higher net K+ uptake rate in their virus-induced gene silencing (VIGS) plants. In terms of feedback regulation of K+ uptake and root growth, several up-regulated DEGs related to Ca2+ binding and CIPK (CBL-interacting protein kinases), one up-regulated GhKUP3 and several up-regulated GhNRT2.1s probably play important roles. In conclusion, these results provide a deeper insight into the molecular mechanisms involved in basic response to low K+ stress in cotton roots and feedback regulation of K+ uptake, and present several low K+ tolerance-associated genes that need to be further identified and characterized.
Collapse
Affiliation(s)
- Doudou Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar 540271, Nigeria
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Viktorova J, Klcova B, Rehorova K, Vlcko T, Stankova L, Jelenova N, Cejnar P, Kundu JK, Ohnoutkova L, Macek T. Recombinant expression of osmotin in barley improves stress resistance and food safety during adverse growing conditions. PLoS One 2019; 14:e0212718. [PMID: 31075104 PMCID: PMC6510477 DOI: 10.1371/journal.pone.0212718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although many genetic manipulations of crops providing biofortified or safer food have been done, the acceptance of biotechnology crops still remains limited. We report on a transgenic barley expressing the multi-functional protein osmotin that improves plant defense under stress conditions. METHODS An Agrobacterium-mediated technique was used to transform immature embryos of the spring barley cultivar Golden Promise. Transgenic barley plants of the T0 and T1 generation were evaluated by molecular methods. Transgenic barley tolerance to stress was determined by chlorophyll, total protein, malondialdehyde and ascorbate peroxidase content. Methanol extracts of i) Fusarium oxysporum infected or ii) salt-stressed plants, were characterized by their acute toxicity effect on human dermal fibroblasts (HDF), genotoxicity and affection of biodiversity interactions, which was tested through monitoring barley natural virus pathogen-host interactions-the BYDV and WDV viruses transmitted to the plants by aphids and leafhoppers. RESULTS Transgenic plants maintained the same level of chlorophyll and protein, which significantly declined in wild-type barley under the same stressful conditions. Salt stress evoked higher ascorbate peroxidase level and correspondingly less malondialdehyde. Osmotin expressing barley extracts exhibited a lower cytotoxicity effect of statistical significance than that of wild-type plants under both types of stress tested on human dermal fibroblasts. Extract of Fusarium oxysporum infected transgenic barley was not able to damage DNA in the Comet assay, which is in opposite to control plants. Moreover, this particular barley did not affect the local biodiversity. CONCLUSION Our findings provide a new perspective that could help to evaluate the safety of products from genetically modified crops.
Collapse
Affiliation(s)
- Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Barbora Klcova
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Olomouc, Czech Republic
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Vlcko
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Olomouc, Czech Republic
| | - Lucie Stankova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Cejnar
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Jiban Kumar Kundu
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Ludmila Ohnoutkova
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tomas Macek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
4
|
Wang Y, Wang Y, Li B, Xiong C, Eneji AE, Zhang M, Li F, Tian X, Li Z. The Cotton High-Affinity K+ Transporter, GhHAK5a, Is Essential for Shoot Regulation of K+ Uptake in Root under Potassium Deficiency. PLANT & CELL PHYSIOLOGY 2019; 60:888-899. [PMID: 30649443 DOI: 10.1093/pcp/pcz003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/03/2019] [Indexed: 05/23/2023]
Abstract
Potassium (K) deficiency is a key limiting factor in cotton (Gossypium hirsutum) production. By grafting two contrasting cotton cultivars, CCRI41 (more susceptible to K+ deficiency) and SCRC22 (more tolerant of K+ deficiency), we established that cotton shoot plays a vital role in the regulation of root K+ uptake. To identify the genetic basis of this finding, we performed RNA sequencing (RNA-seq) of roots of CCRI41 self-grafts (CCRI41/CCRI41, scion/rootstock) and SCRC22/CCRI41 reciprocal-grafts exposed to K+ deficiency. We found that GhHAK5a, an orthologous of Arabidopsis thaliana high-affinity K+ transporter, AtHAK5, was significantly induced in the CCRI41 rootstock by the SCRC22 scion. This gene was mainly expressed in roots and was more highly induced by K+ deficiency in roots of SCRC22 than those of CCRI41. Agrobacterium-mediated virus-induced gene silencing and yeast complementary assay showed that GhHAK5a is a high-affinity K+ uptake transporter. Importantly, silencing of GhHAK5a in the CCRI41 rootstock almost completely inhibited the K+ uptake induced by SCRC22 scion in CCRI41 rootstock. We identified a key high-affinity K+ transporter, GhHAK5a in cotton, which is the essential target for shoot regulation of root K+ uptake under K+ deficiency.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ye Wang
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Agronomy, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Bo Li
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- China Phosphate and Compound Fertilizer Industry Association
| | - Changming Xiong
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar, Nigeria
| | - Mingcai Zhang
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fangjun Li
