1
|
Cassaday HJ, Muir C, Stevenson CW, Bonardi C, Hock R, Waite L. From safety to frustration: The neural substrates of inhibitory learning in aversive and appetitive conditioning procedures. Neurobiol Learn Mem 2023; 202:107757. [PMID: 37044368 DOI: 10.1016/j.nlm.2023.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Inhibitory associative learning counters the effects of excitatory learning, whether appetitively or aversively motivated. Moreover, the affective responses accompanying the inhibitory associations are of opponent valence to the excitatory conditioned responses. Inhibitors for negative aversive outcomes (e.g. shock) signal safety, while inhibitors for appetitive outcomes (e.g. food reward) elicit frustration and/or disappointment. This raises the question as to whether studies using appetitive and aversive conditioning procedures should demonstrate the same neural substrates for inhibitory learning. We review the neural substrates of appetitive and aversive inhibitory learning as measured in different procedural variants and in the context of the underpinning excitatory conditioning on which it depends. The mesocorticolimbic dopamine pathways, retrosplenial cortex and hippocampus are consistently implicated in inhibitory learning. Further neural substrates identified in some procedural variants may be related to the specific motivation of the learning task and modalities of the learning cues. Finally, we consider the translational implications of our understanding of the neural substrates of inhibitory learning, for obesity and addictions as well as for anxiety disorders.
Collapse
Affiliation(s)
- H J Cassaday
- School of Psychology, University of Nottingham, United Kingdom.
| | - C Muir
- School of Psychology, University of Nottingham, United Kingdom; School of Physiology, Pharmacology, and Neuroscience, University of Bristol, United Kingdom
| | - C W Stevenson
- School of Biosciences, University of Nottingham, United Kingdom
| | - C Bonardi
- School of Psychology, University of Nottingham, United Kingdom
| | - R Hock
- School of Psychology, University of Nottingham, United Kingdom
| | - L Waite
- School of Psychology, University of Nottingham, United Kingdom
| |
Collapse
|
2
|
O'Dell DE, Schreurs BG, Smith-Bell C, Wang D. Disruption of rat deep cerebellar perineuronal net alters eyeblink conditioning and neuronal electrophysiology. Neurobiol Learn Mem 2021; 177:107358. [PMID: 33285318 PMCID: PMC8279724 DOI: 10.1016/j.nlm.2020.107358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023]
Abstract
The perineuronal net (PNN) is a specialized type of extracellular matrix found in the central nervous system. The PNN forms on fast spiking neurons during postnatal development but the ontogeny of PNN development has yet to be elucidated. By studying the development and prevalence of the PNN in the juvenile and adult rat brain, we may be able to understand the PNN's role in development and learning and memory. We show that the PNN is fully developed in the deep cerebellar nuclei (DCN) of rats by P18. By using enzymatic digestion of the PNN with chondroitinase ABC (ChABC), we are able to study how digestion of the PNN affects cerebellar-dependent eyeblink conditioning in vivo and perform electrophysiological recordings from DCN neurons in vitro. In vivo degradation of the PNN resulted in significant differences in eyeblink conditioning amplitude and area. Female animals in the vehicle group demonstrated higher levels of conditioning as well as significantly higher post-probe conditioned responses compared to males in that group, differences not present in the ChABC group. In vitro, we found that DCN neurons with a disrupted PNN following exposure to ChABC had altered membrane properties, fewer rebound spikes, and decreased intrinsic excitability. Together, this study further elucidates the role of the PNN in cerebellar learning in the DCN and is the first to demonstrate PNN degradation may erase sex differences in delay conditioning.
Collapse
Affiliation(s)
- Deidre E O'Dell
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States.
| | - Bernard G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| | - Carrie Smith-Bell
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| | - Desheng Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, WVU, 33 Medical Center Dr, Morgantown, WV 26505, United States
| |
Collapse
|
3
|
Shipman ML, Green JT. Cerebellum and cognition: Does the rodent cerebellum participate in cognitive functions? Neurobiol Learn Mem 2019; 170:106996. [PMID: 30771461 DOI: 10.1016/j.nlm.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
There is a widespread, nearly complete consensus that the human and non-human primate cerebellum is engaged in non-motor, cognitive functions. This body of research has implicated the lateral portions of lobule VII (Crus I and Crus II) and the ventrolateral dentate nucleus. With rodents, however, it is not so clear. We review here approximately 40 years of experiments using a variety of cerebellar manipulations in rats and mice and measuring the effects on executive functions (working memory, inhibition, and cognitive flexibility), spatial navigation, discrimination learning, and goal-directed and stimulus-driven instrumental conditioning. Our conclusion is that there is a solid body of support for engagement of the rodent cerebellum in tests of cognitive flexibility and spatial navigation, and some support for engagement in working memory and certain types of discrimination learning. Future directions will involve determining the relevant cellular mechanisms, cerebellar regions, and precise cognitive functions of the rodent cerebellum.
