1
|
Sbrini G, Brivio P, Bosch K, Homberg JR, Calabrese F. Enrichment Environment Positively Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats through the Modulation of Neuroplasticity, Spine, and GABAergic Markers. Genes (Basel) 2020; 11:genes11111248. [PMID: 33114023 PMCID: PMC7690660 DOI: 10.3390/genes11111248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The serotonin transporter (5-HTT in humans, SERT in rodents) is the main regulator of serotonergic transmission in the brain. The short allelic variant of the 5-HTT gene is in humans associated with psychopathologies and may enhance the vulnerability to develop depression after exposure to stressful events. Interestingly, the short allele also increases the sensitivity to a positive environment, which may buffer the vulnerability to depression. Since this polymorphism does not exist in rodents, male SERT knockout (SERT−/−) rats were tested to explore the molecular mechanisms based on this increased predisposition. This article investigates the influences of a positive manipulation, namely, enriched environment (EE), on the depressive-like behavior observed in SERT−/− rats. We found that one month of EE exposure normalized the anhedonic and anxious-like phenotype characteristics of this animal model. Moreover, we observed that EE exposure also restored the molecular alterations in the prefrontal cortex by positively modulating the expression of the neurotrophin Bdnf, and of spines and gamma-aminobutyric acid (GABA)ergic markers. Overall, our data confirm the depression-like phenotype of SERT−/− rats and highlight the ability of EE to restore behavioral and molecular alterations, thus promoting the opportunity to use EE as a supporting non-pharmacological approach to treat mood disorders.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.)
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.)
| | - Kari Bosch
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (K.B.); (J.R.H.)
| | - Judith Regina Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (K.B.); (J.R.H.)
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy; (G.S.); (P.B.)
- Correspondence: ; Tel.: +02-50318277
| |
Collapse
|
2
|
Fritschy JM. Significance of GABAA Receptor Heterogeneity. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:13-39. [DOI: 10.1016/bs.apha.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Andreev-Andrievskiy AA, Popova AS, Borovik AS, Dolgov ON, Tsvirkun DV, Custaud M, Vinogradova OL. Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice. Physiol Behav 2014; 132:1-9. [PMID: 24802359 DOI: 10.1016/j.physbeh.2014.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/31/2014] [Indexed: 01/29/2023]
Abstract
When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable.
Collapse
Affiliation(s)
- A A Andreev-Andrievskiy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, 76A Khoroshevskoe Shosse, Russia; Lomonosov Moscow State University, Biology Faculty, Moscow 119234, 1/12 Leninskie Gory, Russia.
| | - A S Popova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, 76A Khoroshevskoe Shosse, Russia; Lomonosov Moscow State University, Biology Faculty, Moscow 119234, 1/12 Leninskie Gory, Russia
| | - A S Borovik
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, 76A Khoroshevskoe Shosse, Russia
| | - O N Dolgov
- Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow 125009, 11/4 Mokhovaya St, Russia
| | - D V Tsvirkun
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, 76A Khoroshevskoe Shosse, Russia
| | - M Custaud
- University of Angers, Rue Haute de Reculée, 49045 Angers Cedex 01, France
| | - O L Vinogradova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, 76A Khoroshevskoe Shosse, Russia
| |
Collapse
|
4
|
Solomonia R, Gogichaishvili N, Nozadze M, Lepsveridze E, Dzneladze D, Kiguradze T. Myo-inositol treatment and GABA-A receptor subunit changes after kainate-induced status epilepticus. Cell Mol Neurobiol 2013; 33:119-27. [PMID: 22986984 PMCID: PMC11497891 DOI: 10.1007/s10571-012-9877-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022]
Abstract
Identification of compounds preventing the biochemical changes that underlie the epileptogenesis process is of great importance. We have previously shown that myo-Inositol (MI) daily treatment prevents certain biochemical changes that are triggered by kainic acid (KA)-induced status epilepticus (SE). The aim of the current work was to study the further influence of MI treatment on the biochemical changes of epileptogenesis and focus on changes in the hippocampus and neocortex of rats for the following GABA-A receptor subunits: α1, α4, γ2, and δ. After SE, one group of rats was treated with saline, while the second group was treated with MI. Control groups that were not treated by the convulsant received either saline or MI administration. 28-30 h after the experiment, a decrease in the amount of the α1 subunit was revealed in the hippocampus and MI had no significant influence on it. On the 28th day of the experiment, the amount of α1 was increased in both the KA- and KA + MI-treated groups. The α4 and γ2 subunits were strongly reduced in the hippocampus of KA-treated animals, but MI significantly halted this reduction. The effects of MI on α4 and γ2 subunit changes were significantly different between hippocampus and neocortex. On the twenty-eighth day after SE, a decrease in the amount of α1 was found in the neocortex, but MI treatment had no effect on it. The obtained results indicate that MI treatment interferes with some of the biochemical processes of epileptogenesis.
Collapse
Affiliation(s)
- Revaz Solomonia
- Institute of Chemical Biology, Ilia State University, 3/5 K.Cholokashvili av., 0162, Tbilisi, Republic of Georgia.
| | | | | | | | | | | |
Collapse
|
5
|
Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, Kelly KM, Mtchedlishvili Z. Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 2011; 95:20-34. [PMID: 21439793 DOI: 10.1016/j.eplepsyres.2011.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 02/18/2011] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) can result in the development of posttraumatic epilepsy (PTE). Recently, we reported differential alterations in tonic and phasic GABA(A) receptor (GABA(A)R) currents in hippocampal dentate granule cells 90 days after controlled cortical impact (CCI) (Mtchedlishvili et al., 2010). In the present study, we investigated long-term changes in the protein expression of GABA(A)R α1, α4, γ2, and δ subunits, NMDA (NR2B) and AMPA (GluR1) receptor subunits, and heat shock proteins (HSP70 and HSP90) in the hippocampus of Sprague-Dawley rats evaluated by Western blotting in controls, CCI-injured animals without PTE (CCI group), and CCI-injured animals with PTE (PTE group). No differences were found among all three groups for α1 and α4 subunits. Significant reduction of γ2 protein was observed in the PTE group compared to control. CCI caused a 194% and 127% increase of δ protein in the CCI group compared to control (p<0.0001), and PTE (p<0.0001) groups, respectively. NR2B protein was increased in CCI and PTE groups compared to control (p=0.0001, and p=0.011, respectively). GluR1 protein was significantly decreased in CCI and PTE groups compared to control (p=0.003, and p=0.001, respectively), and in the PTE group compared to the CCI group (p=0.036). HSP70 was increased in CCI and PTE groups compared to control (p=0.014, and p=0.005, respectively); no changes were found in HSP90 expression. These results provide for the first time evidence of long-term alterations of GABA(A) and glutamate receptor subunits and a HSP following CCI.
Collapse
Affiliation(s)
- Elena A Kharlamov
- Center for Neuroscience Research, Allegheny-Singer Research Institute, Allegheny General Hospital, 320 East North Avenue, Pittsburgh, PA 15212-4772, United States.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Saber-Tehrani A, Naderi N, Hosseini Najarkolaei A, Haghparast A, Motamedi F. Cannabinoids and their interactions with diazepam on modulation of serum corticosterone concentration in male mice. Neurochem Res 2009; 35:60-6. [PMID: 19590959 DOI: 10.1007/s11064-009-0030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 06/24/2009] [Indexed: 11/24/2022]
Abstract
Experimental results indicate a mutual interaction between cannabinoidergic and GABAergic systems; however, the interaction between these systems on corticosterone release has not been fully investigated. In this study, we treated male mice with either cannabinoid compounds alone or in combination with diazepam. Blood samples were collected at 60 min post-injection. The serum corticosterone (CORT) level was measured using ELISA technique. Acute treatment of mice by cannabinoid receptor agonist WIN55212-2 (2.5 mg/kg; i.p.) resulted in a significant reduction of CORT, while treatment with either endocannabinoid reuptake inhibitor AM404 or endocannabinoid degradation enzyme inhibitor URB597 increased CORT compared to control group. Co-administration of AM404 or URB597 with cannabinoid CB1 receptor antagonist AM251 blocked the effect of these compounds on CORT. Treatment of mice with different doses of diazepam alone did not alter CORT compared to control group. However, co-administration of diazepam and either AM404 or WIN55212-2 significantly reduced CORT compared to the respective group treated with cannabinoid compound alone. Co-administration of ineffective dose of URB597 and ineffective dose of diazepam increased CORT level compared to groups treated with each compound alone. In conclusion, our findings suggest that the endogenous cannabinoid system is active as a modulator of CORT in mice and diazepam can alter the effect of cannabinoid system in the modulation of neuroendocrine functions.
