1
|
Afreen S, Mishra S. Production of high-value oxidative enzymes by Cyathus bulleri on agricultural and agri-food wastes for application in the textile sector. World J Microbiol Biotechnol 2023; 39:329. [PMID: 37792159 DOI: 10.1007/s11274-023-03769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Ligninolytic and other oxidative enzymes have emerged as promising biocatalysts in several industries. Since their production at a low cost is necessary for any large-scale application, we demonstrate the use of rice bran (RB), an agricultural waste and agri-food wastes such as potato peelings (PP), banana peelings (BP), and green pea peelings (GPP) for their production. High activity of laccase (12 U/ml), manganese peroxidase (16.11 ± 1.43 U/ml), and aryl alcohol oxidase (1.25 U/ml) was obtained on the PP on the 12th day of growth and ~ 6 U/ml of lytic polysaccharide monooxygenase was obtained on the 14th day of growth demonstrating PP to be a good substrate for their production. RB served as the next best substrate for the production of these enzymes. While the GPP was effective for the production of laccase (9.2 U/ml), this and the BP were not good substrates for the production of other enzymes. Efficient (48-82%) decolorization of several azo-, triarylmethane- dyes, and real textile effluent, without the addition of any mediator, demonstrated the high oxidative ability of the crude culture filtrate produced on the PP (CF-PP), which was a significant improvement compared to the treatment given by the previously reported culture filtrate obtained on wheat bran (CF-WB). An extensive breakdown of Reactive Orange (RO) 16 was demonstrated using CF-PP resulting in the formation of a new product at m/z of 294.05 (6-acetamido-3,4-dioxo-3,4-dihydronapthalene-2-sulfonate), previously reported to be produced on ozonation/advanced oxidation of RO16. The predominant laccase and manganese peroxidase isoforms produced on the PP were also identified.
Collapse
Affiliation(s)
- Sumbul Afreen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India.
| |
Collapse
|
2
|
Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi. Molecules 2020; 25:molecules25020400. [PMID: 31963668 PMCID: PMC7024351 DOI: 10.3390/molecules25020400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Chlorhexidine (CHX) and octenidine (OCT), antimicrobial compounds used in oral care products (toothpastes and mouthwashes), were recently revealed to interfere with human sex hormone receptor pathways. Experiments employing model organisms—white-rot fungi Irpex lacteus and Pleurotus ostreatus—were carried out in order to investigate the biodegradability of these endocrine-disrupting compounds and the capability of the fungi and their extracellular enzyme apparatuses to biodegrade CHX and OCT. Up to 70% ± 6% of CHX was eliminated in comparison with a heat-killed control after 21 days of in vivo incubation. An additional in vitro experiment confirmed manganese-dependent peroxidase and laccase are partially responsible for the removal of CHX. Up to 48% ± 7% of OCT was removed in the same in vivo experiment, but the strong sorption of OCT on fungal biomass prevented a clear evaluation of the involvement of the fungi or extracellular enzymes. On the other hand, metabolites indicating the enzymatic transformation of both CHX and OCT were detected and their chemical structures were proposed by means of liquid chromatography–mass spectrometry. Complete biodegradation by the ligninolytic fungi was not achieved for any of the studied analytes, which emphasizes their recalcitrant character with low possibility to be removed from the environment.
