1
|
Sun K, Ma L, Hou J, Li Y, Jiang H, Liu W, Cao R, Zhang L, Guo Y. Physalis peruviana heteropolysaccharide-conjugated selenium nanoparticles: Preparation, characterization, and promising applications in cancer therapy. Int J Biol Macromol 2025; 306:141639. [PMID: 40032129 DOI: 10.1016/j.ijbiomac.2025.141639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Selenium nanoparticles (SeNPs) have attracted considerable attention in the field of cancer therapy due to their remarkable biological activities and advantageous nanoscale properties. However, their inherent instability presents a considerable challenge for broader applications. To address this issue, the heteropolysaccharide extracted from golden berries (the fruits of Physalis peruviana), designated as DLG, was utilized to synthesize heteropolysaccharide-conjugated selenium nanoparticles, named DLG-SeNP3. Subsequent characterization showed that the nanoparticles DLG-SeNP3 were spherical, with an average particle size of 77 nm, a zeta potential of -14.4 mV, and excellent stability under physiological pH conditions. Further biological investigations showed that DLG-SeNP3 effectively inhibited tumor cell proliferation, exhibiting an IC50 value of 41.60 μg/mL against A549 cells, and induced apoptosis, with a proportion of 31.30 % at 100 μg/mL. Moreover, in vivo experiments demonstrated that DLG-SeNP3 not only inhibited angiogenesis, resulting in a 26.51 % decrease at 2 μg/mL, but also suppressed tumor growth and invasion, with reductions of 76.90 % and 66.67 % in the intensity and foci of red fluorescence, respectively, at 2 μg/mL. In conclusion, DLG-SeNP3, stabilized with polysaccharides derived from golden berries, shows promising potential for application in cancer treatment.
Collapse
Affiliation(s)
- Kai Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Lingling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yinglan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Haojing Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Linsu Zhang
- Qiannan Medical College for Nationalities, Duyun 558000, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Sun T, Li F, Ji C, Liu H, Wu H. Combinatorial accumulation, stress response, detoxification and synaptic transmission effects of cadmium and selenium in clams Ruditapes philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107075. [PMID: 39244834 DOI: 10.1016/j.aquatox.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
This study investigated the toxicological effects and mechanisms of cadmium (Cd) (5 and 50 μg/L) and selenium (Se) (3 and 30 μg/L) at environmentally relevant concentrations on the gills and digestive glands of clams Ruditapes philippinarum. Results indicated that Cd and Se could tissue-specifically impact osmoregulation, energy metabolism, and synaptic transmission in the gills and digestive glands of clams. After exposure to 50 μg/L Cd, the digestive glands of clams up-regulated the expression of methionine-gamma-lyase and metallothionein for detoxification. Clam digestive glands exposed to 3 μg/L Se up-regulated the expression of catalase and glutathione peroxidase to alleviate oxidative stress, and down-regulated the expression of selenide-water dikinase to reduce the conversion of inorganic Se. Additionally, the interaction mode between Cd and Se largely depended on their molar ratio, with a ratio of 11.71 (50 μg/L Cd + 3 μg/L Se) demonstrated to be particularly harmful, as manifested by significantly more lesions, oxidative stress, and detoxification demand in clams than those exposed to Cd or Se alone. Collectively, this study revealed the complex interaction patterns and mechanisms of Cd and Se on clams, providing a reference for exploring their single and combined toxicity.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Hongmei Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
3
|
Galić E, Radić K, Golub N, Vitali Čepo D, Kalčec N, Vrček E, Vinković T. Utilization of Olive Pomace in Green Synthesis of Selenium Nanoparticles: Physico-Chemical Characterization, Bioaccessibility and Biocompatibility. Int J Mol Sci 2022; 23:ijms23169128. [PMID: 36012394 PMCID: PMC9409267 DOI: 10.3390/ijms23169128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Olive pomace extract (OPE) was investigated as a potential surface modifier for the development of the green synthesis process of selenium nanoparticles (SeNPs). In order to evaluate them as potential nutraceuticals, the obtained nanosystems were characterized in terms of size distribution, shape, zeta potential, stability in different media, gastrointestinal bioaccessibility and biocompatibility. Systems with a unimodal size distribution of spherical particles were obtained, with average diameters ranging from 53.3 nm to 181.7 nm, depending on the type of coating agent used and the presence of OPE in the reaction mixture. The nanosystems were significantly affected by the gastrointestinal conditions. Bioaccessibility ranged from 33.57% to 56.93% and it was significantly increased by functionalization of with OPE. Biocompatibility was investigated in the HepG2 and Caco2 cell models, proving that they had significantly lower toxicity in comparison to sodium selenite. Significant differences were observed in cellular responses depending on the type of cells used, indicating differences in the mechanisms of toxicity induced by SeNPs. The obtained results provide new insight into the possibilities for the utilization of valuable food-waste extracts in the sustainable development of nanonutraceuticals.
