1
|
Galldiks N, Kaufmann TJ, Vollmuth P, Lohmann P, Smits M, Veronesi MC, Langen KJ, Rudà R, Albert NL, Hattingen E, Law I, Hutterer M, Soffietti R, Vogelbaum MA, Wen PY, Weller M, Tonn JC. Challenges, limitations, and pitfalls of PET and advanced MRI in patients with brain tumors: A report of the PET/RANO group. Neuro Oncol 2024; 26:1181-1194. [PMID: 38466087 PMCID: PMC11226881 DOI: 10.1093/neuonc/noae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 03/12/2024] Open
Abstract
Brain tumor diagnostics have significantly evolved with the use of positron emission tomography (PET) and advanced magnetic resonance imaging (MRI) techniques. In addition to anatomical MRI, these modalities may provide valuable information for several clinical applications such as differential diagnosis, delineation of tumor extent, prognostication, differentiation between tumor relapse and treatment-related changes, and the evaluation of response to anticancer therapy. In particular, joint recommendations of the Response Assessment in Neuro-Oncology (RANO) Group, the European Association of Neuro-oncology, and major European and American Nuclear Medicine societies highlighted that the additional clinical value of radiolabeled amino acids compared to anatomical MRI alone is outstanding and that its widespread clinical use should be supported. For advanced MRI and its steadily increasing use in clinical practice, the Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition provided more recently an updated acquisition protocol for the widely used dynamic susceptibility contrast perfusion MRI. Besides amino acid PET and perfusion MRI, other PET tracers and advanced MRI techniques (e.g. MR spectroscopy) are of considerable clinical interest and are increasingly integrated into everyday clinical practice. Nevertheless, these modalities have shortcomings which should be considered in clinical routine. This comprehensive review provides an overview of potential challenges, limitations, and pitfalls associated with PET imaging and advanced MRI techniques in patients with gliomas or brain metastases. Despite these issues, PET imaging and advanced MRI techniques continue to play an indispensable role in brain tumor management. Acknowledging and mitigating these challenges through interdisciplinary collaboration, standardized protocols, and continuous innovation will further enhance the utility of these modalities in guiding optimal patient care.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | | | - Philipp Vollmuth
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Marion Smits
- Department of Radiology and Nuclear Medicine and Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands
| | - Michael C Veronesi
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilians-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Goethe University, Department of Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Markus Hutterer
- Department of Neurology with Acute Geriatrics, Saint John of God Hospital, Linz, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neurosurgery, Moffit Cancer Center, Tampa, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, and University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Joerg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
2
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
3
|
Abstract
OBJECTIVE. Diagnosing brain tumor recurrence, especially with changes that occur after treatment, is a challenge. MRI has an exceptional structural resolution, which is important from the perspective of treatment planning. However, its reliability in diagnosing recurrence is relatively lower, when compared to metabolic imaging. The latter is more sensitive to the early changes associated with recurrence and relatively immune to confounding by treatment related changes. CONCLUSION. There is no one-stop shop for the diagnosis of recurrence in brain tumors. The sensitivity of metabolic imaging is not a substitute for the resolution of the MRI, making a multi-modal approach the only way forward.
Collapse
|
4
|
Sun A, Liu X, Tang G. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors. Front Chem 2018; 5:124. [PMID: 29379780 PMCID: PMC5775220 DOI: 10.3389/fchem.2017.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor cells have an increased nutritional demand for amino acids (AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] AAs, labeling alpha-C- AAs, the branched-chain of AAs and N-substituted carbon-11 labeled AAs. These tracers target protein synthesis or amino acid (AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non-small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.
Collapse
Affiliation(s)
- Aixia Sun
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Liu
- Department of Anesthesiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ganghua Tang
- Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Nakajima R, Kimura K, Abe K, Sakai S. 11C-methionine PET/CT findings in benign brain disease. Jpn J Radiol 2017; 35:279-288. [PMID: 28421396 DOI: 10.1007/s11604-017-0638-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/27/2017] [Indexed: 11/29/2022]
Abstract
11C-methionine (MET) is one of the most commonly used positron emission tomography (PET) tracers for evaluation of malignant brain tumor, with MET-PET being a sensitive technique for visualization of primary and recurrent malignant brain tumors. However, previous reports have demonstrated MET uptake in lesions associated with benign brain diseases. These diseases usually show an increase in MET uptake similar to that of malignant tumors. This pitfall in MET-PET image interpretation is important not only for nuclear medicine professionals, but also for radiologists. In this review, we demonstrate the imaging characteristics of MET uptake in benign brain disease, and recommend physician interpretation of imaging findings and disease characteristics for optimal patient management. Benign uptake must be identified to prevent misdiagnosis and unnecessary surgical operations.
