1
|
Rao BD, Chakraborty H, Chaudhuri A, Chattopadhyay A. Differential sensitivity of pHLIP to ester and ether lipids. Chem Phys Lipids 2019; 226:104849. [PMID: 31836521 DOI: 10.1016/j.chemphyslip.2019.104849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
pH (low) insertion peptide (pHLIP) is a polypeptide from the third transmembrane helix of bacteriorhodopsin. The pH-dependent membrane insertion of pHLIP has been conveniently exploited for translocation of cargo molecules and as a novel imaging agent in cancer biology due to low extracellular pH in cancer tissues. Although the application of pHLIP for imaging tumor and targeted drug delivery is well studied, literature on pHLIP-membrane interaction is relatively less studied. Keeping this in mind, we explored the differential interaction of pHLIP with ester and ether lipid membranes utilizing fluorescence and CD spectroscopy. We report, for the first time, higher binding affinity of pHLIP toward ether lipid relative to ester lipid membranes. There results gain relevance since Halobacterium halobium (source of bacteriorhodopsin) is enriched with ether lipids. In addition, we monitored the difference in microenvironment around pHLIP tryptophans utilizing red edge excitation shift and observed increased motional restriction of water molecules in the interfacial region in ether lipid membranes. These changes were accompanied with increase in helicity of pHLIP in ether lipid relative to ester lipid membranes. Our results assume further relevance since ether lipids are upregulated in cancer cells and have emerged as potential biomarkers of various diseases including cancer.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Arunima Chaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India.
| |
Collapse
|
2
|
Amaro M, Reina F, Hof M, Eggeling C, Sezgin E. Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:134004. [PMID: 29449744 PMCID: PMC5802044 DOI: 10.1088/1361-6463/aa5dbc] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/02/2017] [Accepted: 02/02/2017] [Indexed: 05/22/2023]
Abstract
Lipid packing is a crucial feature of cellular membranes. Quantitative analysis of membrane lipid packing can be achieved using polarity sensitive probes whose emission spectrum depends on the lipid packing. However, detailed insights into the exact mechanisms that cause the changes in the spectra are necessary to interpret experimental fluorescence emission data correctly. Here, we analysed frequently used polarity sensitive probes, Laurdan and di-4-ANEPPDHQ, to test whether the underlying physical mechanisms of their spectral changes are the same and, thus, whether they report on the same physico-chemical properties of the cell membrane. Steady-state spectra as well as time-resolved emission spectra of the probes in solvents and model membranes revealed that they probe different properties of the lipid membrane. Our findings are important for the application of these dyes in cell biology.
Collapse
Affiliation(s)
- Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the C.A.S, v.v.i., Dolejskova 3, 182 23 Prague, Czechia
| | - Francesco Reina
- MRC Human Immunology Unit, OX39DS, University of Oxford, Oxford, United Kingdom
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the C.A.S, v.v.i., Dolejskova 3, 182 23 Prague, Czechia
| | - Christian Eggeling
- MRC Human Immunology Unit, OX39DS, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, OX39DS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Olzyńska A, Zań A, Jurkiewicz P, Sýkora J, Gröbner G, Langner M, Hof M. Molecular interpretation of fluorescence solvent relaxation of Patman and 2H NMR experiments in phosphatidylcholine bilayers. Chem Phys Lipids 2007; 147:69-77. [PMID: 17467676 DOI: 10.1016/j.chemphyslip.2007.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 11/25/2022]
Abstract
The analysis of time-dependent fluorescence shifts of the bilayer probe 6-hexadecanoyl-2-(((2-(trimethylammonium)ethyl)methyl)amino)naphthalene chloride (Patman) offers valuable information on the hydration and dynamics of phospholipid headgroups. Quenching studies on vesicles composed of four phosphatidylcholines with different hydrocarbon chains (18:1c9/18:1c9, DOPC; 16:0/18:1c9, POPC; 18:1c9/16:0, OPPC; 18:1c6/18:1c6, PCDelta6) show that the chromophore of Patman is defined located at the level of the sn-1 ester-group in the phospholipid, which is invariant to the hydrocarbon chain. The so-called solvent relaxation (SR) approach as well as solid-state 2H NMR reveals that DOPC and PCDelta6 are more hydrated than POPC and OPPC. A strong dependence of SR kinetics on the position of double bond in the investigated fatty acid chains was observed. Apparently, the closer the double bond is located to the hydrated sn-1 ester-group, the more mobile this group becomes. This work demonstrates that the SR approach can report mobility changes within phospholipid bilayers with a remarkable molecular resolution.