Collapse
Affiliation(s)
- Emerik Galić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Kristina Radić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Golub
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Vitali Čepo
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence:
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ena Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Vinković
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Regio- and Stereoselective Synthesis of (Z,Z)-Bis(3-amino-3-oxo-1-propenyl) Selenides and Diselenides Based on 2-propynamides: A Novel Family of Diselenides with High Glutathione Peroxidase-like Activity. INORGANICS 2022. [DOI: 10.3390/inorganics10060074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The efficient regio- and stereoselective syntheses of (Z,Z)-bis(3-amino-3-oxo-1-propenyl) selenides and diselenides in high yields based on the nucleophilic addition of sodium selenide to 2-propynamides and sodium diselenide to 3-(trimethylsilyl)-2-propynamides have been developed. The first examples of the addition of a selenium-centered nucleophile to 2-propynamides with a terminal triple bond and diselenide anion to 3-(trimethylsilyl)-2-propynamides have been carried out. Bis(3-amino-3-oxo-1-propenyl) diselenides are a novel family of compounds, none of which has yet been described in the literature. The glutathione peroxidase-like activity of the obtained compounds has been evaluated and products with high activity have been found. It was established that diselenides are superior to selenides with the same substituents in glutathione peroxidase-like activity. The results of the structural studying of products by single-crystal X-ray diffraction analysis and 77Se-NMR data are discussed.
Collapse
|
5
|
Neamatallah WA, Sadek KM, El-Sayed YS, Saleh EA, Khafaga AF. 2, 3-Dimethylsuccinic acid and fulvic acid attenuate lead-induced oxidative misbalance in brain tissues of Nile tilapia Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21998-22011. [PMID: 34775563 DOI: 10.1007/s11356-021-16359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Lead has long been known as neurotoxic and immunotoxic heavy metal in human and animals including fish, whereas, 2, 3-dimethylsuccinic acid (DMSA) and fulvic acid (FA) are well-known biological chelators. The present investigation was carried out to assess the potential chelating and antioxidant effects of dietary supplementation with DMSA and FA against lead acetate (Pb)-induced oxidative stress in Nile tilapia, O. niloticus. One-hundred and eighty apparently healthy O. niloticus fish (30 ± 2.5 g) were allocated into six equal groups. The first group was fed on basal diet and served as control, while the second group was fed on DMSA-supplemented basal diets at levels of 30 mg/kg diet; the third group was fed on FA-supplemented basal diet at level of 0.3 mg/kg diet; the forth, fifths, and sixth groups were exposed to 14.4 mg Pb /L water (1/10 LC50) and feed on basal diet only, basal diet supplemented with DMSA (0.3 mg/kg diet), or basal diet supplemented with FA (0.3 mg/kg diet), respectively. Antioxidant and lipid peroxidative status, activity of glucose 6-phosphate dehydrogenase (G6PD), and lactate dehydrogenase (LDH) as well as the histopathologic findings were evaluated in brain tissues, while the Pb residues were evaluated in liver, muscles, and brain tissues. The results of the present study showed that DMSA and FA decreased malondialdehyde (MDA) and Pb residue in tissues of Pb-exposed fish and improved the histologic picture and brain contents of glutathione (GSH), glutathione-s-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), G6PD, LDH, and total antioxidant capacity (TAC). It could be concluded that DMSA and FA supplementation exhibited potential neuroprotective effect against Pb-induced oxidative brain damages in O. niloticus through improvement of antioxidant status of the brain tissue.
Collapse
Affiliation(s)
- Wesam A Neamatallah
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ebeed A Saleh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Damanhour University, Damahour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| |
Collapse
|
6
|
Affiliation(s)
- Damiano Tanini
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
7
|
Nasim MJ, Zuraik MM, Abdin AY, Ney Y, Jacob C. Selenomethionine: A Pink Trojan Redox Horse with Implications in Aging and Various Age-Related Diseases. Antioxidants (Basel) 2021; 10:antiox10060882. [PMID: 34072794 PMCID: PMC8229699 DOI: 10.3390/antiox10060882] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 01/15/2023] Open
Abstract
Selenium is an essential trace element. Although this chalcogen forms a wide variety of compounds, there are surprisingly few small-molecule organic selenium compounds (OSeCs) in biology. Besides its more prominent relative selenocysteine (SeCys), the amino acid selenomethionine (SeMet) is one example. SeMet is synthesized in plants and some fungi and, via nutrition, finds its way into mammalian cells. In contrast to its sulfur analog methionine (Met), SeMet is extraordinarily redox active under physiological conditions and via its catalytic selenide (RSeR')/selenoxide (RSe(O)R') couple provides protection against reactive oxygen species (ROS) and other possibly harmful oxidants. In contrast to SeCys, which is incorporated via an eloquent ribosomal mechanism, SeMet can enter such biomolecules by simply replacing proteinogenic Met. Interestingly, eukaryotes, such as yeast and mammals, also metabolize SeMet to a small family of reactive selenium species (RSeS). Together, SeMet, proteins containing SeMet and metabolites of SeMet form a powerful triad of redox-active metabolites with a plethora of biological implications. In any case, SeMet and its family of natural RSeS provide plenty of opportunities for studies in the fields of nutrition, aging, health and redox biology.
