1
|
Versoza CJ, Ehmke EE, Jensen JD, Pfeifer SP. Characterizing the Rates and Patterns of De Novo Germline Mutations in the Aye-Aye (Daubentonia madagascariensis). Mol Biol Evol 2025; 42:msaf034. [PMID: 40048663 PMCID: PMC11884812 DOI: 10.1093/molbev/msaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
Given the many levels of biological variation in mutation rates observed to date in primates-spanning from species to individuals to genomic regions-future steps in our understanding of mutation rate evolution will not only be aided by a greater breadth of species coverage across the primate clade but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent-offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects and sex dependency in mutation rates, which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet.
Collapse
Affiliation(s)
- Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
López-Cortegano E, Chebib J, Jonas A, Vock A, Künzel S, Keightley PD, Tautz D. The rate and spectrum of new mutations in mice inferred by long-read sequencing. Genome Res 2025; 35:43-54. [PMID: 39622636 PMCID: PMC11789640 DOI: 10.1101/gr.279982.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
All forms of genetic variation originate from new mutations, making it crucial to understand their rates and mechanisms. Here, we use long-read sequencing from Pacific Biosciences (PacBio) to investigate de novo mutations that accumulated in 12 inbred mouse lines derived from three commonly used inbred strains (C3H, C57BL/6, and FVB) maintained for 8 to 15 generations in a mutation accumulation (MA) experiment. We built chromosome-level genome assemblies based on the MA line founders' genomes and then employed a combination of read and assembly-based methods to call the complete spectrum of new mutations. On average, there are about 45 mutations per haploid genome per generation, about half of which (54%) are insertions and deletions shorter than 50 bp (indels). The remainder are single-nucleotide mutations (SNMs; 44%) and large structural mutations (SMs; 2%). We found that the degree of DNA repetitiveness is positively correlated with SNM and indel rates and that a substantial fraction of SMs can be explained by homology-dependent mechanisms associated with repeat sequences. Most (90%) indels can be attributed to microsatellite contractions and expansions, and there is a marked bias toward 4 bp indels. Among the different types of SMs, tandem repeat mutations have the highest mutation rate, followed by insertions of transposable elements (TEs). We uncover a rich landscape of active TEs, notable differences in their spectrum among MA lines and strains, and a high rate of gene retroposition. Our study offers novel insights into mammalian genome evolution and highlights the importance of repetitive elements in shaping genomic diversity.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Anika Jonas
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anastasia Vock
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
3
|
Versoza CJ, Ehmke EE, Jensen JD, Pfeifer SP. Characterizing the rates and patterns of de novo germline mutations in the aye-aye ( Daubentonia madagascariensis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622690. [PMID: 39605388 PMCID: PMC11601268 DOI: 10.1101/2024.11.08.622690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Given the many levels of biological variation in mutation rates observed to date in primates - spanning from species to individuals to genomic regions - future steps in our understanding of mutation rate evolution will be aided by both a greater breadth of species coverage across the primate clade, but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent-offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations, and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects as well as sex dependency in mutation rates which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Alizadeh F, Abraghan YJ, Farrokhi S, Yousefi Y, Mirahmadi Y, Eslahi A, Mojarrad M. Production of Duchenne muscular dystrophy cellular model using CRISPR-Cas9 exon deletion strategy. Mol Cell Biochem 2024; 479:1027-1040. [PMID: 37289342 DOI: 10.1007/s11010-023-04759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive muscle wasting disorder caused by loss-of-function mutations in the dystrophin gene. Although the search for a definitive cure has failed to date, extensive efforts have been made to introduce effective therapeutic strategies. Gene editing technology is a great revolution in biology, having an immediate application in the generation of research models. DMD muscle cell lines are reliable sources to evaluate and optimize therapeutic strategies, in-depth study of DMD pathology, and screening the effective drugs. However, only a few immortalized muscle cell lines with DMD mutations are available. In addition, obtaining muscle cells from patients also requires an invasive muscle biopsy. Mostly DMD variants are rare, making it challenging to identify a patient with a particular mutation for a muscle biopsy. To overcome these challenges and generate myoblast cultures, we optimized a CRISPR/Cas9 gene editing approach to model the most common DMD mutations that include approximately 28.2% of patients. GAP-PCR and sequencing results show the ability of the CRISPR-Cas9 system to efficient deletion of mentioned exons. We showed producing truncated transcript due to the targeted deletion by RT-PCR and sequencing. Finally, mutation-induced disruption of dystrophin protein expression was confirmed by western blotting. All together, we successfully created four immortalized DMD muscle cell lines and showed the efficacy of the CRISPR-Cas9 system for the generation of immortalized DMD cell models with the targeted deletions.