Collapse
Affiliation(s)
- A Olzyńska
- Academy of Sciences of the Czech Republic, J. Heyrovský Institute of Physical Chemistry, v.v.i., Dolejskova 3, CZ-18223 Prague 8, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
4
|
Le Goff G, Vitha MF, Clarke RJ. Orientational polarisability of lipid membrane surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:562-70. [PMID: 17178101 DOI: 10.1016/j.bbamem.2006.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/11/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Here we present a fluorescence method based on the Stokes shift of the voltage-sensitive dye di-8-ANEPPS to quantify the orientational polarisability of lipid membrane surfaces, i.e. the polarisability due to molecular reorientation. Di-8-ANEPPS is already an established probe of membrane dipole potential. Its use, therefore, as a probe of both the dipole potential and orientational polarisability allows a direct comparison of these two properties in an identical region of the lipid bilayer. We applied the new technique on phosphatidylcholine vesicles to study the effects of different degrees of hydrocarbon saturation and of the incorporation of cholesterol and some of its oxidized derivatives. We found that lipids with unsaturated chains had a lower orientational polarisability than those with saturated chains. This could be explained by a reduction in membrane dipole potential as a result of a decrease in lipid packing density. Cholesterol derivatives were found to either increase or decrease the orientational polarisability depending on their molecular structure. The varying effects could be explained by antagonistic effects of the dipole potential and membrane order, which are both changed to varying degrees by the cholesterol derivatives and which lead to increases and decreases in orientational polarisability, respectively.
Collapse
Affiliation(s)
- Gaëlle Le Goff
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
5
|
Jurkiewicz P, Sýkora J, Olzyńska A, Humpolícková J, Hof M. Solvent relaxation in phospholipid bilayers: principles and recent applications. J Fluoresc 2006; 15:883-94. [PMID: 16328702 DOI: 10.1007/s10895-005-0013-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although there exist a number of methods, such as NMR, X-ray, e.g., which explore the hydration of phospholipid bilayers, the solvent relaxation (SR) method has the advantage of simple instrumentation, easy data treatment and possibility of measuring fully hydrated samples. The main information gained from SR by the analysis of recorded "time-resolved emission spectra" (TRES) is micro-viscosity and micro-polarity of the dye microenvironment. Based on these parameters, one can draw conclusions about water structure in the bilayer. In this review, we focus on physical background of this method, on all the procedures that are needed in order to obtain relevant parameters, and on the requirements on the fluorescence dyes. Furthermore, a few recent applications (the effect of curvature, binding of antibacterial peptides and phase transition) illustrating the versatility of this method are mentioned. Moreover, limitations and potential problems are discussed.
Collapse
Affiliation(s)
- Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-18223, Prague 8, Czech Republic
| | | | | | | | | |
Collapse
|
6
|
Humpolícková J, Stepánek M, Procházka K, Hof M. Solvent Relaxation Study of pH-Dependent Hydration of Poly(oxyethylene) Shells in Polystyrene-block-poly(2-vinylpyridine)-block-poly(oxyethylene) Micelles in Aqueous Solutions. J Phys Chem A 2005; 109:10803-12. [PMID: 16331923 DOI: 10.1021/jp053348v] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydration of the poly(oxyethylene) shell in polystyrene-block-poly(2-vinylpyridine)-block-poly(oxyethylene) micelles was investigated by monitoring the solvent relaxation response of a solvent-sensitive fluorophore (patman). It has been found that the relaxation occurs on the nanosecond time scale. Results for triblock copolymer micelles have been compared with those obtained for polystyrene-block-poly(2-vinylpyridine) micelles in order to evaluate the effect of the outer polyoxyethylene layer. Considerable pH-dependent changes in the hydration of poly(oxyethylene) units at the poly(2-vinylpyridine)/polyoxyethylene interface were observed. Additionally, the paper shows that the solvent relaxation technique is a suitable tool for studying polymeric nanoparticles and that the measurement of time-dependent half-width of the emission spectrum allows for estimation of the extent of relaxation process observed by a given experimental setup.
Collapse
Affiliation(s)
- Jana Humpolícková
- Department of Physical and Macromolecular Chemistry and Laboratory of Specialty Polymers, School of Science, Charles University in Prague, Albertov 2030, 128 40 Prague 2, Czech Republic
| | | | | | | |
Collapse
|
7
|
Sýkora J, Jurkiewicz P, Epand RM, Kraayenhof R, Langner M, Hof M. Influence of the curvature on the water structure in the headgroup region of phospholipid bilayer studied by the solvent relaxation technique. Chem Phys Lipids 2005; 135:213-21. [PMID: 15921979 DOI: 10.1016/j.chemphyslip.2005.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/03/2005] [Accepted: 03/07/2005] [Indexed: 11/26/2022]
Abstract
Solvent relaxation (SR) in 1,2-dioleoyl-palmitoyl-sn-glycero-3-phosphocholine (DOPC) unilamellar vesicles of different size was probed by 6-hexadecanoyl-2-(((2-(trimethylammonium)ethyl)methyl)amino)naphthalene chloride (Patman), 6-propionyl-2-dimethylaminonaphthalene (Prodan) and 4-[(n-dodecylthio)methyl]-7-(N,N-dimethylamino)-coumarin (DTMAC). Patman probes the amount and mobility of the bound water molecules located at the carbonyl region of the bilayer. Membrane curvature significantly accelerates the solvent relaxation process, but does not influence the total Stokes shift, showing that membrane curvature increases the mobility, without affecting the amount of water molecules present in the headgroup region. This pattern was also verified for other phosphatidylcholines. Prodan is located in the phosphate region of the bilayer and probes a more polar, mobile and heterogeneous environment than Patman. The influence of membrane curvature on SR probed by Prodan is similar, however, less pronounced compared to Patman. DTMAC (first time used in SR) shows a broad distribution of locations along the z-axis. A substantial amount of the coumarin chromophores face bulk water. No effect of curvature on SR probed by DTMAC is detectable.