Collapse
|
3
|
Andreolli M, Lampis S, Brignoli P, Vallini G. Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 153:121-131. [PMID: 25688477 DOI: 10.1016/j.jenvman.2015.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/13/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
In this work, the natural attenuation strategy (no soil amendments done) was compared with two different bioremediation approaches, namely bioaugmentation through soil inoculation with a suspension of Trichoderma sp. mycelium and biostimulation by soil addition with a microbial growth promoting formulation, in order to verify the effectiveness of these methods in terms of degradation efficiency towards toxic hydrocarbons, with particular attention to the high molecular weight (HMW) fraction, in a forest area impacted by recent wildfire in Northern Italy. The area under investigation, divided into three parcels, was monitored to figure out the dynamics of decay in soil concentration of C₁₂₋₄₀ hydrocarbons (including isoalkanes, cycloalkanes, alkyl-benzenes and alkyl-naphthalenes besides PAHs) and low molecular weight (LMW) PAHs, following the adoption of the foregoing different remediation strategies. Soil hydrocarbonoclastic potential was even checked by characterizing the autochthonous microbial cenoses. Field experiments proved that the best performance in the abatement of HMW hydrocarbons was reached 60 days after soil treatment through the biostimulation protocol, when about 70% of the initial concentration of HMW hydrocarbons was depleted. Within the same time, about 55% degradation was obtained with the bioaugmentation protocol, whilst natural attenuation allowed only a 45% removal of the starting C12-40 hydrocarbon fraction. Therefore, biostimulation seems to significantly reduce the time required for the remediation, most likely because of the enhancement of microbial degradation through the improvement of nutrient balance in the burned soil.
Collapse
Affiliation(s)
- Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
4
|
Mnif I, Fendri R, Ghribi D. Malachite green bioremoval by a newly isolated strain Citrobacter sedlakii RI11; enhancement of the treatment by biosurfactant addition. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:1283-1293. [PMID: 26465297 DOI: 10.2166/wst.2015.302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Citrobacter sedlackii RI11, isolated from acclimated textile effluent after selective enrichment on synthetic dyes, was assessed for malachite green (MG) biotreatment potency. Results indicate that this bacterium has potential for use in effective treatment of MG contaminated wastewaters under shaking conditions at neutral and alkaline pH value, characteristic of typical textile effluents. Also, the newly isolated strain can tolerate higher doses of dye and decolorize up to 1,000 mg/l of dye. When used as microbial surfactant to enhance MG biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that MG removal by this strain could be due to biodegradation and/or adsorption. Results on germination potencies of different seeds using the treated dyes under different conditions favor the use of SPB1 biosurfactant for the treatment of MG.
Collapse
Affiliation(s)
- Inès Mnif
- Unité 'Enzymes et Bioconversion', National School of Engineers of Sfax, Université de Sfax, BP W 3038 Sfax, Tunisia and Higher Institute of Biotechnology of Sfax, Université de Sfax, Tunisia E-mail:
| | - Raouia Fendri
- Unité 'Enzymes et Bioconversion', National School of Engineers of Sfax, Université de Sfax, BP W 3038 Sfax, Tunisia and Higher Institute of Biotechnology of Sfax, Université de Sfax, Tunisia E-mail:
| | - Dhouha Ghribi
- Unité 'Enzymes et Bioconversion', National School of Engineers of Sfax, Université de Sfax, BP W 3038 Sfax, Tunisia and Higher Institute of Biotechnology of Sfax, Université de Sfax, Tunisia E-mail:
| |
Collapse
|
5
|
Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.10.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Choi YS, Long Y, Kim MJ, Kim JJ, Kim GH. Decolorization and degradation of synthetic dyes by Irpex lacteus KUC8958. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:501-508. [PMID: 23383635 DOI: 10.1080/10934529.2013.730419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study was carried out to evaluate the dye decolorizing and detoxifying abilities of Irpex lacteus. The decolorization abilities of 14 strains of I. lacteus were investigated in agar-plates containing 3 synthetic dyes: Congo Red (CR), Orange II (OII), and Reactive Blue 4 (RB4). In an agar plate test, I. lacteus KUC8958 showed the highest dye decolorizing rate with all 3 dyes. Subsequently, we investigated the decolorizing and detoxifying abilities of I. lacteus KUC8958 on synthetic dyes in liquid media under both shaking and static conditions. I. lacteus KUC8958 showed high decolorization rates for CR and BR4 (more than 95%) under shaking conditions, but only moderate decolorization of OII (up to 53%). The dye decolorizing rates of I. lacteus KUC8958 were approximately 20% to 60% higher under shaking conditions than under static conditions. In a detoxification assay, the toxicities of CR and OII solutions increased, whereas the toxicity of RB4 decreased after decolorization by I. lacteus KUC8958. Subsequently, high-performance liquid chromatography analysis detected 2 compounds in CR and 1 compound in OII that were newly formed during the decolorizing process, and which might be involved in the increased toxicities. Further studies are required to identify these newly formed compounds.