Collapse
Affiliation(s)
- Farzaneh Alizadeh
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abraghan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yousefi
- Department of Biochemistry, Mashhad University of Ferdowsi, Mashhad, Iran
| | - Yeganeh Mirahmadi
- Department of Biochemistry, Genetics and Molecular Biology, Islamic Azad University, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Genetic Center of Khorasan Razavi, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Wang RJ, Raveendran M, Harris RA, Murphy WJ, Lyons LA, Rogers J, Hahn MW. De novo Mutations in Domestic Cat are Consistent with an Effect of Reproductive Longevity on Both the Rate and Spectrum of Mutations. Mol Biol Evol 2022; 39:msac147. [PMID: 35771663 PMCID: PMC9290555 DOI: 10.1093/molbev/msac147] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mutation rate is a fundamental evolutionary parameter with direct and appreciable effects on the health and function of individuals. Here, we examine this important parameter in the domestic cat, a beloved companion animal as well as a valuable biomedical model. We estimate a mutation rate of 0.86 × 10-8 per bp per generation for the domestic cat (at an average parental age of 3.8 years). We find evidence for a significant paternal age effect, with more mutations transmitted by older sires. Our analyses suggest that the cat and the human have accrued similar numbers of mutations in the germline before reaching sexual maturity. The per-generation mutation rate in the cat is 28% lower than what has been observed in humans, but is consistent with the shorter generation time in the cat. Using a model of reproductive longevity, which takes into account differences in the reproductive age and time to sexual maturity, we are able to explain much of the difference in per-generation rates between species. We further apply our reproductive longevity model in a novel analysis of mutation spectra and find that the spectrum for the cat resembles the human mutation spectrum at a younger age of reproduction. Together, these results implicate changes in life-history as a driver of mutation rate evolution between species. As the first direct observation of the paternal age effect outside of rodents and primates, our results also suggest a phenomenon that may be universal among mammals.
Collapse
Affiliation(s)
- Richard J Wang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
6
|
Prenatal Diagnosis of Dystrophinopathy and Cytogenetic Analysis in 303 Chinese Families. MATERNAL-FETAL MEDICINE 2021. [DOI: 10.1097/fm9.0000000000000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch 2021; 473:1099-1115. [DOI: 10.1007/s00424-021-02589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
|
8
|
Abstract
Defective color vision comes in various forms and its frequency varies from population to population. This article is concerned with only the sex-linked form of essential hereditary color blindness. A model of a 'small' population is constructed to explore the dynamics of occurrence of color blindness. Different mutation rates are introduced for eggs and sperm. Birth and death rates of affected individuals are assumed to be the same as those in the unaffected. Simulation demonstrates that large changes in frequency occur randomly from the combined effects of mutation, transmission of genes from generation to generation and births and deaths. A reference is made to the hypothesis that observed differences in rates are due to selection in the transition from hunter-gatherer to farmer.
Collapse
|
9
|
Nghiem PP, Kornegay JN. Gene therapies in canine models for Duchenne muscular dystrophy. Hum Genet 2019; 138:483-489. [PMID: 30734120 DOI: 10.1007/s00439-019-01976-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.
Collapse
Affiliation(s)
- Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA.