Collapse
Affiliation(s)
- Reiko Nakajima
- Departments of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Ken Kimura
- Departments of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Koichiro Abe
- Departments of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shuji Sakai
- Departments of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
6
|
Miyake K, Ogawa D, Okada M, Hatakeyama T, Tamiya T. Usefulness of positron emission tomographic studies for gliomas. Neurol Med Chir (Tokyo) 2016; 56:396-408. [PMID: 27250577 PMCID: PMC4945598 DOI: 10.2176/nmc.ra.2015-0305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Non-invasive positron emission tomography (PET) enables the measurement of metabolic and molecular processes with high sensitivity. PET plays a significant role in the diagnosis, prognosis, and treatment of brain tumors and predominantly detects brain tumors by detecting their metabolic alterations, including energy metabolism, amino acids, nucleic acids, and hypoxia. Glucose metabolic tracers are related to tumor cell energy and exhibit good sensitivity but poor specificity for malignant tumors. Amino acid metabolic tracers provide a better delineation of tumors and cellular proliferation. Nucleic acid metabolic tracers have a high sensitivity for malignant tumors and cellular proliferation. Hypoxic metabolism tracers are useful for detecting resistance to radiotherapy and chemotherapy. Therefore, PET imaging techniques are useful for detecting biopsy-targeting points, deciding on tumor resection, radiotherapy planning, monitoring therapy, and distinguishing brain tumor recurrence or progression from post-radiotherapy effects. However, it is not possible to use only one PET tracer to make all clinical decisions because each tracer has both advantages and disadvantages. This study focuses on the different kinds of PET tracers and summarizes their recent applications in patients with gliomas. Combinational uses of PET tracers are expected to contribute to differential diagnosis, prognosis, treatment targeting, and monitoring therapy.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Neurological Surgery, Kagawa University Faculty of Medicine
| | | | | | | | | |
Collapse
|
7
|
Lee SM, Kim IO, Choi YH, Cheon JE, Kim WS, Cho HH, You SK. Early imaging findings in germ cell tumors arising from the basal ganglia. Pediatr Radiol 2016; 46:719-26. [PMID: 26886913 DOI: 10.1007/s00247-016-3542-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/17/2015] [Accepted: 01/11/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. OBJECTIVE To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. MATERIALS AND METHODS We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. RESULTS On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. CONCLUSION Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage.
Collapse
Affiliation(s)
- So Mi Lee
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, Republic of Korea
- Department of Radiology, Kyungpook National University Medical Center, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - In-One Kim
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, Republic of Korea.
| | - Young Hun Choi
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, Republic of Korea
| | - Jung-Eun Cheon
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, Republic of Korea
| | - Woo Sun Kim
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, Republic of Korea
| | - Hyun-Hae Cho
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, Republic of Korea
- Department of Radiology, Ewha Woman's University Mokdong Hospital, Seoul, South Korea
| | - Sun Kyoung You
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-769, Republic of Korea
- Department of Radiology, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Ito K, Matsuda H, Kubota K. Imaging Spectrum and Pitfalls of (11)C-Methionine Positron Emission Tomography in a Series of Patients with Intracranial Lesions. Korean J Radiol 2016; 17:424-34. [PMID: 27134530 PMCID: PMC4842861 DOI: 10.3348/kjr.2016.17.3.424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
11C-methionine (Met) positron emission tomography (PET) is one of the most commonly used PET tracers for evaluating brain tumors. However, few reports have described tips and pitfalls of 11C-Met PET for general practitioners. Physiological 11C-Met uptake, anatomical variations, vascular disorders, non-tumorous lesions such as inflammation or dysplasia, benign brain tumors and patient condition during 11C-Met PET examination can potentially affect the image interpretation and cause false positives and negatives. These pitfalls in the interpretation of 11C-Met PET images are important for not only nuclear medicine physicians but also general radiologists. Familiarity with the spectrum and pitfalls of 11C-Met images could help prevent unfavorable clinical results caused by misdiagnoses.