Collapse
Affiliation(s)
- Ali Saber-Tehrani
- Neuroscience Research Center, Shahid Beheshti University (MC), P.O. Box 19615-1178, Tehran, Iran
| | | | | | | | | |
Collapse
|
7
|
Kharlamov EA, Downey KL, Jukkola PI, Grayson DR, Kelly KM. Expression of GABA A receptor alpha1 subunit mRNA and protein in rat neocortex following photothrombotic infarction. Brain Res 2008; 1210:29-38. [PMID: 18407248 PMCID: PMC2587253 DOI: 10.1016/j.brainres.2008.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/29/2008] [Accepted: 02/18/2008] [Indexed: 11/20/2022]
Abstract
Photothrombotic infarcts of the neocortex result in structural and functional alterations of cortical networks, including decreased GABAergic inhibition, and can generate epileptic seizures within 1 month of lesioning. In our study, we assessed the involvement and potential changes of cortical GABA A receptor (GABA AR) alpha1 subunits at 1, 3, 7, and 30 days after photothrombosis. Quantitative competitive reverse transcription-polymerase chain reaction (cRT-PCR) and semi-quantitative Western blot analysis were used to investigate GABA AR alpha1 subunit mRNA and protein levels in proximal and distal regions of perilesional cortex and in homotopic areas of young adult Sprague-Dawley rats. GABA AR alpha1 subunit mRNA levels were decreased ipsilateral and contralateral to the infarct at 7 days, but were increased bilaterally at 30 days. GABA AR alpha1 subunit protein levels revealed no significant change in neocortical areas of both hemispheres of lesioned animals compared with protein levels of sham-operated controls at 1, 3, 7, and 30 days. At 30 days, GABA AR alpha1 subunit protein expression was significantly increased in lesioned animals within proximal and distal regions of perilesional cortex compared with distal neocortical areas contralaterally (Student's t-test, p<0.05). Short- and long-term alterations of mRNA and protein levels of the GABA AR alpha1 subunit ipsilateral and contralateral to the lesion may influence alterations in cell surface receptor subtype expression and GABA AR function following ischemic infarction and may be associated with formative mechanisms of poststroke epileptogenesis.
Collapse
Affiliation(s)
- Elena A Kharlamov
- Department of Neurology, Center for Neuroscience Research, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
8
|
Mehta AK, Marutha Ravindran CR, Ticku MK. Low concentrations of ethanol do not affect radioligand binding to the delta-subunit-containing GABAA receptors in the rat brain. Brain Res 2007; 1165:15-20. [PMID: 17662260 PMCID: PMC2034279 DOI: 10.1016/j.brainres.2007.06.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/11/2007] [Accepted: 06/20/2007] [Indexed: 11/28/2022]
Abstract
In the present study, we investigated the co-localization pattern of the delta subunit with other subunits of GABA(A) receptors in the rat brain using immunoprecipitation and Western blotting techniques. Furthermore, we investigated whether low concentrations of ethanol affect the delta-subunit-containing GABA(A) receptor assemblies in the rat brain using radioligand binding to the rat brain membrane homogenates as well as to the immunoprecipitated receptor assemblies. Our results revealed that delta subunit is not co-localized with gamma(2) subunit but it is associated with the alpha(1), alpha(4) or alpha(6), beta(2) and/or beta(3) subunit(s) of GABA(A) receptors in the rat brain. Ethanol (1-50 mM) neither affected [(3)H]muscimol (3 nM) binding nor diazepam-insensitive [(3)H]Ro 15-4513 (2 nM) binding in the rat cerebellum and cerebral cortex membranes. However, a higher concentration of ethanol (500 mM) inhibited the binding of these radioligands to the GABA(A) receptors partially in the rat cerebellum and cerebral cortex. Similarly, ethanol (up to 50 mM) did not affect [(3)H]muscimol (15 nM) binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum and hippocampus but it inhibited the binding partially at a higher concentration (500 mM). These results suggest that the native delta-subunit-containing GABA(A) receptors do not play a major role in the pharmacology of clinically relevant low concentrations of ethanol.
Collapse
Affiliation(s)
- Ashok K Mehta
- Department of Pharmacology, MC 7764, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
9
|
Serwanski DR, Miralles CP, Christie SB, Mehta AK, Li X, De Blas AL. Synaptic and nonsynaptic localization of GABAA receptors containing the alpha5 subunit in the rat brain. J Comp Neurol 2006; 499:458-70. [PMID: 16998906 PMCID: PMC2749292 DOI: 10.1002/cne.21115] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The alpha5 subunit of the GABA(A) receptors (GABA(A)Rs) has a restricted expression in the brain. Maximum expression of this subunit occurs in the hippocampus, cerebral cortex, and olfactory bulb. Hippocampal pyramidal cells show high expression of alpha5 subunit-containing GABA(A)Rs (alpha5-GABA(A)Rs) both in culture and in the intact brain. A large pool of alpha5-GABA(A)Rs is extrasynaptic and it has been proposed to be involved in the tonic GABAergic inhibition of the hippocampus. Nevertheless, there are no studies on the localization of the alpha5-GABA(A)Rs at the electron microscope (EM) level. By using both immunofluorescence of cultured hippocampal pyramidal cells and EM postembedding immunogold of the intact hippocampus we show that, in addition to the extrasynaptic pool, there is a pool of alpha5-GABA(A)Rs that concentrates at the GABAergic synapses in dendrites of hippocampal pyramidal cells. The results suggest that the synaptic alpha5-GABA(A)Rs might play a role in the phasic GABAergic inhibition of pyramidal neurons in hippocampus and cerebral cortex.
Collapse
Affiliation(s)
- David R. Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| | - Celia P. Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| | - Sean B. Christie
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| | - Ashok K. Mehta
- Dept Pharmacology, University of Texas Health Science Center, San Antonio TX, 78229
| | - Xuejing Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| | - Angel L. De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| |
Collapse
|
10
|
Lippa A, Czobor P, Stark J, Beer B, Kostakis E, Gravielle M, Bandyopadhyay S, Russek SJ, Gibbs TT, Farb DH, Skolnick P. Selective anxiolysis produced by ocinaplon, a GABA(A) receptor modulator. Proc Natl Acad Sci U S A 2005; 102:7380-5. [PMID: 15870187 PMCID: PMC1129138 DOI: 10.1073/pnas.0502579102] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Benzodiazepines remain widely used for the treatment of anxiety disorders despite prominent, often limiting side effects including sedation, muscle relaxation, and ataxia. A compound producing a robust anxiolytic action comparable to benzodiazepines, but lacking these limiting side effects at therapeutic doses (an anxioselective agent), would represent an important advance in the treatment of generalized anxiety disorder, and perhaps other anxiety disorders. Here we report that the pyrazolo[1,5-a]-pyrimidine, ocinaplon, exhibits an anxioselective profile in both preclinical procedures and in patients with generalized anxiety disorder, the most common of the anxiety disorders. In rats, ocinaplon produces significant muscle relaxation, ataxia, and sedation only at doses >25-fold higher than the minimum effective dose (3.1 mg/kg) in the Vogel "conflict" test. This anticonflict effect is blocked by flumazenil (Ro 15-1788), indicating that like benzodiazepines, ocinaplon produces an anxiolytic action through allosteric modulation of GABA(A) receptors. Nonetheless, in eight recombinant GABA(A) receptor isoforms expressed in Xenopus oocytes, the potency and efficacy of ocinaplon to potentiate GABA responses varied with subunit composition not only in an absolute sense, but also relative to the prototypical benzodiazepine, diazepam. In a double blind, placebo controlled clinical trial, a 2-week regimen of ocinaplon (total daily dose of 180-240 mg) produced statistically significant reductions in the Hamilton rating scale for anxiety scores. In this study, the incidence of benzodiazepine-like side effects (e.g., sedation, dizziness) in ocinaplon-treated patients did not differ from placebo. These findings indicate that ocinaplon represents a unique approach both for the treatment and understanding of anxiety disorders.