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, 77843-4458, USA
| |
Collapse
|
10
|
Scally A. The mutation rate in human evolution and demographic inference. Curr Opin Genet Dev 2016; 41:36-43. [PMID: 27589081 DOI: 10.1016/j.gde.2016.07.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/23/2023]
Abstract
The germline mutation rate has long been a major source of uncertainty in human evolutionary and demographic analyses based on genetic data, but estimates have improved substantially in recent years. I discuss our current knowledge of the mutation rate in humans and the underlying biological factors affecting it, which include generation time, parental age and other developmental and reproductive timescales. There is good evidence for a slowdown in mean mutation rate during great ape evolution, but not for a more recent change within the timescale of human genetic diversity. Hence, pending evidence to the contrary, it is reasonable to use a present-day rate of approximately 0.5×10-9bp-1year-1 in all human or hominin demographic analyses.
Collapse
Affiliation(s)
- Aylwyn Scally
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom.
| |
Collapse
|
11
|
Abstract
Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which 'dark' gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
12
|
Wang D, Guo Q, Ba H, Li C. Cloning and Characterization of a Nanog Pseudogene in Sika Deer (Cervus nippon). DNA Cell Biol 2016; 35:576-584. [PMID: 27351458 DOI: 10.1089/dna.2016.3303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanog plays a crucial role in the maintenance of stem cell pluripotency. Annual full regeneration of deer antlers has been shown to be a stem cell-based process, and antler stem cells (ASCs) reportedly express Nanog. In the present study, we found that Nanog RNA expressed by ASCs was a pseudogene (Nanog-ps). The coding sequence of Nanog-ps was 93.1% homologous to that of bovine Nanog, but with two missing nucleotides after position 391. Deletion of the two nucleotides in Nanog-ps resulted in a frame-shift mutation, suggesting that Nanog-ps would not encode a normal Nanog protein. Overexpression of Nanog-ps failed to affect downstream genes of Nanog or to enhance cell proliferation in the ASCs. However, this pseudogene was transcribed in the ASCs and encoded a nuclear protein; the expression levels of Nanog-ps were also related to the degree of stemness in antler cells. Here, we reported this pseudogene, because it could serve as a useful marker for identifying ASCs and evaluating the degree of their stemness.
Collapse
Affiliation(s)
- Datao Wang
- 1 Chinese Academy of Agricultural Sciences, Institute of Special Wild Economic Animal and Plant Science , Jilin, China .,2 State Key Laboratory for Molecular Biology of Special Economical Animals , Chinese Academy of Agricultural Sciences, Jilin, China
| | - Qianqian Guo
- 1 Chinese Academy of Agricultural Sciences, Institute of Special Wild Economic Animal and Plant Science , Jilin, China
| | - Hengxing Ba
- 1 Chinese Academy of Agricultural Sciences, Institute of Special Wild Economic Animal and Plant Science , Jilin, China
| | - Chunyi Li
- 1 Chinese Academy of Agricultural Sciences, Institute of Special Wild Economic Animal and Plant Science , Jilin, China .,2 State Key Laboratory for Molecular Biology of Special Economical Animals , Chinese Academy of Agricultural Sciences, Jilin, China
| |
Collapse
|
13
|
Ségurel L, Wyman MJ, Przeworski M. Determinants of Mutation Rate Variation in the Human Germline. Annu Rev Genomics Hum Genet 2014; 15:47-70. [DOI: 10.1146/annurev-genom-031714-125740] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laure Ségurel
- Laboratoire Éco-Anthropologie et Ethnobiologie, UMR 7206, Muséum National d'Histoire Naturelle–Centre National de la Recherche Scientifique–Université Paris 7 Diderot, Paris 75231, France;
| | - Minyoung J. Wyman
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Molly Przeworski
- Department of Human Genetics and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
14
|
Ji X, Zhang J, Xu Y, Long F, Sun W, Liu X, Chen Y, Jiang W. MLPA Application in Clinical Diagnosis of DMD/BMD in Shanghai. J Clin Lab Anal 2014; 29:405-11. [PMID: 25131993 DOI: 10.1002/jcla.21787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/21/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked recessive disorders caused by mutation in dystrophin gene. We reported 3-year clinic experience from a single hospital in Shanghai using multiplex ligation dependent probe amplification (MLPA) assay to detect DMD mutations. METHODS Four hundred and fifty-one males and 184 females, who were clinically diagnosed as DMD/BMD patients or carriers at our hospital's outpatient clinic, were collected and performed with MLPA to detect DMD gene mutations. RESULTS Seventeen novel mutation points not reported in the Leiden Muscular Dystrophy pages were identified in this study. We found that the most frequent deletion spots ranged from exon45 to exon52, and exon2, exon19 were the two most frequently detected duplication spots. CONCLUSION The results of our study confirmed MLPA as an efficient clinical method for detecting DMD gene mutations in DMD/BMD patients. Single exon mutation detected by MLPA should be verified by other methods, and we should emphasize that only precise clinical molecular diagnosis can lead to the feasibility of prenatal diagnosis.