Collapse
Affiliation(s)
- Yong-Seok Choi
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
7
|
The microbial degradation of azo dyes: minireview. World J Microbiol Biotechnol 2012; 29:389-99. [PMID: 23108664 DOI: 10.1007/s11274-012-1198-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
The removal of dyes in wastewater treatment plants still involves physical or chemical processes. Yet numerous studies currently exist on degradation based on the use of microbes-which is a well-studied field. However progress in the use of biological methods to deal with this environmentally noxious waste is currently lacking. This review focuses on the largest dye class, that is azo dyes and their biodegradation. We summarize the bacteria identified thus far which have been implicated in dye decolorization and discuss the enzymes involved and mechanisms by which these colorants are broken down.
Collapse
|
8
|
Bustamante M, González ME, Cartes A, Diez MC. Effect of soya lecithin on the enzymatic system of the white-rot fungi Anthracophyllum discolor. J Ind Microbiol Biotechnol 2011; 38:189-97. [PMID: 20811924 DOI: 10.1007/s10295-010-0844-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
The present work optimized the initial pH of the medium and the incubation temperature for ligninolytic enzymes produced by the white-rot fungus Anthracophyllum discolor. Additionally, the effect of soya lecithin on mycelial growth and the production of ligninolytic enzymes in static batch cultures were evaluated. The critical micelle concentration of soya lecithin was also studied by conductivity. The effects of the initial pH (3, 4, and 5) and incubation temperature (20, 25, and 30°C) on different enzymatic activities revealed that the optimum conditions to maximize ligninolytic activity were 26°C and pH 5.5 for laccase and manganese peroxidase (MnP) and 30°C and pH 5.5 for manganese-independent peroxidase (MiP). Under these culture conditions, the maximum enzyme production was 10.16, 484.46, and 112.50 U L(-1) for laccase, MnP, and manganese-independent peroxidase MiP, respectively. During the study of the effect of soya lecithin on A. discolor, we found that the increase in soya lecithin concentration from 0 to 10 g L(-1) caused an increase in mycelial growth. On the other hand, in the presence of soya lecithin, A. discolor produced mainly MnP, which reached a maximum concentration of 30.64 ± 4.61 U L(-1) after 25 days of incubation with 1 g L(-1) of the surfactant. The other enzymes were produced but to a lesser extent. The enzymatic activity of A. discolor was decreased when Tween 80 was used as a surfactant. The critical micelle concentration of soya lecithin calculated in our study was 0.61 g L(-1).
Collapse
Affiliation(s)
- M Bustamante
- Doctoral Program in Sciences of Natural Resources, University of La Frontera, Ave. Francisco Salazar 01145, Box 54-D, Temuco, Chile.