Collapse
Affiliation(s)
- Megan L Shipman
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA; Neuroscience Graduate Program, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA.
| | - John T Green
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
4
|
Green JT, Chess AC, Conquest CJ, Yegla BA. Conditioned inhibition in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 2011; 125:979-87. [PMID: 22004263 DOI: 10.1037/a0025921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A deficit in inhibition may underlie some of the symptoms of attention-deficit/hyperactivity disorder (ADHD), particularly impulsivity. However, the data on inhibitory deficits in children with ADHD are mixed. Moreover, there has been little characterization of inhibitory processes in animal models of ADHD. Pavlov's conditioned inhibition procedure allows a direct assessment of the inhibitory status of a stimulus via summation and retardation tests. Therefore, in the current study, we examined conditioned inhibition in spontaneously hypertensive rats (SHRs), the most well-validated animal model of ADHD. SHRs and Wistar rats were trained in a simultaneous feature-negative discrimination in eyeblink conditioning. Each session consisted of a mixture of 2 trial types: a tone paired with a periocular stimulation (A+) or a tone and light presented simultaneously without a periocular stimulation (XA-). Both SHRs and Wistars were able to discriminate A+ from XA- trials. In subsequent summation (X presented simultaneously with a different conditioned excitor, B) and retardation (X paired with the periocular stimulation) tests, the presence of inhibition to X was confirmed in both SHRs and Wistars: X reduced responding to B, and X was slow to develop excitation when paired with periocular stimulation. These results are the first to demonstrate Pavlovian conditioned inhibition in SHRs and to use summation and retardation tests to confirm X as a conditioned inhibitor. The data indicate that conditioned inhibition is intact in SHRs; thus, inhibitory processes that do not require prefrontal cortex or cerebellum may be normal in this strain.
Collapse
Affiliation(s)
- John T Green
- Department of Psychology, University of Vermont, Burlington, VT 05405-0134, USA.
| | | | | | | |
Collapse
|
5
|
Sakamoto T, Endo S. Amygdala, deep cerebellar nuclei and red nucleus contribute to delay eyeblink conditioning in C57BL /6 mice. Eur J Neurosci 2010; 32:1537-51. [DOI: 10.1111/j.1460-9568.2010.07406.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Thompson R, Steinmetz J. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 2009; 162:732-55. [DOI: 10.1016/j.neuroscience.2009.01.041] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/18/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
7
|
GABAA receptors in deep cerebellar nuclei play important roles in mouse eyeblink conditioning. Brain Res 2008; 1230:125-37. [DOI: 10.1016/j.brainres.2008.06.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/08/2008] [Accepted: 06/15/2008] [Indexed: 11/19/2022]
|
8
|
Campolattaro MM, Freeman JH. Perirhinal cortex lesions impair feature-negative discrimination. Neurobiol Learn Mem 2006; 86:205-13. [PMID: 16617027 PMCID: PMC2556371 DOI: 10.1016/j.nlm.2006.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 11/20/2022]
Abstract
The role of the perirhinal cortex in inhibitory eyeblink conditioning was examined. In Experiment 1, rats were given lesions of the perirhinal cortex or control surgery and subsequently trained with a feature-negative discrimination procedure followed by summation and retardation tests for conditioned inhibition. Perirhinal cortex lesions impaired, but did not prevent acquisition of feature-negative discrimination. Results from the summation test showed that rats with perirhinal cortex lesions could not generalize feature-negative discrimination to a new stimulus. There were no group differences during the retardation test. Experiment 2 showed that lesions of the perirhinal cortex did not impair simple excitatory conditioning. Experiment 3 showed that perirhinal cortex lesions had no effect on acquisition of a simple tone-light discrimination. The results suggest that the perirhinal cortex plays a role in eyeblink conditioning when using discrimination procedures involving overlapping stimuli.
Collapse
Affiliation(s)
| | - John H. Freeman
- Corresponding author. Fax: +1 319 335 0191. E-mail address: (J.H. Freeman)
| |
Collapse
|
9
|
Freeman JH, Halverson HE, Poremba A. Differential effects of cerebellar inactivation on eyeblink conditioned excitation and inhibition. J Neurosci 2005; 25:889-95. [PMID: 15673669 PMCID: PMC1249522 DOI: 10.1523/jneurosci.4534-04.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neural mechanisms underlying excitatory and inhibitory eyeblink conditioning were compared using muscimol inactivation of the cerebellum. In experiment 1, rats were given saline or muscimol infusions into the anterior interpositus nucleus ipsilateral to the conditioned eye before each of four daily excitatory conditioning sessions. Postinfusion testing continued for four more excitatory conditioning sessions. All rats were given a final test session after muscimol infusions. The muscimol infusions inactivated the cerebellar nuclei, lateral anterior lobe, crus I, rostral crus II, and lobule HVI ipsilateral to the conditioned eye. Acquisition of excitatory conditioning was completely prevented by muscimol inactivation. In experiment 2, there were four experimental phases. Phase 1 consisted of excitatory conditioning. In phase 2, rats were given saline or muscimol infusions before conditioned inhibition training. Phase 3 consisted of continued conditioned inhibition training with no drug infusions. In phase 4, all rats received a retardation test in which the inhibitory stimulus was paired with the unconditioned stimulus. Muscimol infusions blocked the expression of conditioned responses during phase 2. However, robust conditioned inhibition was evident in phases 3 and 4. The findings indicate that conditioned excitation and inhibition depend on different mechanisms.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
10
|
Nolan BC, Freeman JH. Purkinje cell loss by OX7-saporin impairs excitatory and inhibitory eyeblink conditioning. Behav Neurosci 2005; 119:190-201. [PMID: 15727524 PMCID: PMC1393287 DOI: 10.1037/0735-7044.119.1.190] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebellar cortical contributions to eyeblink conditioned excitation have been examined extensively. In contrast, very little evidence exists concerning the role of the cerebellar cortex in eyeblink conditioned inhibition. In the current study, rats were given intraventricular infusions of the immunotoxin OX7-saporin to selectively destroy Purkinje cells throughout the cerebellar cortex following excitatory conditioning. After a 2-week postinfusion period, the rats were given reacquisition training. After reacquiring excitatory conditioning, the rats were trained in a feature-negative discrimination procedure to establish conditioned inhibition. Rats treated with OX7-saporin showed impaired reacquisition of excitatory conditioning and acquisition of conditioned inhibition. The results suggest that Purkinje cells play important, but different, roles in conditioned excitation and inhibition in rats.
Collapse
|