Collapse
Affiliation(s)
- Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (M.J.N.); (M.M.Z.); (A.Y.A.); (Y.N.)
| | - Mhd Mouayad Zuraik
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (M.J.N.); (M.M.Z.); (A.Y.A.); (Y.N.)
| | - Ahmad Yaman Abdin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (M.J.N.); (M.M.Z.); (A.Y.A.); (Y.N.)
- University Lille, CNRS, Centrale Lille, University Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Yannick Ney
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (M.J.N.); (M.M.Z.); (A.Y.A.); (Y.N.)
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (M.J.N.); (M.M.Z.); (A.Y.A.); (Y.N.)
- Correspondence: ; Tel.: +49-681-302-3129
| |
Collapse
|
8
|
Abstract
Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X-ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop’s N-terminus to the active site Ser-Cys-Thr-Sec sequence. A key long-lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the flexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type-specific loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins.
Collapse
|
9
|
Sheikhi‐Mohammareh S, Shiri A, Maleki EH, Matin MM, Beyzaei H, Baranipour P, Oroojalian F, Memariani T. Synthesis of Various Derivatives of [1,3]Selenazolo[4,5‐d]pyrimidine and Exploitation of These Heterocyclic Systems as Antibacterial, Antifungal, and Anticancer Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Ali Shiri
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Ebrahim H. Maleki
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
- Novel Diagnostics and Therapeutics Research Group Institute of Biotechnology, Ferdowsi University of Mashhad Mashhad Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Parviz Baranipour
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies School of Medicine, North Khorasan University of Medical Sciences Bojnurd Iran
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Toktam Memariani
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| |
Collapse
|
10
|
Chand A, Sahoo DK, Rana A, Jena S, Biswal HS. The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials. Acc Chem Res 2020; 53:1580-1592. [PMID: 32677432 DOI: 10.1021/acs.accounts.0c00289] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.
Collapse
Affiliation(s)
- Apramita Chand
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
11
|
Shi XD, Tian YQ, Wu JL, Wang SY. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Crit Rev Food Sci Nutr 2020; 61:2225-2236. [PMID: 32567982 DOI: 10.1080/10408398.2020.1774497] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles with unique properties have potential applications in food, medicine, pharmacology, and agriculture industries. Accordingly, many significant researches have been conducted to develop novel nanoparticles using chemical and biological techniques. This review focuses on the synthesis of selenium nanoparticles (SeNPs) using polysaccharides as templates. Various instrumental techniques being used to confirm the formation of polysaccharide-SeNPs conjugates and characterize the properties of nanoparticles are also introduced. Finally, the biological activities of the synthesized SeNPs and the influence of structural factors of polysaccharides on the property of synthetic nanocomposites are highlighted. In general, the polysaccharides functionalized SeNPs can be easily obtained using sodium selenite as precursor and ascorbic acid as reductant. The final products having different particle size, morphology, and selenium content exhibit abundant physiological activities. Structural factors of polysacchairdes involving molecular weights, substitution of functional groups, and chain conformation play determinant roles on the properties of nanocomposites, resulting in different biological performances. The review on the achievements and current status of polysaccharides conjugated SeNPs provides insights into this exciting research topic for further studies in the future.
Collapse
Affiliation(s)
- Xiao-Dan Shi
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yong-Qi Tian
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiu-Lin Wu
- Institute of Biomedical and Pharmaceutical Technology & College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Shao-Yun Wang
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
12
|
Chand A, Biswal HS. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Reddy K, Mugesh G. Application of dehydroalanine as a building block for the synthesis of selenocysteine-containing peptides. RSC Adv 2019; 9:34-43. [PMID: 35521604 PMCID: PMC9059261 DOI: 10.1039/c8ra09880h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
Selenocysteine (Sec), the 21st proteinogenic amino acid, is inserted co-translationally into number of natural proteins. It is coded by a dual function stop codon UGA (opal). It is a redox active amino acid found at the active sites of several enzymes that are involved in oxidation–reduction reactions. These enzymes include the three major mammalian selenoproteins glutathione peroxidase (GPx), thioredoxin reductase (TrxR), and iodothyronine deiodinase (Dio). Although Sec is structurally similar to its sulfur analogue cysteine (Cys), the lower pKa of the selenol group in Sec as compared to that of Cys and the interesting redox properties of the selenium atom in peptides and proteins play crucial roles in redox catalysis. However, the chemical synthesis of Sec-containing peptides has been a difficult task. In this paper, we report on a new method for the synthesis of Sec and Sec-containing peptides using dehydroalanine (Dha) as a building block. A new method for the synthesis of Sec and Sec-containing peptides using dehydroalanine (Dha) as a building block is described.![]()
Collapse
Affiliation(s)
- Kishorkumar M. Reddy
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| |
Collapse
|
14
|
Organic selenium in animal nutrition – utilisation, metabolism, storage and comparison with other selenium sources. JOURNAL OF APPLIED ANIMAL NUTRITION 2016. [DOI: 10.1017/jan.2016.5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SummaryThe importance of selenium as a key component of antioxidant systems in animals is well recognised due to much research about this mineral in many species. Selenium is required as part of the antioxidant enzyme structure and plays a major role in various protective systems in animal physiology, including immunity, cellular stability and DNA protection. The following review is the first in a series of three which details the importance of selenium in animal nutrition, and how the chemically organic form, which is akin to the form of the mineral in natural feed materials, can provide increased benefits in utilisation, storage and metabolism compared to inorganic sources.