Collapse
Affiliation(s)
- A Lippa
- DOV Pharmaceutical, Inc., 433 Hackensack Avenue, Hackensack, NJ 07601, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chandra D, Korpi ER, Miralles CP, De Blas AL, Homanics GE. GABAA receptor gamma 2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines. BMC Neurosci 2005; 6:30. [PMID: 15850489 PMCID: PMC1097738 DOI: 10.1186/1471-2202-6-30] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 04/25/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-aminobutyric acid type A receptors (GABAA-Rs) are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The gamma2 subunit is highly expressed throughout the brain. Global gamma2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous gamma2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the gamma2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated gamma2 expression, i.e., gamma2 knockdown mice. RESULTS Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the gamma2 gene. Knockdown mice, on average, showed a 65% reduction of gamma2 subunit mRNA compared to controls; however gamma2 gene expression was highly variable in these mice, ranging from 10-95% of normal. Immunohistochemical studies demonstrated that gamma2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the gamma2 knockdown mouse line can be used to create gamma2 global knockout mice by crossing to a general deleter cre-expressing mouse line. CONCLUSION We conclude that: 1) insertion of a neomycin resistance gene into intron 8 of the gamma2 gene variably reduced the amount of gamma2, and that 2) attenuated expression of gamma2 increased anxiety-like behaviors but did not lead to differences in the hypnotic response to benzodiazepine site ligands. This suggests that reduced synaptic inhibition can lead to a phenotype of increased anxiety-like behavior. In contrast, normal drug effects can be maintained despite a dramatic reduction in GABAA-R targets.
Collapse
Affiliation(s)
- Dev Chandra
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Esa R Korpi
- Department of Pharmacology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Rissman RA, Mishizen-Eberz AJ, Carter TL, Wolfe BB, De Blas AL, Miralles CP, Ikonomovic MD, Armstrong DM. Biochemical analysis of GABA(A) receptor subunits alpha 1, alpha 5, beta 1, beta 2 in the hippocampus of patients with Alzheimer's disease neuropathology. Neuroscience 2003; 120:695-704. [PMID: 12895510 DOI: 10.1016/s0306-4522(03)00030-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is characterized by selective vulnerability of specific neuronal populations within particular brain regions. For example, hippocampal glutamatergic cell populations within the CA1/subicular pyramidal cell fields have been found to be particularly vulnerable early in AD progression. In contrast, hippocampal GABA-ergic neurons and receptors appear resistant to neurodegeneration. Despite relative sparing of GABA(A) receptors in AD, it is possible that the specific subunit composition of these receptors may undergo alterations with disease progression. In order to address this issue, we employed quantitative Western blot analysis to examine protein levels of GABA(A) receptor subunits alpha 1, alpha 5, beta 1, beta 2 in the hippocampus of subjects displaying increasing severity of AD neuropathology. Subjects were categorized into three groups based upon Braak staging pathologic criteria: pathologically mild (stages I/II, n=9); moderate (stages III/IV, n=8); and severe (stages V/VI, n=7). Across all subject groups, levels of subunit protein were heterogeneously distributed throughout the five hippocampal subregions analyzed (subiculum, CA1-3, dentate gyrus). Statistical analyses revealed differential preservation of GABA(A) receptor subunits in AD. In particular, alpha 1, beta 1, and beta 2 displayed little difference in protein levels among pathologically mild, moderate, and severe subject groups. In contrast, although relatively modest, protein levels of the alpha 5 subunit were significantly reduced between subjects with severe neuropathology compared with pathologically mild subjects (13.5% reduction). Collectively, our data provide evidence for heterogeneous distribution and relative sparing of GABA(A) receptor subunits in the hippocampus of AD patients.
Collapse
Affiliation(s)
- R A Rissman
- Laboratory of Neuronal Vulnerability and Aging, The Lankenau Institute for Medical Research, Jefferson Health System, Wynnewood, PA 19096, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Clinical depression and other mood disorders are relatively common mental illnesses but therapy for a substantial number of patients is unsatisfactory. For many years clinicians and neuroscientists believed that the evidence pointed toward alterations in brain monoamine function as the underlying cause of depression. This point of view is still valid. Indeed, much of current drug therapy appears to be targeted at central monoamine function. Other results, though, indicate that GABAergic mechanisms also might play a role in depression. Such indications stem from both direct and indirect evidence. Direct evidence has been gathered in the clinic from brain scans or postmortem brain samples, and cerebrospinal fluid (CSF) and serum analysis in depressed patients. Indirect evidence comes from interaction of antidepressant drugs with GABAergic system as assessed by in vivo and in vitro studies in animals. Most of the data from direct and indirect studies are consistent with GABA involvement in depression.
Collapse
Affiliation(s)
- G Tunnicliff
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 8600 University Boulevard, Evansville, Indiana 47712, USA.
| | | |
Collapse
|
14
|
Abstract
We studied the cellular and subcellular distribution of GABA(A) receptors in the Bergmann glia and Purkinje cells in the molecular layer of the cerebellum by using electron microscopy postembedding immunogold techniques. Gold particles corresponding to alpha2 and gamma1 immunoreactivity were localized in Bergmann glia processes that wrapped Purkinje cell somata, dendritic shafts, and some dendritic spines. The gold particles were mainly located on the glial plasma membrane or intracellularly but near the plasma membrane. The density of gold particles corresponding to alpha2 and gamma1 GABA(A) receptor subunits was 4.3-fold higher in the glial processes wrapping Purkinje cell somata than in the glial processes wrapping Purkinje cell dendritic spines. Moreover, the Bergmann glia GABA(A) receptors were often located in close proximity to the type II GABAergic synapses made by the basket cell axons on Purkinje cell somata. These GABAergic synapses were enriched in neuronal GABA(A) receptors containing alpha1 and beta2/3 subunits. Unexpectedly, 2.8% of the Purkinje cell dendritic spines also showed immunoreactivity for the neuronal alpha1 or beta2/3 subunits, which were located on the spine in type I synapses or extrasynaptically. Double-labeling immunogold experiments showed that approximately 50% of the dendritic spines that were immunolabeled with the neuronal GABA(A) receptors were wrapped by Bergmann glia processes containing glial GABA(A) receptors. These results are consistent with a role of the Bergmann glial GABA(A) receptors in sensing GABAergic synaptic function.
Collapse
|
15
|
Christie SB, Li RW, Miralles CP, Riquelme R, Yang BY, Charych E, Daniels SB, Cantino ME, De Blas AL. Synaptic and extrasynaptic GABAA receptor and gephyrin clusters. PROGRESS IN BRAIN RESEARCH 2002; 136:157-80. [PMID: 12143379 DOI: 10.1016/s0079-6123(02)36015-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Sean B Christie
- Department of Physiology and Neurobiology, 3107 Horsebarn Hill Road, U-4156, Storrs, CT 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Barnes EM. Assembly and intracellular trafficking of GABAA receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:1-29. [PMID: 11526736 DOI: 10.1016/s0074-7742(01)48012-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- E M Barnes
- Marrs McLean Department of Biochemistry and Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Garin N, Escher G. The development of inhibitory synaptic specializations in the mouse deep cerebellar nuclei. Neuroscience 2002; 105:431-41. [PMID: 11672609 DOI: 10.1016/s0306-4522(01)00127-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using confocal laser scanning microscopy and immunohistochemistry, this study shows the complete morphological development of GABAergic synaptic contacts between Purkinje cells and neurons of the deep cerebellar nuclei of the mouse. Firstly, presynaptic varicosities visualized with antibodies against synaptophysin, synapsin or glutamic acid decarboxylase, were detected when the postsynaptic GABA(A) receptors were not yet aggregated in the membrane but had a diffuse cytoplasmic distribution, which indicated a lead in maturation of presynaptic terminals over target cells. Secondly, receptor aggregates developed suddenly after an initial week of diffuse expression and these clusters matured into more numerous and larger synaptic aggregates. During this postsynaptic maturation, the presynaptic varicosities develop into numerous and well-defined spots. As soon as both pre- and postsynaptic clusters were detectable, these sites are always colocalized. We therefore consider the aggregation of postsynaptic receptor during development as a landmark of synapse formation. Our observations are consistent with a developmental model in which the presynaptic neuron differentiates its axon before the target neuron expresses the mature form of its receptors on the membrane. The presynaptic neuron can therefore instruct the target neuron about the distribution and aggregation of the postsynaptic receptors at the synapse.