| | | | | | | |
Collapse
|
9
|
Ali N, Hameed A, Ahmed S. Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. Braz J Microbiol 2010; 41:907-15. [PMID: 24031570 PMCID: PMC3769768 DOI: 10.1590/s1517-83822010000400009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 04/26/2010] [Indexed: 11/22/2022] Open
Abstract
The present study is vital to the understanding of bioremediation of structurally different azo dyes by some unusual Brown-rot fungi. Bioremoval of each dye (20 mg l-1) was tested in two different culture media under static and shaking conditions by taking inocula from different fungi. Fungal strains showed varying dyes removal abilities, though considerable high in case of Acid Red (AR) 151(di-azo) as compared to Orange (Or) II (mono-azo). With an exception of Aspergillus tereus SA3, all the fungal isolates showed higher removal of dyes in SDB. Under static condition, the maximum decolorizing fungal strains were; Aspergillus flavus SA2 (67%) and Alternaria spp. SA4 (57%) in AR 151, while Penicillium spp. (34 and 33 %) in Orange II, in SDB and STE, respectively. Bioremoval of dyes was considerably increased when experiments were shifted from static to shaking mode. It was specifically increased (%) in; AR 151 (255) with Penicillium spp., Or II with A. flavus SA2 (112) and Alternaria spp. (111). The primary mechanism of dyes removal proved to be fungal biosorption. However, reduction of dyes (onto fungal) with formation of their products (α. naphthol, sulphalinic acid and aniline) furthermore revealed that dyes (specifically azo) were actually biodegraded.
Collapse
Affiliation(s)
- Naeem Ali
- Department of Microbiology, Quaid-i-Azam University , Islamabad , Pakistan
| | | | | |
Collapse
|
10
|
Sklenar J, Niku-Paavola ML, Santos S, Man P, Kruus K, Novotny C. Isolation and characterization of novel pI 4.8 MnP isoenzyme from white-rot fungus Irpex lacteus. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Irpex lacteus, a white-rot fungus with biotechnological potential — review. Folia Microbiol (Praha) 2009; 54:375-90. [DOI: 10.1007/s12223-009-0053-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/29/2009] [Indexed: 10/20/2022]
|
12
|
Susla M, Novotný C, Erbanová P, Svobodová K. Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase. Folia Microbiol (Praha) 2009; 53:479-85. [PMID: 19381471 DOI: 10.1007/s12223-008-0075-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 06/02/2008] [Indexed: 11/25/2022]
Abstract
Three new chromatographic forms of Dichomitus squalens manganese-dependent peroxidase (MnP) were isolated from wheat-straw cultures using Mono Q and connective interaction media (CIM) fast protein liquid chromatography. Enzymes revealed identical molar mass of 50 kDa (estimated by SDS-PAGE) and pI values of 3.5, however, they varied in Km values obtained for Mn2+ oxidation. The addition of wood and straw methanol extracts to the cultures showed that the production of MnPs in wheat-straw cultures was influenced rather by the type of cultivation than by phenolic compounds from lignocellulosic material which induced laccase production. The purified CIM1 MnP was able to decolorize selected azo and anthraquinone dyes more rapidly than laccase Lc1. In vitro dye decolorization showed a synergistic cooperation of MnP and laccase. In the case of CSB degradation MnP prevented from the production of a differently colored substance that could be produced after CSB degradation by laccase-HBT system.
Collapse
Affiliation(s)
- M Susla
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
13
|
Tomsovský M, Popelárová P, Baldrian P. Production and regulation of lignocellulose-degrading enzymes of Poria-like wood-inhabiting basidiomycetes. Folia Microbiol (Praha) 2009; 54:74-80. [PMID: 19330548 DOI: 10.1007/s12223-009-0011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 10/15/2008] [Indexed: 10/21/2022]
Abstract
The wood-decomposing fungal species Antrodia macra, A. pulvinascens, Ceriporiopsis aneirina, C. resinascens and Dichomitus albidofuscus were determined for production of laccase (LAC), Mn peroxidase (MnP), lignin peroxidase (LiP), endo-l,4-P-beta-glucanase, endo-l,4-beta-xylanase, cellobiohydrolase, 1,4-beta-glucosidase and 1,4-beta-xylosidase. The results confirmed the brown-rot mode of Antrodia spp. which did not produce the activity of LAC and MnP. The remaining species performed detectable activity of both enzymes while no strain produced LiP. Significant inhibition of LAC production by high nitrogen was found in all white-rot species while only MnP of D. albidofuscus was regulated in the same way. The endoglucanase and endoxylanase activities of white-rotting species were inhibited by glucose in the medium while those of Antrodia spp. were not influenced by glucose concentration. The regulation of enzyme activity and bio-mass production can vary even within a single fungal genus.