Collapse
|
15
|
Cordeau E, Cantel S, Gagne D, Lebrun A, Martinez J, Subra G, Enjalbal C. Selenazolidine: a selenium containing proline surrogate in peptide science. Org Biomol Chem 2016; 14:8101-8. [PMID: 27506250 DOI: 10.1039/c6ob01450j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the search for new peptide ligands containing selenium in their sequences, we investigated l-4-selenazolidine-carboxylic acid (selenazolidine, Sez) as a proline analog with the chalcogen atom in the γ-position of the ring. In contrast to proteinogenic selenocysteine (Sec) and selenomethionine (SeMet), the incorporation within a peptide sequence of such a non-natural amino acid has never been studied. There is thus a great interest in increasing the possibility of selenium insertion within peptides, especially for sequences that do not possess a sulfur containing amino acid (Cys or Met), by offering other selenated residues suitable for peptide synthesis protocols. Herein, we have evaluated selenazolidine in Boc/Bzl and Fmoc/tBu strategies through the synthesis of a model tripeptide, both in solution and on a solid support. Special attention was paid to the stability of the Sez residue in basic conditions. Thus, generic protocols have been optimized to synthesize Sez-containing peptides, through the use of an Fmoc-Xxx-Sez-OH dipeptide unit. As an example, a new analog of the vasopressin receptor-1A antagonist was prepared, in which Pro was replaced with Sez [3-(4-hydroxyphenyl)-propionyl-d-Tyr(Me)-Phe-Gln-Asn-Arg-Sez-Arg-NH2]. Both proline and such pseudo-proline containing peptides exhibited similar pharmacological properties and endopeptidase stabilities indicating that the presence of the selenium atom has minimal functional effects. Taking into account the straightforward handling of Sez as a dipeptide building block in a conventional Fmoc/tBu SPPS strategy, this result suggested a wide range of potential uses of the Sez amino acid in peptide chemistry, for instance as a viable proline surrogate as well as a selenium probe, complementary to Sec and SeMet, for NMR and mass spectrometry analytical purposes.
Collapse
Affiliation(s)
- E Cordeau
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place E. Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Bhowmick D, Mugesh G. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Org Biomol Chem 2016; 13:10262-72. [PMID: 26372527 DOI: 10.1039/c5ob01665g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.
Collapse
Affiliation(s)
- Debasish Bhowmick
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.
| | | |
Collapse
|
17
|
|
18
|
Elsherbini M, Hamama WS, Zoorob HH. Recent advances in the chemistry of selenium-containing heterocycles: Five-membered ring systems. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Yurkerwich K, Quinlivan PJ, Rong Y, Parkin G. Phenylselenolate Mercury Alkyl Compounds, PhSeHgMe and PhSeHgEt: Molecular Structures, Protolytic Hg-C Bond Cleavage and Phenylselenolate Exchange. Polyhedron 2016; 103:307-314. [PMID: 26644634 PMCID: PMC4669890 DOI: 10.1016/j.poly.2015.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg-C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg-C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg-SePh/Hg-X groups rather than metathesis of the Hg-R/Hg-R groups.
Collapse
Affiliation(s)
- Kevin Yurkerwich
- Department of Chemistry, Columbia University, New York New York 10027,
USA
| | | | - Yi Rong
- Department of Chemistry, Columbia University, New York New York 10027,
USA
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York New York 10027,
USA
| |
Collapse
|
20
|
Palmer J, Parkin G. Protolytic cleavage of Hg-C bonds induced by 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone: synthesis and structural characterization of mercury complexes. J Am Chem Soc 2015; 137:4503-16. [PMID: 25822075 PMCID: PMC4415037 DOI: 10.1021/jacs.5b00840] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Indexed: 12/22/2022]
Abstract
Multinuclear ((1)H, (77)Se, and (199)Hg) NMR spectroscopy demonstrates that 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone, H(sebenzim(Me)), a structural analogue of the selenoamino acid, selenoneine, binds rapidly and reversibly to the mercury centers of HgX2 (X = Cl, Br, I), while X-ray diffraction studies provide evidence for the existence of adducts of composition [H(sebenzim(Me))]xHgX2 (X = Cl, x = 2, 3, 4; X = I, x = 2) in the solid state. H(sebenzim(Me)) also reacts with methylmercury halides, but the reaction is accompanied by elimination of methane resulting from protolytic cleavage of the Hg-C bond, an observation that is of relevance to the report that selenoneine demethylates CysHgMe, thereby providing a mechanism for mercury detoxification. Interestingly, the structures of [H(sebenzim(Me))]xHgX2 exhibit a variety of different hydrogen bonding patterns resulting from the ability of the N-H groups to form hydrogen bonds with chlorine, iodine, and selenium.