Collapse
Affiliation(s)
- N Garin
- Institut de biologie cellulaire et de morphologie, Bugnon 9, 1005, Lausanne, Switzerland.
| | | |
Collapse
|
18
|
Turman JE, Rich RA, Chandler SH. GABA(A) receptor beta2/beta3 subunit and GAD67 immunoreactivity in the trigeminal motor nucleus during early postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 130:155-8. [PMID: 11557106 DOI: 10.1016/s0165-3806(01)00227-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GABA neurotransmission plays a role in brainstem circuitry responsible for jaw movements. We investigated the developmental relationship between terminals expressing GAD67 and GABA(A) receptor beta(2)/beta(3) subunit expression within the trigeminal motor nucleus. GAD67 immunoreactivity was intense throughout development. Neuropilar beta(2)/beta(3) immunoreactivity emerged during the 2nd postnatal week. Our data provide anatomical evidence for a GABAergic innervation of neonatal trigeminal motoneurons and suggest that beta(2)/beta(3) subunit expression is developmentally regulated in trigeminal motoneurons.
Collapse
Affiliation(s)
- J E Turman
- Department of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St., CHP155 Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
19
|
Strakhova MI, Harvey SC, Cook CM, Cook JM, Skolnick P. A single amino acid residue on the alpha(5) subunit (Ile215) is essential for ligand selectivity at alpha(5)beta(3)gamma(2) gamma-aminobutyric acid(A) receptors. Mol Pharmacol 2000; 58:1434-40. [PMID: 11093783 DOI: 10.1124/mol.58.6.1434] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imidazobenzodiazepines such as RY-80 have been reported to exhibit both high affinity and selectivity for GABA(A) receptors containing an alpha(5) subunit. A single amino acid residue (alpha(5)Ile215) has been identified that plays a critical role in the high-affinity, subtype-selective effects of RY-80 and structurally related ligands. Thus, substitution of alpha(5)Ile215 with the cognate amino acid contained in the alpha(1) subunit (Val211) reduced the selectivity of RY-80 for alpha(5)beta(3)gamma(2) receptors from approximately 135- to approximately 8-fold compared with alpha(1)beta(3)gamma(2) receptors. This mutation produced a comparable reduction in the selectivity of RY-24 (a structural analog of RY-80) for alpha(5)beta(3)gamma(2) receptors but did not markedly alter the affinities of ligands (e.g., flunitrazepam) that are not subtype-selective. Conversely, substitution of the alpha(1) subunit with the cognate amino acid contained in the alpha(5) subunit (i.e., alpha(1)V211I) increased the affinities of alpha(5)-selective ligands by a approximately 20-fold and reduced by 3-fold the affinity of an alpha(1)-selective agonist (zolpidem). Increasing the lipophilicity (e.g., by substitution of Phe) of alpha(5)215 did not significantly affect the affinities (and selectivities) of RY-80 and RY-24 for alpha(5)-containing GABA(A) receptors. However, the effect of introducing hydrophilic and or charged residues (e.g., Lys, Asp, Thr) at this position was no greater than that produced by the alpha(5)I215V mutation. These data indicate that residue alpha(5)215 may not participate in formation of the lipophilic L(2) pocket that has been proposed to contribute to the unique pharmacological properties of alpha(5)-containing GABA(A) receptors. RY-80 and RY-24 acted as inverse agonists in both wild-type alpha(5)beta(3)gamma(2) and mutant alpha(5)I215Kbeta(3)gamma(2) receptors expressed in Xenopus laevis oocytes. However, both RY-24 and RY-80 acted as antagonists at mutant alpha(5)I215Vbeta(3)gamma(2) and alpha(5)I215Tbeta(3)gamma(2) receptors, whereas the efficacy of flunitrazepam was similar at all three receptor isoforms. The data demonstrate that amino acid residue alpha(5)215 is a determinant of both ligand affinity and efficacy at GABA(A) receptors containing an alpha(5) subunit.
Collapse
Affiliation(s)
- M I Strakhova
- Neuroscience Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA.
| | | | | | | | | |
Collapse
|
20
|
Erlitzki R, Gong Y, Zhang M, Minuk G. Identification of gamma-aminobutyric acid receptor subunit types in human and rat liver. Am J Physiol Gastrointest Liver Physiol 2000; 279:G733-9. [PMID: 11005760 DOI: 10.1152/ajpgi.2000.279.4.g733] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GABA is a potent inhibitory neurotransmitter that binds to heterooligomeric receptors in the mammalian brain. In a previous study, we documented specific GABA binding to isolated rat hepatocytes that resulted in inhibition of hepatocyte proliferation. The purpose of the present study was to define the nature of hepatic GABA(A) receptors and to document their expression during rapid liver growth (after partial hepatectomy). PCRs with gene-specific primers derived from published sequences were performed with Marathon-ready human and rat liver cDNA. Two GABA(A) receptor subunit types (beta3 and epsilon) were expressed in human liver and one subunit type (beta3) in rat liver. PCR amplification of the human GABA(A) receptorbeta3-subunit produced a single product (molecular mass 53-59 kDa). In the case of the epsilon-subunit, two PCR products were identified. After partial hepatectomy, GABA(A) receptorbeta3-subunit expression inversely correlated with regenerative activity (r = -0.527, P = 0.006). In conclusion, these results indicate that in the human liver GABA(A) receptors consist of the beta3- and epsilon-subunit types, whereas in the rat liver only the beta3-subunit type is expressed. The results also support the hypothesis that GABAergic activity serves to maintain hepatocytes in a quiescent state.
Collapse
Affiliation(s)
- R Erlitzki
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P5
| | | | | | | |
Collapse
|
21
|
Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM. Long-term behavioral and neuroendocrine adaptations to adverse early experience. PROGRESS IN BRAIN RESEARCH 2000; 122:81-103. [PMID: 10737052 DOI: 10.1016/s0079-6123(08)62132-9] [Citation(s) in RCA: 468] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- C O Ladd
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
23
|
Olive MF, Hodge CW. Co-localization of PKCepsilon with various GABA(A) receptor subunits in the mouse limbic system. Neuroreport 2000; 11:683-7. [PMID: 10757500 DOI: 10.1097/00001756-200003200-00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The distribution of PKCepsilon and its co-localization with various GABA(A) receptor subunits within limbic structures of the mouse brain was examined by fluorescence immunohistochemistry. Levels of PKCepsilon immunoreactivity were highest in the cingulate cortex and dentate gyrus, moderate in the nucleus accumbens, and lowest in the prelimbic cortex and basolateral amygdala. Co-localization of PKCepsilon immunoreactivity with the GABA(A) receptor alpha1, beta 2/3, and gamma2 subunits varied by subunit and brain region examined, with the majority of co-localization occuring in the dentate gyrus, nucleus accumbens and basolateral amygdala. These results demonstrate that PKCepsilon may interact with GABA(A) receptors in a subunit- and region-specific manner, and provide a potential anatomical basis for recent behavioral and biochemical evidence that PKCepsilon modulates GABA(A) receptor function.
Collapse
Affiliation(s)
- M F Olive
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville 94608, USA
| | | |
Collapse
|
24
|
Abstract
Some of the mechanisms that control the intracellular trafficking of GABA(A) receptors have recently been described. Following the synthesis of alpha, beta, and gamma subunits in the endoplasmic reticulum, ternary receptor complexes assemble slowly and are inefficiently inserted into surface membranes of heterologous cells. While beta3, beta4, and gamma2S subunits appear to contain polypeptide sequences that alone are sufficient for surface targeting, these sequences are neither conserved nor essential for surface expression of heteromeric GABA(A) receptors formed from alpha1beta or alpha1betagamma subunits. At the neuronal surface, native GABA(A) receptor clustering and synaptic targeting require a gamma2 subunit and the participation of gephyrin, a clustering protein for glycine receptors. A linker protein, such as the GABA(A) receptor associated protein (GABARAP), may be necessary for the formation of GABA(A) receptor aggregates containing gephyrin. A substantial fraction of surface receptors are sequestered by endocytosis, another process which apparently requires a GABA(A) receptor gamma2 subunit. In heterologous cells, constitutive endocytosis seems to predominate while, in cortical neurons, internalization is evoked when receptors are occupied by GABA(A) agonists. After constitutive endocytosis, receptors are relatively stable and can be rapidly recycled to the cell surface, a process that may be regulated by protein kinase C. On the other hand, a portion of the intracellular GABA(A) receptors derived from ligand-dependent endocytosis is apparently degraded. The clustering of GABA(A) receptors at synapses and at coated pits are two mechanisms that may compete for a pool of diffusable receptors, providing a model for plasticity at inhibitory synapses.