Collapse
Affiliation(s)
- Kimiteru Ito
- Department of Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kazoo Kubota
- Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| |
Collapse
|
9
|
Kyle S, Saha S. Nanotechnology for the detection and therapy of stroke. Adv Healthc Mater 2014; 3:1703-20. [PMID: 24692428 DOI: 10.1002/adhm.201400009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Over the years, nanotechnology has greatly developed, moving from careful design strategies and synthesis of novel nanostructures to producing them for specific medical and biological applications. The use of nanotechnology in diagnostics, drug delivery, and tissue engineering holds great promise for the treatment of stroke in the future. Nanoparticles are employed to monitor grafted cells upon implantation, or to enhance the imagery of the tissue, which is coupled with a noninvasive imaging modality such as magnetic resonance imaging, computed axial tomography or positron emission tomography scan. Contrast imaging agents used can range from iron oxide, perfluorocarbon, cerium oxide or platinum nanoparticles to quantum dots. The use of nanomaterial scaffolds for neuroregeneration is another area of nanomedicine, which involves the creation of an extracellular matrix mimic that not only serves as a structural support but promotes neuronal growth, inhibits glial differentiation, and controls hemostasis. Promisingly, carbon nanotubes can act as scaffolds for stem cell therapy and functionalizing these scaffolds may enhance their therapeutic potential for treatment of stroke. This Progress Report highlights the recent developments in nanotechnology for the detection and therapy of stroke. Recent advances in the use of nanomaterials as tissue engineering scaffolds for neuroregeneration will also be discussed.
Collapse
Affiliation(s)
- Stuart Kyle
- School of Medicine; University of Leeds; Leeds LS2 9JT UK
| | - Sikha Saha
- Division of Cardiovascular and Diabetes Research; Leeds Institute of Genetics; Health and Therapeutics; University of Leeds; Leeds LS2 9JT UK
| |
Collapse
|
10
|
Reithmeier T, Cordeiro J, Mix M, Trippel M, Rottenburger C, Nikkhah G. Impact of automated hotspot detection for (18)FET PET-guided stereotactic biopsy. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 117:93-9. [PMID: 23652663 DOI: 10.1007/978-3-7091-1482-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of this study was to explore the impact of automated hotspot detection on surgical planning of (18)FET PET-guided stereotactic serial biopsy. METHOD Imaging of ten patients with brain lesions detected by MRI and showing increased (18)FET uptake on PET who were retrospectively and randomly assigned to compose the study. Stereotactic biopsy plans (PET-guided and MR-guided) were performed by two neurosurgeons for each patient, independently and blinded. For PET-guided plans, biopsy target was achieved by means of an automated hotspot detection system. MR-guided plans targeted contrast enhancement areas or hyperintense areas in T2-weighted sequences. FET uptake ratio (UR) was determined in the biopsy trajectory across the lesion. Highest UR (HUR) from both planning techniques was compared. RESULTS Each single HUR obtained through PET-guided technique was higher than correspondent values from MR-guided technique. Mean HUR of 2.41 (SE ± 0.23) for PET-guided plans and 1.85 (±0.16) for MR-guided plans were respectively obtained. This difference was statistically significant (p = 0.002). CONCLUSION The use of an automated hotspot detection system was able to provide higher FET HUR along stereotactic biopsy trajectories in comparison to those from MR-guided plans. The use of specially designed computational tools may refine surgical planning by improving biopsy targeting.
Collapse
Affiliation(s)
- Thomas Reithmeier
- Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, Neurosurgical Clinic, University Medical Center Freiburg, Breisacher Straße 64, Freiburg, D-79106, Germany,
| | | | | | | | | | | |
Collapse
|
11
|
Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas. J Biomed Biotechnol 2012; 2012:205818. [PMID: 22577290 PMCID: PMC3336213 DOI: 10.1155/2012/205818] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/07/2012] [Indexed: 11/21/2022] Open
Abstract
The use of positron imaging agents such as FDG, MET, and FLT is expected to lead the way for novel applications toward efficient malignancy grading and treatment of gliomas. In this study, the usefulness of FDG, MET and FLT-PET images was retrospectively reviewed by comparing their histopathological findings. FDG, MET, and FLT-PET were performed in 27 patients with WHO grade IV, 15 patients with WHO grade III, and 12 patients with WHO grade II during 5.5 years. The resulting PET images were compared by measuring SUVs and T/N ratios (tumor to normal tissue ratios). Although there were no significant differences in FDG-PET, there were significant differences in the T/N ratios in the MET-PET between WHO grades II and IV and in the FLT-PET between the WHO grades III and IV. In glioblastoma patients, the SUVs of the areas depicted by MRI in the MET-PET were different from those SUVs in the FLT-PET. Importantly, the areas with high SUVs in both MET-PET and FLT-PET were also high in Ki-67 index and were histologically highly malignant. PET imaging is a noninvasive modality that is useful in determining a tumor area for removal as well as improving preoperative diagnosis for gliomas.