Collapse
Affiliation(s)
- Joshua
H. Palmer
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
21
|
Bhowmick D, Mugesh G. Introduction of a catalytic triad increases the glutathione peroxidase-like activity of diaryl diselenides. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01294e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glutathione peroxidase-like antioxidant activity of amine and amide-based diselenides is described.
Collapse
Affiliation(s)
- Debasish Bhowmick
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| |
Collapse
|
22
|
Effect of CDNB on filarial thioredoxin reductase : A proteomic and biochemical approach. J Proteomics 2015; 113:435-46. [DOI: 10.1016/j.jprot.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 02/04/2023]
|
23
|
Azad G, Singh V, Mandal P, Singh P, Golla U, Baranwal S, Chauhan S, Tomar RS. Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio 2014; 4:77-89. [PMID: 24490132 PMCID: PMC3907691 DOI: 10.1016/j.fob.2014.01.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/12/2022] Open
Abstract
Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting) assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH) or N-acetyl-l-cysteine (NAC). Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.
Collapse
Key Words
- CypA, Cyclophilin A
- DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate
- Ebselen
- FACS, florescence activated cell sorting
- GDH, glutamate dehydrogenase
- GSH, glutathione
- Glutamate dehydrogenase
- Histone clipping
- Mitochondrial membrane potential
- NAC, N-acetyl-l-cysteine
- Ni-NTA, nickel-nitrilotriacetic acid
- ROS levels
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Yeast sporulation
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| |
Collapse
|
24
|
Prabhu P, Singh BG, Noguchi M, Phadnis PP, Jain VK, Iwaoka M, Priyadarsini KI. Stable selones in glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org Biomol Chem 2014; 12:2404-12. [DOI: 10.1039/c3ob42336k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stable selone formation in 2,2′-diselenobis[3-amidopyridine], reduces unwanted sulfur exchange reaction in glutathione peroxidase like catalytic cycle and enhances its enzyme activity.
Collapse
Affiliation(s)
- Parashiva Prabhu
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Beena G. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400 085, India
| | - Masato Noguchi
- Department of Chemistry
- School of Science
- Tokai University
- Kanagawa 259-1292, Japan
| | - Prasad P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Vimal K. Jain
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085, India
| | - Michio Iwaoka
- Department of Chemistry
- School of Science
- Tokai University
- Kanagawa 259-1292, Japan
| | | |
Collapse
|
25
|
Treatment with D-penicillamine or zinc sulphate affects copper metabolism and improves but not normalizes antioxidant capacity parameters in Wilson disease. Biometals 2013; 27:207-15. [PMID: 24368744 PMCID: PMC3905172 DOI: 10.1007/s10534-013-9694-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/11/2013] [Indexed: 12/31/2022]
Abstract
Copper accumulation in tissues due to a biallelic pathogenic mutation of the gene: ATP7B results in a clinical phenotype known as Wilson disease (WD). Aberrations in copper homeostasis can create favourable conditions for superoxide-yielding redox cycling and oxidative tissue damage. Drugs used in WD treatment aim to remove accumulated copper and normalise the free copper concentration in the blood. In the current study the effect of decoppering treatment on copper metabolism and systemic antioxidant capacity parameters was analyzed. Treatment naïve WD patients (TNWD) (n = 33), those treated with anti-copper drugs (TWD) (n = 99), and healthy controls (n = 99) were studied. Both TNWD and TWD patients characterised with decreased copper metabolism parameters, as well as decreased total antioxidant potential (AOP), glutathione (GSH) level, activity of catalase, glutathione peroxidase (GPx), and S-transferase glutathione, compared to controls. TWD patients had significantly lower copper metabolism parameters, higher total AOP and higher levels of GSH than TWD individuals; however, no difference was observed between these two patient groups with respect to the rest of the antioxidant capacity parameters. Patients who had undergone treatment with D-penicillamine or zinc sulphate did not differ with respect to copper metabolism or antioxidant capacity parameters, with the exception of GPx that was lower in D-penicillamine treated individuals. These data suggest that anti-copper treatment affects copper metabolism as well as improves, but does not normalize, natural antioxidant capacity in patients with WD. We propose to undertake studies aimed to evaluate the usefulness of antioxidants as well as selenium as a supplemental therapy in WD.