Collapse
Affiliation(s)
- E M Barnes
- Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Thomson AM, Bannister AP, Hughes DI, Pawelzik H. Differential sensitivity to Zolpidem of IPSPs activated by morphologically identified CA1 interneurons in slices of rat hippocampus. Eur J Neurosci 2000; 12:425-36. [PMID: 10712623 DOI: 10.1046/j.1460-9568.2000.00915.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hippocampal pyramidal cells express several alpha-subunits, which determine the affinity of GABAA (gamma-aminobutyric acid) receptors for benzodiazepine site ligands. This study asked whether inhibitory postsynaptic potentials (IPSPs) elicited by specific interneuronal subclasses were differentially sensitive to the alpha1-preferring agonist Zolpidem, i.e. whether different receptors mediate different inhibitory connections. Paired intracellular recordings in which the presynaptic cell was an interneuron and the postsynaptic cell a CA1 pyramid were performed in slices of adult rat hippocampus. Resultant IPSPs were challenged with Zolpidem, cells filled with biocytin and identified morphologically. IPSPs elicited by fast spiking (FS) basket cells (n = 9) were enhanced more than IPSPs elicited by regular spiking (RS) basket cells (n = 10). At FS basket cell synapses the efficacy of Zolpidem was equivalent to that of Diazepam, while RS basket cell IPSPs are enhanced 50% less by Zolpidem than by Diazepam. Thus, while alpha1 subunits may dominate at synapses supplied by FS basket cells, RS basket cell synapses also involve alpha2/3 subunits. Two bistratified cell IPSPs tested with Zolpidem did not increase in amplitude, despite powerful enhancements of bistratified cell IPSPs by Diazepam, consistent with previous indications that these synapses utilize alpha5-containing receptors. Enhancements of basket cell IPSPs by Zolpidem and Diazepam were bi- or triphasic with steep amplitude increases separated by plateaux, occurring 10-15, 25-30 and 45-55 min after adding the drug to the bath. The entire enhancement was, however, blocked by the antagonist Flumazenil (n = 7). Flumazenil, either alone (n = 3), or after Zolpidem, reduced IPSP amplitude to approximately 90% of control, suggesting that alpha4-containing receptors were not involved.
Collapse
Affiliation(s)
- A M Thomson
- Department of Physiology, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
26
|
Malatynska E, Matheson GK, Goldenberg R, Crites GJ, Schindler NL, Weinzapfel D, Harrawood D, Yochum A, Tunnicliff G. Effects of treatment with GABA(A) receptor subunit antisense oligodeoxynucleotides on GABA-stimulated 36Cl- influx in the rat cerebral cortex. Neurochem Int 2000; 36:45-54. [PMID: 10566958 DOI: 10.1016/s0197-0186(99)00100-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GABA(A) receptor function was studied in cerebral cortical vesicles prepared from rats after intracerebroventricular microinjections of antisense oligodeoxynucleotides (aODNs) for alpha1, gamma2, beta1, beta2 subunits. GABA(A) receptor alpha1 subunit aODNs decreased alpha1 subunit mRNA by 59+/-10%. Specific [3H]GABA binding was decreased by alpha1 or beta2 subunit aODNs (to 63+/-3% and 64+/-9%, respectively) but not changed by gamma2 subunit aODNs (94+/-5%). Specific [3H]flunitrazepam binding was increased by alpha1 or beta2 subunit aODNs (122+/-8% and 126+/-11%, respectively) and decreased by gamma2 subunit aODNs (50+/-13%). The "knockdown" of specific subunits of the GABA(A )receptor significantly influenced GABA-stimulated 36Cl- influx. Injection of alpha1 subunit aODNs decreased basal 36Cl- influx and the GABA Emax; enhanced GABA modulation by diazepam; and decreased antagonism of GABA activity by bicuculline. Injection of gamma2 subunit aODNs increased the GABA Emax; reversed the modulatory efficacy of diazepam from enhancement to inhibition of GABA-stimulation; and reduced the antagonist effect of bicuculline. Injection of beta2 subunit aODNs reduced the effect of diazepam whereas treatment with beta1 subunit aODNs had no effect on the drugs studied. Conclusions from our studies are: (1) alpha1 subunits promote, beta2 subunits maintain, and gamma2 subunits suppress GABA stimulation of 36Cl- influx; (2) alpha1 subunits suppress, whereas beta2, and gamma2 subunits promote allosteric modulation by benzodiazepines; (3) diazepam can act as an agonist or inverse agonist depending on the relative composition of the receptor subunits: and (4) the mixed competitive/non-competitive effects of bicuculline result from activity at alpha1 and gamma2 subunits and the lack of activity at beta1 and beta2 subunits.
Collapse
Affiliation(s)
- E Malatynska
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Evansville 47712, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miralles CP, Li M, Mehta AK, Khan ZU, De Blas AL. Immunocytochemical localization of the ?3 subunit of the ?-aminobutyric acidA receptor in the rat brain. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991101)413:4<535::aid-cne4>3.0.co;2-t] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Mehta AK, Ticku MK. Prevalence of the GABAA receptor assemblies containing alpha1-subunit in the rat cerebellum and cerebral cortex as determined by immunoprecipitation: lack of modulation by chronic ethanol administration. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:194-9. [PMID: 10101248 DOI: 10.1016/s0169-328x(99)00020-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anti-alpha1 antibody elicited higher immunoprecipitation (%) values of the [3H]flunitrazepam and [3H]muscimol binding activity in the rat cerebellum vs. cerebral cortex, whereas immunoprecipitation values for [3H]Ro 15-4513 and [3H]zolpidem were comparable in these brain regions. Chronic ethanol administration neither changed the radioligand binding to the immunoprecipitated pellet nor the percentage immunoprecip-itation values, thereby indicating that chronic ethanol did not result in down-regulation of the GABAA receptor assemblies containing alpha1-subunit.
Collapse
Affiliation(s)
- A K Mehta
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284-7764, USA
| | | |
Collapse
|
29
|
Abstract
Recent advances in molecular biology and complementary information derived from neuropharmacology, biochemistry and behavior have dramatically increased our understanding of various aspects of GABAA receptors. These studies have revealed that the GABAA receptor is derived from various subunits such as alpha1-alpha6, beta1-beta3, gamma1-gamma3, delta, epsilon, pi, and rho1-3. Furthermore, two additional subunits (beta4, gamma4) of GABAA receptors in chick brain, and five isoforms of the rho-subunit in the retina of white perch (Roccus americana) have been identified. Various techniques such as mutation, gene knockout and inhibition of GABAA receptor subunits by antisense oligodeoxynucleotides have been used to establish the physiological/pharmacological significance of the GABAA receptor subunits and their native receptor assemblies in vivo. Radioligand binding to the immunoprecipitated receptors, co-localization studies using immunoaffinity chromatography and immunocytochemistry techniques have been utilized to establish the composition and pharmacology of native GABAA receptor assemblies. Partial agonists of GABAA receptors are being developed as anxiolytics which have fewer and less severe side effects as compared to conventional benzodiazepines because of their lower efficacy and better selectivity for the GABAA receptor subtypes. The subunit requirement of various drugs such as anxiolytics, anticonvulsants, general anesthetics, barbiturates, ethanol and neurosteroids, which are known to elicit at least some of their pharmacological effects via the GABAA receptors, have been investigated during the last few years so as to understand their exact mechanism of action. Furthermore, the molecular determinants of clinically important drug-targets have been investigated. These aspects of GABAA receptors have been discussed in detail in this review article.