Collapse
|
12
|
Diagnostic Value of 11C-Methionine (MET) and 18F-Fluorothymidine (FLT) Positron Emission Tomography in Recurrent High-Grade Gliomas; Differentiation from Treatment-Induced Tissue Necrosis. Cancers (Basel) 2012; 4:244-56. [PMID: 24213238 PMCID: PMC3712687 DOI: 10.3390/cancers4010244] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/02/2022] Open
Abstract
We retrospectively evaluated the usefulness of combined measurement of L-methyl-[11C]methionine (MET) and 3'-deoxy-3'-[18F]fluorothymidine (FLT) positron emission tomography (PET) in the differential diagnosis between recurrent gliomas and necrotic lesions. Twenty-one patients with high-grade glioma, previously treated with surgery and radiotherapy with chemotherapy and first radiological suspicion of recurrence were enrolled. The uptake was assessed by the maximum standardized uptake value (SUVmax) and lesion-to-normal tissue count density ratio (L/N ratio). Of the 21 lesions, 15 were diagnosed recurrent gliomas and six were necrotic lesions. The average SUVmax was not significantly different between recurrent gliomas and necrotic lesions on either MET-PET or FLT-PET. The average L/N ratio of recurrent gliomas (3.36 ± 1.06) was significantly higher than that of necrotic lesions (2.18 ± 0.66) on MET-PET (p < 0.01) and the average L/N ratio of recurrent gliomas (7.01 ± 2.26) was also significantly higher than that of necrotic lesions (4.60 ± 1.23) on FLT-PET (p < 0.01). ROC curve analysis showed that the areas under the curves were high but not different between MET- and FLT-PET. PET studies using MET and FLT are useful in the differentiation of recurrent glioma from treatment-induced necrotic lesion. However, there is no complementary information in the differentiation with simultaneous measurements of MET- and FLT-PET.
Collapse
|
13
|
|
14
|
|
15
|
11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008; 35:2009-17. [PMID: 18542957 DOI: 10.1007/s00259-008-0847-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 05/11/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE The purpose of this prospective study was to clarify the individual and combined role of L-methyl-(11)C-methionine-positron emission tomography (MET-PET) and 3'-deoxy-3'-[(18)F]fluorothymidine (FLT)-PET in tumor detection, noninvasive grading, and assessment of the cellular proliferation rate in newly diagnosed histologically verified gliomas of different grades. MATERIALS AND METHODS Forty-one patients with newly diagnosed gliomas were investigated with MET-PET before surgery. Eighteen patients were also examined with FLT-PET. MET and FLT uptakes were assessed by standardized uptake value of the tumor showing the maximum uptake (SUV(max)), and the ratio to uptake in the normal brain parenchyma (T/N ratio). All tumors were graded by the WHO grading system using surgical specimens, and the proliferation activity of the tumors were determined by measuring the Ki-67 index obtained by immunohistochemical staining. RESULTS On semiquantitative analysis, MET exhibited a slightly higher sensitivity (87.8%) in tumor detection than FLT (83.3%), and both tracers were 100% sensitive for malignant gliomas. Low-grade gliomas that were false negative on MET-PET also were false negative on FLT-PET. Although the difference of MET SUV(max) and T/N ratio between grades II and IV gliomas was statistically significant (P < 0.001), there was a significant overlap of MET uptake in the tumors. The difference of MET SUV(max) and T/N ratio between grades II and III gliomas was not statistically significant. Low-grade gliomas with oligodendroglial components had relatively high MET uptake. The difference of FLT SUV(max) and T/N ratio between grades III and IV gliomas was statistically significant (P < 0.01). Again, the difference of FLT SUV(max) and T/N ratio between grades II and III gliomas was not statistically significant. Grade III gliomas with non-contrast enhancement on MR images had very low FLT uptake. In 18 patients who underwent PET examination with both tracers, a significant but relatively weak correlation was observed between the individual SUV(max) of MET and FLT (r = 0.54, P < 0.05) and T/N ratio of MET and FLT (r = 0.56, P < 0.05). Total FLT uptake in the tumor had a higher correlation (r = 0.89, P < 0.001) with Ki-67 proliferation index than MET uptake (r = 0.49, P < 0.01). CONCLUSIONS PET studies using MET and FLT are useful for tumor detection in newly diagnosed gliomas. However, there is no complimentary information in tumor detection with simultaneous measurements of MET- and FLT-PET in low grade gliomas. FLT-PET seems to be superior than MET-PET in noninvasive tumor grading and assessment of proliferation activity in gliomas of different grades.