Collapse
|
26
|
Vernekar AA, Mugesh G. Catalytic reduction of graphene oxide nanosheets by glutathione peroxidase mimetics reveals a new structural motif in graphene oxide. Chemistry 2013; 19:16699-706. [PMID: 24281813 DOI: 10.1002/chem.201303339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 11/06/2022]
Abstract
A catalytic reduction of graphene oxide (GO) by glutathione peroxidase (GPx) mimics is reported. This study reveals that GO contains peroxide functionalities, in addition to the epoxy, hydroxyl and carboxylic acid groups that have been identified earlier. It also is shown that GO acts as a peroxide substrate in the GPx-like catalytic activity of organoselenium/tellurium compounds. The reaction of tellurol, generated from the corresponding ditelluride, reduces GO through the glutathione (GSH)-mediated cleavage of the peroxide linkage. The mechanism of GO reduction by the tellurol in the presence of GSH involves the formation of a tellurenic acid and tellurenyl sulfide intermediates. Interestingly, the GPx mimics also catalyze the decarboxylation of the carboxylic acid functionality in GO at ambient conditions. Whereas the selenium/tellurium-mediated catalytic reduction/decarboxylation of GO may find applications in bioremediation processes, this study suggests that the modification of GO by biologically relevant compounds such as redox proteins must be taken into account when using GO for biomedical applications because such modifications can alter the fundamental properties of GO.
Collapse
Affiliation(s)
- Amit A Vernekar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India), Fax: (+91) 80 2360 1552
| | | |
Collapse
|
27
|
Roy G, Jayaram PN, Mugesh G. Inhibition of lactoperoxidase-catalyzed oxidation by imidazole-based thiones and selones: a mechanistic study. Chem Asian J 2013; 8:1910-21. [PMID: 23737077 DOI: 10.1002/asia.201300274] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/08/2013] [Indexed: 11/10/2022]
Abstract
Herein, we describe the synthesis and biomimetic activity of a series of N,N-disubstituted thiones and selones that contain an imidazole pharmacophore. The N,N-disubstituted thiones do not show any inhibitory activity towards LPO-catalyzed oxidation reactions, but their corresponding N,N-disubstituted selones exhibit inhibitory activity towards LPO-catalyzed oxidation reactions. Substituents on the N atom of the imidazole ring appear to have a significant effect on the inhibition of LPO-catalyzed oxidation and iodination reactions. Selones 16, 17, and 19, which contain methyl, ethyl, and benzyl substituents, exhibit similar inhibition activities towards LPO-catalyzed oxidation reactions with IC50 values of 24.4, 22.5, and 22.5 μM, respectively. However, their activities are almost three-fold lower than that of the commonly used anti-thyroid drug methimazole (MMI). In contrast, selone 21, which contains a N-CH2CH2OH substituent, exhibits high inhibitory activity, with an IC50 value of 7.2 μM, which is similar to that of MMI. The inhibitory activity of these selones towards LPO-catalyzed oxidation/iodination reactions is due to their ability to decrease the concentrations of the co-substrates (H2O2 and I2), either by catalytically reducing H2O2 (anti-oxidant activity) or by forming stable charge-transfer complexes with oxidized iodide species. The inhibition of LPO-catalyzed oxidation/iodination reactions by N,N-disubstituted selones can be reversed by increasing the concentration of H2O2. Interestingly, all of the N,N-disubstituted selones exhibit high anti-oxidant activities and their glutathione peroxidase (GPx)-like activity is 4-12-fold higher than that of the well-known GPx-mimic ebselen. These experimental and theoretical studies suggest that the selones exist as zwitterions, in which the imidazole ring contains a positive charge and the selenium atom carries a large negative charge. Therefore, the selenium moieties of these selones possess highly nucleophilic character. The (77)Se NMR chemical shifts for the selones show large upfield shift, thus confirming the zwitterionic structure in solution.
Collapse
Affiliation(s)
- Gouriprasanna Roy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.
| | | | | |
Collapse
|
28
|
Steklov MY, Chernysheva AN, Antipin RL, Majouga AG, Beloglazkina EK, Moiseeva AA, Strel’tsova ED, Zyk NV. Synthesis and coordinating properties of 5-phenyl- and 5-pyridylmethylidene-substituted 2-selenohydantoines and 2-selenoimidazol-4-ones. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0161-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Palmer JH, Parkin G. 2-Seleno-1-alkylbenzimidazoles and their Diselenides: Synthesis and Structural Characterization of a 2-Seleno-1-methylbenzimidazole Complex of Mercury. Polyhedron 2013; 52:658-668. [PMID: 23543946 PMCID: PMC3610765 DOI: 10.1016/j.poly.2012.07.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
2-Seleno-1-methylbenzimidazole, H(sebenzimMe), can be synthesized from 1-methylbenzimidazole by sequential treatment with (i) BunLi, (ii) elemental selenium and (iii) HCl(aq). This method is also applicable to the synthesis of 2-seleno-1-t-butylbenzimidazole, H(sebenzimBut ). Single crystal X-ray diffraction and NMR spectroscopic data demonstrate that H(sebenzimMe) and H(sebenzimBut ) exist as the selone rather than the selenol tautomers, which is in accord with the results of density functional theory (B3LYP) calculations. The data also indicate that the selone is best represented as a C+-Se- zwitterion rather than as a C=Se doubly bonded species. Aerobic oxidation of H(sebenzimMe) and H(sebenzimBut ) in the presence of Et3N yields the diselenides, (sebenzimMe)2 and (sebenzimBut )2. In addition, H(sebenzimMe) reacts with HgCl2 to give [H(sebenzimMe)]2HgCl2, the first structurally characterized example of a 2-seleno-1-alkylimidazole mercury complex.