Collapse
Affiliation(s)
- A K Mehta
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284-7764, USA
| | | |
Collapse
|
30
|
Faingold CL, N'Gouemo P, Riaz A. Ethanol and neurotransmitter interactions--from molecular to integrative effects. Prog Neurobiol 1998; 55:509-35. [PMID: 9670216 DOI: 10.1016/s0301-0082(98)00027-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is extensive evidence that ethanol interacts with a variety of neurotransmitters. Considerable research indicates that the major actions of ethanol involve enhancement of the effects of gamma-aminobutyric acid (GABA) at GABAA receptors and blockade of the NMDA subtype of excitatory amino acid (EAA) receptor. Ethanol increases GABAA receptor-mediated inhibition, but this does not occur in all brain regions, all cell types in the same region, nor at all GABAA receptor sites on the same neuron, nor across species in the same brain region. The molecular basis for the selectivity of the action of ethanol on GaBAA receptors has been proposed to involve a combination of benzodiazepine subtype, beta 2 subunit, and a splice variant of the gamma 2 subunit, but substantial controversy on this issue currently remains. Chronic ethanol administration results in tolerance, dependence, and an ethanol withdrawal (ETX) syndrome, which are mediated, in part, by desensitization and/or down-regulation of GABAA receptors. This decrease in ethanol action may involve changes in subunit expression in selected brain areas, but these data are complex and somewhat contradictory at present. The sensitivity of NMDA receptors to ethanol block is proposed to involve the NMDAR2B subunit in certain brain regions, but this subunit does not appear to be the sole determinant of this interaction. Tolerance to ethanol results in enhanced EAA neurotransmission and NMDA receptor upregulation, which appears to involve selective increases in NMDAR2B subunit levels and other molecular changes in specific brain loci. During ETX a variety of symptoms are seen, including susceptibility to seizures. In rodents these seizures are readily triggered by sound (audiogenic seizures). The neuronal network required for these seizures is contained primarily in certain brain stem structures. Specific nuclei appear to play a hierarchical role in generating each stereotypical behavioral phases of the convulsion. Thus, the inferior colliculus acts to initiate these seizures, and a decrease in effectiveness of GABA-mediated inhibition in these neurons is a major initiation mechanism. The deep layers of superior colliculus are implicated in generation of the wild running behavior. The pontine reticular formation, substantia nigra and periaqueductal gray are implicated in generation of the tonic-clonic seizure behavior. The mechanisms involved in the recruitment of neurons within each network nucleus into the seizure circuit have been proposed to require activation of a critical mass of neurons. Achievement of critical mass may involve excess EAA-mediated synaptic neurotransmission due, in part, to upregulation as well as other phenomena, including volume (non-synaptic diffusion) neurotransmission. Effects of ETX on receptors observed in vitro may undergo amplification in vivo to allow the excess EAA action to be magnified sufficiently to produce synchronization of neuronal firing, allowing participation of the nucleus in seizure generation. GABA-mediated inhibition, which normally acts to limit excitation, is diminished in effectiveness during ETX, and further intensifies this excitation.
Collapse
Affiliation(s)
- C L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794-1222, USA
| | | | | |
Collapse
|
31
|
Hevers W, Lüddens H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol Neurobiol 1998; 18:35-86. [PMID: 9824848 DOI: 10.1007/bf02741459] [Citation(s) in RCA: 355] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amino acid gamma-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotransmitter that mediates most of its effects through fast GABA-gated Cl(-)-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes alpha, beta, gamma, delta, sigma and epsilon, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of alpha, beta, and gamma subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular alpha and gamma subunit variants. Little is known about the functional properties of the beta, delta, and epsilon subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.
Collapse
Affiliation(s)
- W Hevers
- Department of Psychiatry, University of Mainz, Germany
| | | |
Collapse
|
32
|
Abstract
Rod bipolar (RB) cells of mammalian retinae receive synapses from different gamma-aminobutyric acid (GABAergic) amacrine cells in the inner plexiform layer (IPL). We addressed the question whether RB cells of the rabbit and of the rat retina express different types of GABA receptors at these synapses. RB cells were immunolabeled in vertical sections of rat retinae with an antibody against protein kinase C (PKC). The sections were double-labeled for the alpha 1, alpha 2, alpha 3, or gamma 2 subunits of the GABAA receptor. Punctate immunofluorescence, which represents synaptic localization, was found for all four subunits. Many of the alpha 1-, alpha 3-, or gamma 2-immunoreactive puncta coincided with the axon terminals of the PKC-immunolabeled RB cells. Sections and wholemounts of rabbit retinae were also double labeled for PKC and the rho subunits of the GABAC receptor. Rabbit RB cells were decorated by many rho-immunoreactive puncta, which were shown by electron microscopy to represent synaptic localization. Previous work from our laboratory has shown that the alpha 1, alpha 2, alpha 3, and rho subunits are not found within the same synapse but are expressed at different synaptic sites. Taken together, these results suggest that RB cells of mammalian retinae express at least three different types of GABA receptors at synaptic sites in the IPL: GABAC receptors, GABAA receptors containing the alpha 1 subunit, and GABAA receptors containing the alpha 3 subunit.
Collapse
Affiliation(s)
- E L Fletcher
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| | | | | |
Collapse
|
33
|
Abstract
Drugs of abuse modify signaling of neurotransmitter systems and intracellular messengers. Recent studies of central nervous system development show that these same neurotransmitters may serve as molecules that regulate specific aspects of cell proliferation, survival, migration, circuit formation and establishment of topography. Moreover, the convergence of neurotransmitter, growth factor and hormone activity on similar intracellular signaling systems suggests the potential for significant interactions among molecular components that regulate development. The application of modern strategies used by developmental and cell biologists to the question of whether prenatal drug exposure alters brain structure and function has led to discoveries of specific, targeted changes. Studies of the mechanisms of drug action that lead to altered neural development are now reality.
Collapse
Affiliation(s)
- P Levitt
- Department of Neurobiology, University of Pittsburgh, School of Medicine, PA 15261, USA. plevitt+@pitt.edu
| |
Collapse
|
34
|
Wässle H, Koulen P, Brandstätter JH, Fletcher EL, Becker CM. Glycine and GABA receptors in the mammalian retina. Vision Res 1998; 38:1411-30. [PMID: 9667008 DOI: 10.1016/s0042-6989(97)00300-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular cloning has introduced an unexpected diversity of neurotransmitter receptors. In this study we review the types, the localization and possible synaptic function of the inhibitory neurotransmitter receptors in the mammalian retina. Glycine receptors (GlyRs) and their localization in the mammalian retina were analyzed immunocytochemically. Specific antibodies against the alpha 1 subunit of the GlyR (mAb2b) and against all subunits of the GlyR (mAb4a) were used. Both antibodies produced a punctate immunofluorescence, which was shown by electron microscopy to represent clustering of GlyRs at synaptic sites. Synapses expressing the alpha 1 subunit of the GlyR were found on ganglion cell dendrites and on bipolar cell axons. GlyRs were also investigated in the oscillator mutant mouse. The complete loss of the alpha 1 subunit was compensated for by an apparent upregulation of the other subunits of the GlyR. GABAA receptors (GABAARs) and their retinal distribution were studied with specific antibodies that recognize the alpha 1, alpha 2, alpha 3, beta 1, beta 2, beta 3, gamma 2 and delta subunits. Most antibodies produced a punctate immunofluorescence in the inner plexiform layer (IPL) which was shown by electron microscopy to represent synaptic clustering of GABAARs. The density of puncta varied across the IPL and different subunits were found in characteristic strata. This stratification pattern was analyzed with respect to the ramification of cholinergic amacrine cells. Using intracellular injection with Lucifer yellow followed by immunofluorescence, we found that GABAARs composed of different subunits were expressed by the same ganglion cell, however, they were clustered at different synaptic sites. The distribution of GABAC receptors was studied in the mouse and in the rabbit retina using an antiserum that recognizes the rho 1, rho 2 and rho 3 subunits. GABAC receptors were found to be clustered at postsynaptic sites. Most, if not all of the synapses were found on rod and cone bipolar axon terminals. In conclusion we find a great diversity of glycine and GABA receptors in the mammalian retina, which might match the plethora of morphological types of amacrine cells. This may also point to subtle differences in synaptic function still to be elucidated.
Collapse
Affiliation(s)
- H Wässle
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
35
|
Granja R, Strakhova M, Knauer CS, Skolnick P. Anomalous rectifying properties of 'diazepam-insensitive' GABA(A) receptors. Eur J Pharmacol 1998; 345:315-21. [PMID: 9592032 DOI: 10.1016/s0014-2999(98)00025-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies using recombinant systems indicate that 'diazepam-insensitive' GABA(A) receptors in the central nervous system contain alpha4 and alpha6 subunits while 'diazepam-sensitive' GABA(A) receptors contain alpha1, alpha2, alpha3 and alpha5 subunits. Both native and recombinant diazepam-sensitive GABA(A) receptors typically exhibit large, outwardly rectifying currents. For example, in patch clamp studies, Human Embryonic Kidney (HEK) 293 cells transfected with cDNAs encoding alpha1beta2gamma2 subunits exhibit a rectification ratio (I +60 mV/I -60 mV) of 1.95 +/- 0.21. However, anomalous rectification was observed in recombinant diazepam-insensitive GABA(A) receptors composed of either alpha4beta2gamma2 (rectification ratio, 0.74 +/- 0.09) or alpha6beta2gamma2 (rectification ratio, 0.67 +/- 0.11) subunits. Based on sequence differences between diazepam-sensitive and -insensitive GABA(A) receptor alpha subunits in the vicinity of the putative channel lining, a point mutation was introduced at His273 on the alpha4 subunit. The rectification ratio in cells expressing a mutated alpha4(Asn273)beta2gamma2 receptor increased to 1.92 +/- 0.17. Moreover, mutation of the homologous residue in the alpha1 subunit to histidine reduced the rectification ratio of alpha1(His274)beta2gamma2 to 1.02 +/- 0.12. The affinities of benzodiazepine site ligands at diazepam-sensitive and -insensitive GABA(A) receptors were unaffected by these mutations. Thus, the electrophysiological properties of diazepam-sensitive and -insensitive GABA(A) receptors may be as divergent as their pharmacological characteristics.