Collapse
|
16
|
Langen KJ, Tatsch K, Grosu AL, Jacobs AH, Weckesser M, Sabri O. Diagnostics of cerebral gliomas with radiolabeled amino acids. DEUTSCHES ARZTEBLATT INTERNATIONAL 2008; 105:55-61. [PMID: 19633770 DOI: 10.3238/arztebl.2008.0055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 07/31/2007] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Magnetic resonance tomography (MRT) is the investigation of choice for diagnosing cerebral glioma, but its capacity to differentiate tumor tissue from non-specific tissue changes is limited. Positron emission tomography (PET) and single photon emission computerized tomography (SPECT) using radiolabeled amino acids add information which helps increase diagnostic accuracy. METHODS Review based on the authors' own research results and a selective literature review. RESULTS The use of radiolabeled amino acids allows better delineation of tumor margins and improves targeting of biopsy and radiotherapy, and planning surgery. In addition, amino acid imaging appears useful in distinguishing tumor recurrence from non-specific post-therapeutic scar tissue, in predicting prognosis in low grade gliomas, and in monitoring metabolic response during treatment. DISCUSSION The benefits of amino acid imaging in cerebral gliomas support arguments for its introduction into routine clinical practice in defined clinical situations; however, its influence on treatment quality remains to be demonstrated.
Collapse
Affiliation(s)
- Karl-Josef Langen
- Institut für Neurowissenschaften und Biophysik, Forschungszentrum Jülich, Leo-Brandt-Strasse, Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Bauwens M, Keyaerts M, Lahoutte T, Kersemans K, Caveliers V, Bossuyt A, Mertens J. Intra-individual comparison of the human biodistribution and dosimetry of the D and L isomers of 2-[123I]iodo-phenylalanine. Nucl Med Commun 2007; 28:823-8. [PMID: 17728613 DOI: 10.1097/mnm.0b013e3282e7d731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Several authors have shown in animal studies that D-enantiomeric amino acid analogues can have better tumour imaging properties compared to their L-analogues. In our group, the D and L isomers of 2-[I]iodo-phenylalanine were identified as tumour-specific tracers in rat and mouse tumour models, with an advantage for the D-isomer. Here we compare, intra-individually, the normal biodistribution and dosimetry of both tracers in healthy human subjects. METHODS Five male volunteers received both the L- and D-enantiomers, ranging from 84 to 114 MBq, with a 1 week interval between the tracers, allowing intra-individual comparison. Whole-body scans were performed and blood and urine samples were collected and analysed up to 24 h. Dosimetry was calculated using OLINDA 1.0 software. RESULTS The biodistributions of the tracers are comparable as both show a moderate uptake in heart and the liver, a marked uptake in muscle tissue and clearance via the renal system. However, due to faster clearance, from 2.5 h, the uptake of the D-enantiomer was significantly lower compared to the L-isomer in all organs. The radiation dose estimations showed an effective dose of, respectively, 0.0120+/-0.0020 mSv x Bq(-1) and 0.0106+/-0.0038 mSv x Bq(-1) for 2-123I-L-Phe and 2-123I-D-Phe (P=0.18). In both cases the organ receiving the highest dose was the bladder wall. CONCLUSION Both 2-123I-L-Phe and 2-123I-D-Phe show comparable moderate uptake in all organs. 2-123I-D-Phe is the more promising tracer, as it shows a faster clearance resulting in a lower dose and a lower background, favouring tumour imaging with respect to the tumour/background ratio.