Collapse
Affiliation(s)
- M Tomsovský
- Mendel University of Agriculture and Forestry in Brno, Czech Republic.
| | | | | |
Collapse
|
14
|
Jayasinghe C, Imtiaj A, Lee GW, Im KH, Hur H, Lee MW, Yang HS, Lee TS. Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. MYCOBIOLOGY 2008; 36:114-120. [PMID: 23990745 PMCID: PMC3755234 DOI: 10.4489/myco.2008.36.2.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/17/2008] [Indexed: 06/02/2023]
Abstract
This study was conducted to evaluate the degradation of aromatic dyes and the production of ligninolytic enzymes by 10 white rot fungi. The results of this study revealed that Pycnoporus cinnabarinus, Pleurotus pulmonarius, Ganoderma lucidum, Trametes suaveolens, Stereum ostrea and Fomes fomentarius have the ability to efficiently degrade congo red on solid media. However, malachite green inhibited the mycelial growth of these organisms. Therefore, they did not effectively decolorize malachite green on solid media. However, P. cinnabarinus and P. pulmonarius were able to effectively decolorize malachite green on solid media. T. suaveolens and F. rosea decolorized methylene blue more effectively than any of the other fungi evaluated in this study. In liquid culture, G. lucidum, P. cinnabarinus, Naematoloma fasciculare and Pycnoporus coccineus were found to have a greater ability to decolorize congo red. In addition, P. cinnabarinus, G. lucidum and T. suaveolens decolorized methylene blue in liquid media more effectively than any of the other organisms evaluated in this study. Only F. fomentarius was able to decolorize malachite green in liquid media, and its ability to do so was limited. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in naphthalene supplemented liquid media. P. coccineus, Coriolus versicolor and P. cinnabarinus were found to produce a large amount of laccase when grown in medium that contained napthalene.
Collapse
|
15
|
Casieri L, Varese GC, Anastasi A, Prigione V, Svobodová K, Filippelo Marchisio V, Novotný C. Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus. Folia Microbiol (Praha) 2008; 53:44-52. [PMID: 18481217 DOI: 10.1007/s12223-008-0006-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/02/2007] [Indexed: 11/30/2022]
Abstract
Trametes pubescens and Pleurotus ostreatus, immobilized on polyurethane foam cubes in bioreactors, were used to decolorize three industrial and model dyes at concentrations of 200, 1000 and 2000 ppm. Five sequential cycles were run for each dye and fungus. The activity of laccase, Mn-dependent and independent peroxidases, lignin peroxidase, and aryl-alcohol oxidase were daily monitored during the cycles and the toxicity of media containing 1000 and 2000 ppm of each dye was assessed by the Lemna minor (duckweed) ecotoxicity test. Both fungi were able to efficiently decolorize all dyes even at the highest concentration, and the duckweed test showed a significant reduction (p < or = 0.05) of the toxicity after the decolorization treatment. T. pubescens enzyme activities varied greatly and no clear correlation between decolorization and enzyme activity was observed, while P. ostreatus showed constantly a high laccase activity during decolorization cycles. T. pubescens showed better decolorization and detoxication capability (compared to the better known P. ostreatus). As wide differences in enzyme activity of the individual strains were observed, the strong decolorization obtained with the two fungi suggested that different dye decolorization mechanisms might be involved.
Collapse
Affiliation(s)
- L Casieri
- Department of Plant Biology, University of Turin, Mycotheca Universitatis Taurinensis, 10125, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Decolorization of structurally different textile dyes by Aspergillus niger SA1. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9577-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Effect of various synthetic dyes on the production of manganese-dependent peroxidase isoenzymes by immobilized Irpex lacteus. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9460-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|