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoli Tian
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhaohu Li
- Department of Crop Physiology and Cultivation, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Viktorova J, Rehorova K, Musilova L, Suman J, Lovecka P, Macek T. New findings in potential applications of tobacco osmotin. Protein Expr Purif 2017; 129:84-93. [PMID: 27654923 DOI: 10.1016/j.pep.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
The osmotin protein is involved in both monocot and dicot plant responses to biotic and abiotic stress. To determine the biological activity of osmotin, the gene was amplified from tobacco genomic DNA, fused with the hexahistidine tag motif and successfully expressed in Escherichia coli, after which the recombinant osmotin was purified and renatured. Various activities were then tested, including hemolytic activity, toxicity against human embryonic kidney cells, and the antifungal activity of the recombinant osmotin. We found that osmotin had no adverse effects on human kidney cells up to a concentration of 500 μg.ml-1. However, the purified osmotin also had significant antimicrobial activity, specifically against fungal pathogens causing candidiasis and otitis, and against the common food pathogens. Using the osmotin-Agrobacterium construct, the osmotin gene was inserted into tobacco plants in order to facilitate the isolation of recombinant protein. Using qPCR, the presence and copy number of the transgene was detected in the tobacco plant DNA. The transgene was also quantified using mRNA, and results indicated a strong expression profile, however the native protein has been never isolated. Once the transgene presence was confirmed, the transgenic tobacco plants were grown in high saline concentrations and monitored for seed germination and chlorophyll content as indicators of overall plant health. Results indicated that the transgenic tobacco plants had a higher tolerance for osmotic stress. These results indicate that the osmotin gene has the potential to increase crop tolerance to stresses such as fungal attack and unfavorable osmotic conditions.
Collapse
Affiliation(s)
- Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lucie Musilova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Petra Lovecka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Tomas Macek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
6
|
Wang ZA, Li Q, Ge XY, Yang CL, Luo XL, Zhang AH, Xiao JL, Tian YC, Xia GX, Chen XY, Li FG, Wu JH. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton. Sci Rep 2015; 5:10343. [PMID: 26179843 PMCID: PMC4503954 DOI: 10.1038/srep10343] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/10/2015] [Indexed: 12/18/2022] Open
Abstract
Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition.
Collapse
Affiliation(s)
- Zhi-An Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Cotton Research, Shanxi Agricultural Academy of Science, Yuncheng, 044000, China
| | - Qing Li
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Yang Ge
- The State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Chun-Lin Yang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Li Luo
- Institute of Cotton Research, Shanxi Agricultural Academy of Science, Yuncheng, 044000, China
| | - An-Hong Zhang
- Institute of Cotton Research, Shanxi Agricultural Academy of Science, Yuncheng, 044000, China
| | - Juan-Li Xiao
- Institute of Cotton Research, Shanxi Agricultural Academy of Science, Yuncheng, 044000, China
| | - Ying-Chuan Tian
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gui-Xian Xia
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Ying Chen
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fu-Guang Li
- The State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Jia-He Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Pang J, Zhu Y, Li Q, Liu J, Tian Y, Liu Y, Wu J. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense. PLoS One 2013; 8:e73211. [PMID: 24023833 PMCID: PMC3759462 DOI: 10.1371/journal.pone.0073211] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/17/2013] [Indexed: 11/29/2022] Open
Abstract
Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species). These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS) system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV) vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.
Collapse
Affiliation(s)
- Jinhuan Pang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
| | - Yue Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
| | - Jinzhi Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
| | - Yingchuan Tian
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiahe Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
- * E-mail:
| |
Collapse
|
8
|
Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y. Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 2013; 8:e54002. [PMID: 23335985 PMCID: PMC3545958 DOI: 10.1371/journal.pone.0054002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/05/2012] [Indexed: 01/02/2023] Open
Abstract
In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss.
Collapse
Affiliation(s)
- Xiaoli Luo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuanbao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhirun Nan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xing Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yixue Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anhong Zhang
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Zhian Wang
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, China
| | - Guixian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingchuan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|