Collapse
Affiliation(s)
- Xing Ji
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jingmin Zhang
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yan Xu
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Fei Long
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Sun
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Xiaoqin Liu
- Shanghai Institute for Pediatric Research, Shanghai, China.,Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingwei Chen
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenting Jiang
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
15
|
Schaibley VM, Zawistowski M, Wegmann D, Ehm MG, Nelson MR, St. Jean PL, Abecasis GR, Novembre J, Zöllner S, Li JZ. The influence of genomic context on mutation patterns in the human genome inferred from rare variants. Genome Res 2013; 23:1974-84. [PMID: 23990608 PMCID: PMC3847768 DOI: 10.1101/gr.154971.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/19/2013] [Indexed: 01/22/2023]
Abstract
Understanding patterns of spontaneous mutations is of fundamental interest in studies of human genome evolution and genetic disease. Here, we used extremely rare variants in humans to model the molecular spectrum of single-nucleotide mutations. Compared to common variants in humans and human-chimpanzee fixed differences (substitutions), rare variants, on average, arose more recently in the human lineage and are less affected by the potentially confounding effects of natural selection, population demographic history, and biased gene conversion. We analyzed variants obtained from a population-based sequencing study of 202 genes in >14,000 individuals. We observed considerable variability in the per-gene mutation rate, which was correlated with local GC content, but not recombination rate. Using >20,000 variants with a derived allele frequency ≤ 10(-4), we examined the effect of local GC content and recombination rate on individual variant subtypes and performed comparisons with common variants and substitutions. The influence of local GC content on rare variants differed from that on common variants or substitutions, and the differences varied by variant subtype. Furthermore, recombination rate and recombination hotspots have little effect on rare variants of any subtype, yet both have a relatively strong impact on multiple variant subtypes in common variants and substitutions. This observation is consistent with the effect of biased gene conversion or selection-dependent processes. Our results highlight the distinct biases inherent in the initial mutation patterns and subsequent evolutionary processes that affect segregating variants.
Collapse
Affiliation(s)
- Valerie M. Schaibley
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48019, USA
| | - Daniel Wegmann
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Margaret G. Ehm
- Department of Quantitative Sciences, GlaxoSmithKline (GSK), Research Triangle Park, North Carolina 27709, USA
| | - Matthew R. Nelson
- Department of Quantitative Sciences, GlaxoSmithKline (GSK), Research Triangle Park, North Carolina 27709, USA
| | - Pamela L. St. Jean
- Department of Quantitative Sciences, GlaxoSmithKline (GSK), Research Triangle Park, North Carolina 27709, USA
| | - Gonçalo R. Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48019, USA
| | - John Novembre
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48019, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48019, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
16
|
Kondrashov FA, Kondrashov AS. Measurements of spontaneous rates of mutations in the recent past and the near future. Philos Trans R Soc Lond B Biol Sci 2010; 365:1169-76. [PMID: 20308091 PMCID: PMC2871817 DOI: 10.1098/rstb.2009.0286] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rate of spontaneous mutation in natural populations is a fundamental parameter for many evolutionary phenomena. Because the rate of mutation is generally low, most of what is currently known about mutation has been obtained through indirect, complex and imprecise methodological approaches. However, in the past few years genome-wide sequencing of closely related individuals has made it possible to estimate the rates of mutation directly at the level of the DNA, avoiding most of the problems associated with using indirect methods. Here, we review the methods used in the past with an emphasis on next generation sequencing, which may soon make the accurate measurement of spontaneous mutation rates a matter of routine.