Collapse
Affiliation(s)
- R Granja
- Laboratory of Neuroscience, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Granja R, Gunnersen D, Wong G, Valeyev A, Skolnick P. Diazepam enhancement of GABA-gated currents in binary and ternary GABAA receptors: relationship to benzodiazepine binding site density. J Mol Neurosci 1997; 9:187-95. [PMID: 9481620 DOI: 10.1007/bf02800501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the predominant GABAA receptor isoform in the adult rodent central nervous system is a ternary complex composed of alpha 1 beta 2/3 gamma 2-subunits, small populations of binary receptors lacking beta-subunits (i.e., complexes containing alpha gamma-subunits) have also been identified. When expressed in HEK 293 cells, recombinant GABAA receptors composed of either alpha 1 beta 2/3 gamma 2- or alpha 1 gamma 2-subunits form benzodiazepine-responsive, GABA-gated chloride channels. The objective of this study was to compare the ability of a prototypic benzodiazepine (diazepam) to augment GABA-gated chloride currents in these binary and ternary receptor isoforms. The potency of GABA was characteristically increased by diazepam (1 microM) in both receptor isoforms, but this increase was significantly greater (p < 0.05) in receptors composed of alpha 1 beta 2 gamma 2-subunits (approximately five- to sixfold) compared to alpha 1 gamma 2-subunits (approximately 2.2-fold). At GABA concentrations approximating its EC50 value (5 microM), the greater augmentation observed in ternary receptors was attributable to a higher efficacy of diazepam. Radioligand binding studies revealed that the Bmax of [3H]flunitrazepam was increased approximately 1.8- and 3.5-fold in cells expressing alpha 1 beta 2 gamma 2- and alpha 1 beta 3 gamma 2-subunits, respectively, compared to cells expressing alpha 1 gamma 2-subunits. A similar increase (approximately 3.8-fold) in the Bmax of [3H]Ro 15-4513 was observed in HEK 293 cells transiently transfected with cDNAs encoding alpha 6 beta 3 gamma 2-compared to alpha 6 gamma 2-subunits. The Kd values of these radioligands were not different in binary and ternary receptor isoforms. It is hypothesized that the greater efficacy of diazepam in alpha 1 beta 2 gamma 2 compared to alpha 1 gamma 2 GABAA receptors results from the higher benzodiazepine binding site density produced by the formation of a ternary complex.
Collapse
Affiliation(s)
- R Granja
- Laboratory of Neuroscience, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Tehrani MH, Baumgartner BJ, Barnes EM. Clathrin-coated vesicles from bovine brain contain uncoupled GABAA receptors. Brain Res 1997; 776:195-203. [PMID: 9439813 DOI: 10.1016/s0006-8993(97)01037-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clathrin-coated vesicles are thought to be a vehicle for the sequestration of GABAA receptors. For coated vesicles from bovine cerebrum, we examined the binding properties of [3H]muscimol. a GABAA-specific agonist. [3H]flunitrazepam a benzodiazepine agonist, and [35S]t-butylbiocyclophosphorthionate (TBPS), a ligand for GABAA receptor channels. Under standard conditions, the binding level of [3H]muscimol, [3H]flunitrazepam, and [35S]TBPS to coated vesicles represented 12.3 +/- 1.8%, 7.9 +/- 1%, and 10.2 +/- 1.8%, respectively, of that in crude synaptic membranes. Coated vesicles showed a single [3H]flunitrazepam binding site with a KD value (12 nM) which was 9-fold that for synaptic membranes. The allosteric coupling between binding sites was measured by the addition of GABA to [3H]flunitrazepam and [35S]TBPS binding assays. For [3H]flunitrazepam binding to synaptic membranes, GABA gave an EC50 = 2.0 microM and at saturation (100 microM) an enhancement of 122%. This stimulation was completely blocked by the GABA antagonist SR95531. In contrast, neither GABA nor SR95531 had a significant effect on [3H]flunitrazepam binding to CCVs, indicating that the allosteric interaction between GABA and benzodiazepine binding sites is abolished. Likewise, GABA displaced nearly all of the [35S]TBPS binding to synaptic membranes but had no effect on binding to coated vesicles, indicating that coupling between the GABA binding sites and chloride channel is also impaired. Thus GABAA receptors appear to be uncoupled during normal intracellular trafficking via coated vesicles. The presence of major GABAA receptor subunits on these particles was verified by quantitative immunoblotting. Relative to the levels in synaptic membranes, CCVs contained 110 +/- 14% and 29.5 +/- 3.8%, respectively, of the immunoreactivity for GABAA receptor beta 2 and alpha 1 subunits. Thus, in comparison to GABAA receptors on synaptic membranes, those on CCVs have a reduced alpha 1/beta 2-subunit ratio. It may be suggested that a selective decline in the content of alpha 1 subunits in coated vesicles could in part account for GABAA receptor uncoupling.
Collapse
Affiliation(s)
- M H Tehrani
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
38
|
Tehrani MH, Baumgartner BJ, Liu SC, Barnes EM. Aberrant expression of GABAA receptor subunits in the tottering mouse: an animal model for absence seizures. Epilepsy Res 1997; 28:213-23. [PMID: 9332886 DOI: 10.1016/s0920-1211(97)00058-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The single-locus mutant mouse tottering (tg) is an established model for absence seizures. We have previously reported an impairment in GABA-induced chloride uptake in tg brain [Tehrani and Barnes, Epilepsy Res. 1995;22:13-21]. In order to determine if this alteration in GABAA receptor function can be related to specific receptor isoforms, we examined the radioligand binding properties of GABAA receptors and the expression of GABAA receptor subunit mRNAs in the cerebral cortex. Saturation binding of [3H]flunitrazepam revealed a significantly lower Kd value in tg cortical tissues (1.77 +/- 0.05 nM) in comparison to that for the background C57BL/6J strain (3.23 +/- 0.23 nM), while the Bmax values were indistinguishable. Biphasic displacement of [3H]flunitrazepam binding by 2-oxoquazepam showed that low affinity binding sites account for 36 +/- 7.6 and 51 +/- 7.5% of the total in control and tg, respectively. The level of [35S]-t-butylbicyclophosphorothionate (TBPS) binding to tg cortical membranes was 73.6 +/- 5.8% of that in controls. Paired measurements by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) revealed no significant differences in the levels of GABAA receptor alpha 1, alpha 3, alpha 5, beta 2, beta 3, gamma 2 or gamma 3 subunit mRNAs between tg and control cortex. However, tg tissues showed elevated levels of alpha 2- and beta 1-subunit mRNAs, representing 256 and 177%, respectively, those of controls. For the tg cortex, the enhanced expression of GABAA receptor alpha 2 and beta 1 subunits correlates with recombinant subtypes known to have low affinity for 2-oxoquazepam and impaired binding of TBPS. These aberrant properties of GABAA receptors could influence the development or propagation of phenotypic seizures in the tottering mouse.
Collapse
Affiliation(s)
- M H Tehrani
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
39
|
Li M, De Blas AL. Coexistence of two beta subunit isoforms in the same gamma-aminobutyric acid type A receptor. J Biol Chem 1997; 272:16564-9. [PMID: 9195967 DOI: 10.1074/jbc.272.26.16564] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three novel subunit-specific antisera to the beta1, beta2, and beta3 subunits of rat gamma-aminobutyric acid type A (GABAA) receptors have been used to study the native receptor in the rat brain. Affinity-purified anti-beta1, anti-beta2, and anti-beta3 antibodies recognized in immunoblots protein bands of 57, 55, and 57 kDa, respectively. Quantitative immunoprecipitation of solubilized GABAA receptors from various rat brain regions showed that the beta2 subunit was the most abundant isoform in cerebellum (in 96% of the GABAA receptors) and cerebral cortex (64%) but that it was the least abundant isoform in hippocampus (44%). The beta3 subunit was found most abundant in hippocampus (64%) followed by cerebral cortex (48%) and cerebellum (33%). The beta1 subunit was present in a very small proportion of the cerebellar GABAA receptors (3%), but it was present in a high proportion of the GABAA receptors from the hippocampus (49%) and cerebral cortex (32%). Quantitative receptor immunoprecipitation or immunopurification followed by immunoblotting experiments have revealed the existence of colocalization of two different beta subunit isoforms in a significant proportion of the brain GABAA receptors. Thus, in the rat cerebral cortex 33% of the GABAA receptors have both beta2 and beta3 subunits, and 19% of the receptors have both beta1 and beta3 subunits. The extent of colocalization of beta subunit isoforms varied among brain regions, being highest in hippocampus and lowest in cerebellum. These and other results taken together suggest that the number of alpha, beta, and gamma subunits (stoichiometry) in the brain GABAA receptor pentamers might not be unique. It might vary depending on receptor type.