Collapse
Affiliation(s)
- Joshua H. Palmer
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
30
|
Beloglazkina EK, Majouga AG, Antipin RL, Myannik KA, Moiseeva AA, Zyk NV. Novel copper(II) and cobalt(II) complexes with selenium substituted imidazolyl imines. The molecular and crystal structure of [N-(2-(phenylseleno)ethyl)-N-(imidazol-2-ylmethylene)amine]copper(II) dichloride. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Bhowmick D, Mugesh G. Tertiary amine-based glutathione peroxidase mimics: some insights into the role of steric and electronic effects on antioxidant activity. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Lara RG, Rosa PC, Soares LK, Silva MS, Jacob RG, Perin G. A simple and stereoselective synthesis of (Z)-1,2-bis-arylselanyl alkenes from alkynes using KF/Al2O3. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Vishwanatha TM, Narendra N, Chattopadhyay B, Mukherjee M, Sureshbabu VV. Synthesis of Selenoxo Peptides and Oligoselenoxo Peptides Employing LiAlHSeH. J Org Chem 2012; 77:2689-702. [DOI: 10.1021/jo2024703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- T. M. Vishwanatha
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| | - N. Narendra
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| | - Basab Chattopadhyay
- Department
of Solid State Physics, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India
| | - Monika Mukherjee
- Department
of Solid State Physics, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India
| | - Vommina V. Sureshbabu
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| |
Collapse
|
34
|
Wu H, Li X, Liu W, Chen T, Li Y, Zheng W, Man CWY, Wong MK, Wong KH. Surface decoration of selenium nanoparticles by mushroom polysaccharides–protein complexes to achieve enhanced cellular uptake and antiproliferative activity. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16828f] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Abbas M, Wessjohann LA. Direct synthesis of sensitive selenocysteine peptides by the Ugi reaction. Org Biomol Chem 2012; 10:9330-3. [DOI: 10.1039/c2ob26552d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry. Journal of Food Science and Technology 2011; 51:322-8. [PMID: 24493890 DOI: 10.1007/s13197-011-0501-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 12/24/2022]
Abstract
Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris have gained considerable importance in recent decades. C. vulgaris strain highly tolerant to extreme pH variations was isolated and mass-cultivated in the wastewater from a confectionery industry. C.vulgaris showed better growth in wastewater than in improvised CFTRI medium. The microalgal biomass was then screened for the following antioxidants: peroxidase, superoxide dismutase, polyphenol oxidase, glutathione peroxidase, chlorophyll a, ascorbic acid, α-tocopherol and reduced glutathione. The total polyphenol content of the strain was also studied. The strain showed a high degree of enzymatic antioxidant activity (0.195 × 10(-5) ± 0.0072 units/cell peroxidase, 0.04125 × 10(-5) ± 0.001 units/cell superoxide dismutase, 0.2625 × 10(-5) ± 0.003 units/cell polyphenol oxidase and 0.025 × 10(-5) ± 0.003 glutathione peroxidase). The microalgal biomass also showed, per milligram weight, 0.2182 ± 0.005 μg of ascorbic acid, 0.00264 ± 0.001 μg of α-tocopherol and 0.07916 ± 0.004 μg of reduced glutathione. These results represent the possibility of using C. vulgaris grown in confectionery industry wastewater as a source of nutritious supplement, which is highly promising in terms of both economic and nutritional point of view.