Collapse
Affiliation(s)
- Jan Sýkora
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-18223 Prague 8, Czech Republic
| | | | | | | | | | | |
Collapse
|
8
|
Mukherjee S, Chattopadhyay A. Influence of ester and ether linkage in phospholipids on the environment and dynamics of the membrane interface: a wavelength-selective fluorescence approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:287-293. [PMID: 15620316 DOI: 10.1021/la048027+] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have monitored the environment and dynamics of the membrane interface formed by the ester-linked phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the ether-linked phospholipid 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) utilizing the wavelength-selective fluorescence approach and using the fluorescent membrane probe 2-(9-anthroyloxy)stearic acid (2-AS). This interfacially localized probe offers a number of advantages over those which lack a fixed location in the membrane. When incorporated in membranes formed by DPPC and DHPC, 2-AS exhibits red edge excitation shift (REES) of 14 and 8 nm, respectively. This implies that the rate of solvent reorientation, as sensed by the interfacial anthroyloxy probe, in ester-linked DPPC membranes is slow compared to the rate of solvent reorientation in ether-linked DHPC membranes. In addition, the fluorescence polarization values of 2-AS are found to be higher in DHPC membranes than in DPPC membranes. This is further supported by wavelength-dependent changes in fluorescence polarization and lifetime. Taken together, these results are useful in understanding the role of interfacial chemistry on membrane physical properties.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
9
|
Sheynis T, Sykora J, Benda A, Kolusheva S, Hof M, Jelinek R. Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. ACTA ACUST UNITED AC 2003; 270:4478-87. [PMID: 14622276 DOI: 10.1046/j.1432-1033.2003.03840.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Depth of bilayer penetration and effects on lipid mobility conferred by the membrane-active peptides magainin, melittin, and a hydrophobic helical sequence KKA(LA)7KK (denoted KAL), were investigated by colorimetric and time-resolved fluorescence techniques in biomimetic phospholipid/poly(diacetylene) vesicles. The experiments demonstrated that the extent of bilayer permeation and peptide localization within the membrane was dependent upon the bilayer composition, and that distinct dynamic modifications were induced by each peptide within the head-group environment of the phospholipids. Solvent relaxation, fluorescence correlation spectroscopy and fluorescence quenching analyses, employing probes at different locations within the bilayer, showed that magainin and melittin inserted close to the glycerol residues in bilayers incorporating negatively charged phospholipids, but predominant association at the lipid-water interface occurred in bilayers containing zwitterionic phospholipids. The fluorescence and colorimetric analyses also exposed the different permeation properties and distinct dynamic influence of the peptides: magainin exhibited the most pronounced interfacial attachment onto the vesicles, melittin penetrated more into the bilayers, while the KAL peptide inserted deepest into the hydrophobic core of the lipid assemblies. The solvent relaxation results suggest that decreasing the lipid fluidity might be an important initial factor contributing to the membrane activity of antimicrobial peptides.
Collapse
Affiliation(s)
- Tanya Sheynis
- Department of Chemistry and the Stadler Minerva Center for Mesoscopic Macromolecular Engineering, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Hutterer R, Schneider FW, Hermens WT, Wagenvoord R, Hof M. Binding of prothrombin and its fragment 1 to phospholipid membranes studied by the solvent relaxation technique. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1414:155-64. [PMID: 9804936 DOI: 10.1016/s0005-2736(98)00163-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The phospholipid headgroup mobility of small unilamellar vesicles composed of different mixtures of phosphatidyl-L-serine (PS) and phosphatidylcholine is characterized by the solvent relaxation behavior of the polarity sensitive dyes 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and 6-palmitoyl-2-[trimethylammoniumethyl]-methylamino]naphthalene chloride (Patman). If the PS content exceeds 10%, the addition of calcium leads to a substantial deceleration of the solvent relaxation of both dyes, indicating the formation of Ca(PS)2 complexes. Addition of prothrombin and its fragment 1 leads to a further decrease of the headgroup mobility, as explained by the binding of more than two PS-molecules by a single protein molecule. Prodan monitors the outermost region of the bilayer and it clearly distinguishes between the binding of prothrombin and its fragment 1. The deeper incalated Patman does not distinguish between both proteins. The validity of the solvent relaxation technique for the investigation of the membrane binding of peripheral proteins is demonstrated by the studies of prothrombin induced changes in the steady-state fluorescence anisotropies of 1,6-diphenyl-1,3, 5-hexatriene.
Collapse
Affiliation(s)
- R Hutterer
- Institute for Physical Chemistry, University of Würzburg, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Crouch SR, Cullen TF, Scheeline A, Kirkor ES. Kinetic Determinations and Some Kinetic Aspects of Analytical Chemistry. Anal Chem 1998. [DOI: 10.1021/a1980005s] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|