Collapse
Affiliation(s)
- Fyodor A Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, , C/Dr. Aiguader 88, Barcelona Biomedical Research Park Building 08003, Barcelona, Spain.
| | | |
Collapse
|
17
|
Trimarco A, Torella A, Piluso G, Maria Ventriglia V, Politano L, Nigro V. Log-PCR: a new tool for immediate and cost-effective diagnosis of up to 85% of dystrophin gene mutations. Clin Chem 2008; 54:973-81. [PMID: 18403565 DOI: 10.1373/clinchem.2007.097881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the dystrophin gene. Despite the progress in the technologies of mutation detection, the disease of one third of patients escapes molecular definition because the labor and expense involved has precluded analyzing the entire gene. Novel techniques with higher detection rates, such as multiplex ligation-dependent probe amplification and multiplex amplifiable probe hybridization, have been introduced. METHODS We approached the challenge of multiplexing by modifying the PCR chemistry. We set up a rapid protocol that analyzes all dystrophin exons and flanking introns (57.5 kb). We grouped exons according to their effect on the reading frame and ran 2 PCR reactions for DMD mutations and 2 reactions for BMD mutations under the same conditions. The PCR products are evenly spaced logarithmically on the gel (Log-PCR) in an order that reproduces their chromosomal locations. This strategy enables both simultaneous mapping of all the mutation borders and distinguishing between DMD and BMD. As a proof of principle, we reexamined samples from 506 patients who had received a DMD or BMD diagnosis. RESULTS We observed gross rearrangements in 428 of the patients (84.6%; 74.5% deletions and 10.1% duplications). We also recognized a much broader spectrum of mutations and identified 14.6% additional cases. CONCLUSIONS This study is the first exhaustive investigation of this subject and has made possible the development of a cost-effective test for diagnosing a larger proportion of cases. The benefit of this approach may allow more focused efforts for discovering small or deep-intronic mutations among the few remaining undiagnosed cases. The same protocol can be extended to set up Log-PCRs for other high-throughput applications.
Collapse
Affiliation(s)
- Amelia Trimarco
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples
| | | | | | | | | | | |
Collapse
|
18
|
Aartsma-Rus A, Van Deutekom JCT, Fokkema IF, Van Ommen GJB, Den Dunnen JT. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 2006; 34:135-44. [PMID: 16770791 DOI: 10.1002/mus.20586] [Citation(s) in RCA: 509] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The severe Duchenne and milder Becker muscular dystrophy are both caused by mutations in the DMD gene. This gene codes for dystrophin, a protein important for maintaining the stability of muscle-fiber membranes. In 1988, Monaco and colleagues postulated an explanation for the phenotypic difference between Duchenne and Becker patients in the reading-frame rule: In Duchenne patients, mutations induce a shift in the reading frame leading to prematurely truncated, dysfunctional dystrophins. In Becker patients, in-frame mutations allow the synthesis of internally deleted, but largely functional dystrophins. Currently, over 4700 mutations have been reported in the Leiden DMD mutation database, of which 91% are in agreement with this rule. In this study we provide an update of the mutational variability in the DMD gene, particularly focusing on genotype-phenotype correlations and mutations that appear to be exceptions to the reading-frame rule.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Leiden University Medical Center, Department of Human Genetics, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|