Collapse
|
37
|
Affiliation(s)
- Abu Md. Asaduzzaman
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
38
|
Satheeshkumar K, Mugesh G. Synthesis and Antioxidant Activity of Peptide-Based Ebselen Analogues. Chemistry 2011; 17:4849-57. [DOI: 10.1002/chem.201003417] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Indexed: 11/06/2022]
|
39
|
Huras B, Zakrzewski J, Krawczyk M. Reactions of nitroxides, part XI: O-Aryl phenylselenophosphonates bearing a nitroxyl moiety. HETEROATOM CHEMISTRY 2011. [DOI: 10.1002/hc.20667] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Bhabak KP, Bhuyan BJ, Mugesh G. Bioinorganic and medicinal chemistry: aspects of gold(i)-protein complexes. Dalton Trans 2011; 40:2099-111. [DOI: 10.1039/c0dt01057j] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Bhabak KP, Mugesh G. Inhibition of peroxidase-catalyzed protein tyrosine nitration by antithyroid drugs and their analogues. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Chennakrishnareddy G, Nagendra G, Hemantha HP, Das U, Guru Row TN, Sureshbabu VV. Isoselenocyanates derived from Boc/Z-amino acids: synthesis, isolation, characterization, and application to the efficient synthesis of unsymmetrical selenoureas and selenoureidopeptidomimetics. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.06.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Ali ST, Jahangir S, Karamat S, Fabian WMF, Nawara K, Kóňa J. Theoretical Study on the Redox Cycle of Bovine Glutathione Peroxidase GPx1: pKa Calculations, Docking, and Molecular Dynamics Simulations. J Chem Theory Comput 2010; 6:1670-81. [DOI: 10.1021/ct9003355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Syed Tahir Ali
- Institute of Chemistry, Karl Franzens University, Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Science Campus, Karachi, Sindh, Pakistan, and Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Sajid Jahangir
- Institute of Chemistry, Karl Franzens University, Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Science Campus, Karachi, Sindh, Pakistan, and Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Sajjad Karamat
- Institute of Chemistry, Karl Franzens University, Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Science Campus, Karachi, Sindh, Pakistan, and Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Walter M. F. Fabian
- Institute of Chemistry, Karl Franzens University, Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Science Campus, Karachi, Sindh, Pakistan, and Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Krzysztof Nawara
- Institute of Chemistry, Karl Franzens University, Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Science Campus, Karachi, Sindh, Pakistan, and Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Juraj Kóňa
- Institute of Chemistry, Karl Franzens University, Graz, Heinrichstrasse 28, A-8010 Graz, Austria, Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Science Campus, Karachi, Sindh, Pakistan, and Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic
| |
Collapse
|
44
|
Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Organoselenium Chemistry: Role of Intramolecular Interactions. Chem Rev 2010; 110:4357-416. [PMID: 20384363 DOI: 10.1021/cr900352j] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anna J. Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741252, Nadia, West Bengal, India
| | - Sanjio S. Zade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741252, Nadia, West Bengal, India
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741252, Nadia, West Bengal, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741252, Nadia, West Bengal, India
| |
Collapse
|
45
|
Melnick JG, Yurkerwich K, Parkin G. On the chalcogenophilicity of mercury: evidence for a strong Hg-Se bond in [Tm(Bu(t))]HgSePh and its relevance to the toxicity of mercury. J Am Chem Soc 2010; 132:647-55. [PMID: 20020759 PMCID: PMC2810633 DOI: 10.1021/ja907523x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the reasons for the toxic effects of mercury has been attributed to its influence on the biochemical roles of selenium. For this reason, it is important to understand details pertaining to the nature of Hg-Se interactions and this has been achieved by comparison of a series of mercury chalcogenolate complexes that are supported by tris(2-mercapto-1-t-butyl-imidazolyl)hydroborato ligation, namely [Tm(Bu(t))]HgEPh (E = S, Se, Te). In particular, X-ray diffraction studies on [Tm(Bu(t))]HgEPh demonstrate that although the Hg-S bonds involving the [Tm(Bu(t))] ligand are longer than the corresponding Cd-S bonds of [Tm(Bu(t))]CdEPh, the Hg-EPh bonds are actually shorter than the corresponding Cd-EPh bonds, an observation which indicates that the apparent covalent radii of the metals in these compounds are dependent on the nature of the bonds. Furthermore, the difference in Hg-EPh and Cd-EPh bond lengths is a function of the chalcogen and increases in the sequence S (0.010 A) < Se (0.035 A) < Te (0.057 A). This trend indicates that the chalcogenophilicity of mercury increases in the sequence S < Se < Te. Thus, while mercury is often described as being thiophilic, it is evident that it actually has a greater selenophilicity, a notion that is supported by the observation of facile selenolate transfer from zinc to mercury upon treatment of [Tm(Bu(t))]HgSCH(2)C(O)N(H)Ph with [Tm(Bu(t))]ZnSePh. The significant selenophilicity of mercury is in accord with the aforementioned proposal that one reason for the toxicity of mercury is associated with it reducing the bioavailability of selenium.
Collapse
Affiliation(s)
| | - Kevin Yurkerwich
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
46
|
Sharadamma K, Purushotha B, Radhakrish P, Abhilekha P, Vagdevi H. Role of Selenium in Pets Health and Nutrition: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajas.2011.64.70] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Bhabak K, Mugesh G. Synthesis and Structure-Activity Correlation Studies of Secondary- and Tertiary-Amine-Based Glutathione Peroxidase Mimics. Chemistry 2009; 15:9846-54. [DOI: 10.1002/chem.200900818] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Bhabak K, Mugesh G. Amide-Based Glutathione Peroxidase Mimics: Effect of Secondary and Tertiary Amide Substituents on Antioxidant Activity. Chem Asian J 2009; 4:974-983. [DOI: 10.1002/asia.200800483] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Bhabak KP, Mugesh G. A Synthetic Model for the Inhibition of Glutathione Peroxidase by Antiarthritic Gold Compounds. Inorg Chem 2009; 48:2449-55. [DOI: 10.1021/ic8019183] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krishna P. Bhabak
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
50
|
Priyadarsini KI, Mishra B. Radical cations of some water-soluble organoselenium compounds: Insights from pulse radiolysis studies. Radiat Phys Chem Oxf Engl 1993 2008. [DOI: 10.1016/j.radphyschem.2008.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|