Collapse
Affiliation(s)
- M Li
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | |
Collapse
|
40
|
Miranda JD, Barnes EM. Repression of gamma-aminobutyric acid type A receptor alpha1 polypeptide biosynthesis requires chronic agonist exposure. J Biol Chem 1997; 272:16288-94. [PMID: 9195932 DOI: 10.1074/jbc.272.26.16288] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although it is well established that the number of gamma-aminobutyric acid type A (GABAA) receptors declines in cortical neurons exposed to GABAA receptor agonists, the mechanisms responsible for this use-dependent down-regulation remain unclear. Two hypotheses have been proposed: (i) agonist-evoked sequestration and degradation of surface GABAA receptors and (ii) repression of receptor subunit biosynthesis. We have addressed this problem using [35S]Met/Cys pulse-chase labeling of chick cortical neurons in culture and immunoprecipitation and immunoblotting with an antibody (RP4) directed against a GABAA receptor alpha1-(331-381) fusion protein. Exposure of the cells to GABA or isoguvacine for 2 h to 4 days had no effect on the initial rate of 35S incorporation into the GABAA receptor 51-kDa alpha1 polypeptide, but this rate declined by 33% after a 7-day treatment. This is consistent with a previous report (Baumgartner, B. J., Harvey, R. J., Darlison, M. G., and Barnes, E. M. (1994) Mol. Brain Res. 26, 9-17) that a 7-day GABA treatment of this preparation produced a 45% reduction in the alpha1 subunit mRNA level, while a 4-day exposure had no detectable effect. On the other hand, after a 4-day exposure to these agonists, a 30% reduction in the level of the alpha1 polypeptide was observed on immunoblots, similar to that found previously for down-regulation of GABAA receptor ligand-binding sites. Thus, the de novo synthesis of GABAA receptor alpha1 subunits is subject to a delayed use-dependent repression that was observed after, rather than before, the decline in neuronal levels of the polypeptide. Pulse-chase experiments showed a monophasic degradation of the GABAA receptor 35S-alpha1 subunit with a t1/2 = 7.7 h, a process that was unaffected by the addition of GABA to neurons during the chase period. These nascent 35S-labeled polypeptides are presumably diluted into the neuronal pool of unlabeled unassembled alpha1 subunits, which was found to exceed by a 4:1 molar ratio the amount assembled into [3H]flunitrazepam binding sites. Thus, the data reveal an alternative scheme for degradation of GABAA receptor polypeptides: a pathway that may participate in the agonist-independent degradation of unassembled receptor subunits. This differs from another pathway for the agonist-dependent degradation of mature GABAA receptors derived from the neuronal surface (Calkin, P. A., and Barnes, E. M., Jr. (1994) J. Biol. Chem. 269, 1548-1553).
Collapse
Affiliation(s)
- J D Miranda
- Neuroscience Division, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
41
|
Miranda JD, Liu SC, Diaz ME, Barnes EM. Developmental expression of chick cortical GABA(A) receptor alpha1 subunits in vivo and in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 99:176-86. [PMID: 9125471 DOI: 10.1016/s0165-3806(97)00016-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to examine the expression of the GABA(A) receptor alpha1 subunit during chick cortical development in vivo and in vitro, we have utilized a polyclonal antibody (RP4) directed against an alpha1(331-381) fusion protein. This antibody exhibits a high titer for precipitation of [3H]flunitrazepam binding sites in chick cortical extracts, no significant cross-reactivity with GABA(A) receptor beta2- or beta4-subunit fusion proteins, and a robust reaction with a single 51-kDa polypeptide on immunoblots of cortical membranes. This indicates monospecificity of the RP4 antiserum for the GABA(A) receptor alpha1 subunit. The alpha1-subunit antibody also showed strong immunocytochemical reactions with neurons in the embryonic mediodorsal cortex and Purkinje cells of the chick cerebellum. The ontogeny of the alpha1 subunit in chick cortex and in derived neuronal cultures was examined by quantitative Western blotting. The level of the alpha1 polypeptide increased from day 2 to day 6 in culture, acquiring 50% of the maximum expression at day 4. Expression of the cortical GABA(A) receptor alpha1 subunit increased in vivo from embryonic day 8 (E8) to day 7 post-hatching, reaching 50% of adult levels at E16. Levels of the corresponding alpha1-subunit mRNA, analyzed from E8 to E20 by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR), showed a corresponding incline. These findings correlated well with previous developmental studies of GABA(A) receptor ligand binding sites both in vivo and in vitro. The parallel increase of the alpha1 subunit transcript and polypeptide with [3H]flunitrazepam binding sites suggests that this subunit may be an important component of GABA(A) receptors early in cortical ontogeny. This was investigated further by quantitative immunoprecipitation. At saturation, the RP4 antiserum consistently precipitated 50-65% of the central [3H]flunitrazepam binding sites in the developing cortex from E12 through P7, despite a 5-fold increase in the binding level. The data suggest that during cortical development the fraction of GABA(A) receptors containing alpha1 subunits remains relatively constant. Furthermore, the alpha1 polypeptide appears to be a major component of GABA(A) receptor oligomers at all stages of cortical maturation.
Collapse
Affiliation(s)
- J D Miranda
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Khan ZU, Gutiérrez A, Mehta AK, Miralles CP, De Blas AL. The alpha 4 subunit of the GABAA receptors from rat brain and retina. Neuropharmacology 1996; 35:1315-22. [PMID: 9014147 DOI: 10.1016/s0028-3908(96)00033-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel anti-alpha 4 antibody has been used for the purification and characterization of the alpha 4-containing GABAA receptors in the rat brain and for studying the immunocytochemical distribution of the alpha 4 subunit peptide in rat brain and retina. The anti-alpha 4 antibody recognized a 66 kDa peptide in brain membranes and immunoprecipitated 10-28% of the brain GABAA receptors in various brain regions as determined by [3H]muscimol binding. The highest immunoprecipitation values were obtained in the thalamus and the lowest in the cerebellum. Surprisingly, the receptors immunoprecipitated by anti-alpha 4 showed little or no diazepam-insensitive or diazepam-sensitive [3H]Ro15-4513 binding sites in any brain region. In the cerebellum, where 25% of the [3H]Ro15-4513 binding is diazepam-insensitive, much of the latter was immunoprecipitated by an anti-alpha 6 antibody but not by the anti-alpha 4 antibody. Immunoblots of immunoaffinity-purified GABAA receptors from the cerebral cortex on immobilized anti-alpha 4 revealed molecular colocalization of alpha 4 and gamma 2. However, the absence of significant benzodiazepine binding in these GABAA receptors suggests that the assembly of the alpha 4 and gamma 2 subunits in the cerebral cortex and in other brain regions is such that they do not normally form diazepam-insensitive [3H]Ro15-4513 binding sites. This result contrasts with the presence of diazepam-insensitive [3H]Ro15-4513 binding sites in the GABAA receptors expressed in heterologous systems resulting from the combination of alpha 4, gamma 2 and beta 2 subunits. Immunocytochemistry has revealed the abundance of alpha 4 peptide immunoreactivity in the thalamus and dentate gyrus (mainly in the hilar neurons and the inner third of the granule cell layer). The alpha 4 immunoreactivity is also present in the external plexiform layer of the olfactory bulb and in all layers of the neocortex and pyriform cortex. In the retina, alpha 4 is concentrated on ganglion cells (including some giant ganglion cells), the inner plexiform layer and to a lesser extent in the outer plexiform layer.
Collapse
Affiliation(s)
- Z U Khan
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110-2499, USA
| | | | | | | | | |
Collapse
|