Collapse
Affiliation(s)
- Matthias Bauwens
- BEFY, Radiopharmaceutical Chemistry, Vrije Universiteit Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
18
|
Salber D, Stoffels G, Pauleit D, Reifenberger G, Sabel M, Shah NJ, Hamacher K, Coenen HH, Langen KJ. Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nucl Med Biol 2007; 33:1029-35. [PMID: 17127177 DOI: 10.1016/j.nucmedbio.2006.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/20/2006] [Accepted: 09/24/2006] [Indexed: 11/25/2022]
Abstract
UNLABELLED Amino acids such as [(11)C-methyl]l-methionine are particularly useful in brain tumor diagnosis, but unspecific uptake (e.g., in cerebral ischemia) has been reported. O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET) shows a clinical potential similar to that of l-methionine (MET) in brain tumor diagnosis but is applicable on a wider clinical scale. The aim of this study was to evaluate the uptake of [(18)F]FET and [(3)H]MET in focal cortical ischemia in rats by dual-tracer autoradiography. METHODS Focal cortical ischemia was induced in 25 CDF rats using the photothrombosis (PT) model. At different time points up to 6 weeks after the induction of PT, [(18)F]FET and [(3)H]MET were injected intravenously. Additionally, contrast-enhanced magnetic resonance imaging (MRI) was performed in 10 animals. One hour after tracer injection, brains were cut in coronal sections and evaluated by dual-tracer autoradiography. Lesion-to-brain (L/B) ratios were calculated by dividing the maximal uptake in the lesion by the mean uptake in the brain. An L/B ratio of >2.0 was considered indicative of pathological uptake. Histological slices were stained by cresyl violet and supplemented by immunostainings for glial fibrillary acidic protein (GFAP) and CD68 in selected cases. RESULTS A variably increased uptake of both tracers was observed in the PT lesion and its demarcation zone up to 7 days after PT for [(18)F]FET and up to 6 weeks for [(3)H]MET. The cutoff level of 2.0 was exceeded in 12/25 animals for [(18)F]FET and in 18/25 animals for [(3)H]MET. Focally increased tracer uptake matched contrast enhancement in MRI in 3/10 cases for [(18)F]FET and in 5/10 cases for [(3)H]MET. Immunohistochemical staining in lesions with differential uptake of [(18)F]FET and [(3)H]MET revealed that selective uptake of [(18)F]FET was associated with GFAP-positive astrogliosis while selective [(3)H]MET uptake correlated with CD68-positive macrophage infiltration. CONCLUSIONS [(18)F]FET, like [(3)H]MET, may exhibit significant uptake in the periphery of cortical infarctions, which has to be considered in the differential diagnosis of unknown brain lesions. There are discrepancies between [(18)F]FET and [(3)H]MET uptake in the area of infarctions that appear to be caused by the preferential uptake of [(18)F]FET in reactive astrocytes versus the preferential uptake of [(3)H]MET in macrophages.
Collapse
Affiliation(s)
- Dagmar Salber
- Department of Medicine, Institute of Neuroscience and Biophysics, Research Center Jülich, PO Box 1913, D-52425 Jülich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kajimoto K, Oku N, Kimura Y, Kato H, Tanaka MR, Kanai Y, Kitagawa K, Maruno M, Yoshimine T, Hori M, Hatazawa J. Crossed cerebellar diaschisis: a positron emission tomography study withl-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-d-glucose. Ann Nucl Med 2007; 21:109-13. [PMID: 17424977 DOI: 10.1007/bf03033988] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Crossed cerebellar diaschisis (CCD) is defined as a depression of blood flow and oxidative metabolism of glucose in the cerebellum contralateral to a supratentorial brain lesion, as detected with positron emission tomography (PET) and single photon emission computed tomography. We examined whether L-[methyl-11C]methionine (MET) uptake is affected in CCD. METHODS In 12 patients with a unilateral supratentorial brain tumor, we evaluated the uptake of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and MET in the cerebellar hemispheres by means of PET. Asymmetry index (AI) was defined as a difference in the average count between the ipsilateral and contralateral cerebellar hemispheres divided by the average count in both cerebellar hemispheres. Patients with AI of FDG PET more than 0.1 and those with AI equal to 0.1 or less than 0.1 were classified as CCD-positive and CCD-negative, respectively. RESULTS Six patients were CCD-positive and others were CCD-negative in the FDG PET study. Between CCD-positive and CCD-negative patients, mean AI of MET was not significantly different (0.017 +/- 0.023 and 0.014 +/- 0.039, respectively). CONCLUSIONS Different from glucose metabolism, cerebellar MET uptake was not affected in CCD. The present study may indicate that cerebellar MET uptake is independent of suppression of cerebellar neuronal activity.
Collapse
Affiliation(s)
- Katsufumi Kajimoto
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Keyaerts M, Lahoutte T, Neyns B, Caveliers V, Vanhove C, Everaert H, Kersemans K, Franken PR, Mertens J, Bossuyt A. 123I-2-iodo-tyrosine, a new tumour imaging agent: human biodistribution, dosimetry and initial clinical evaluation in glioma patients. Eur J Nucl Med Mol Imaging 2007; 34:994-1002. [PMID: 17237962 DOI: 10.1007/s00259-006-0303-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE 123I-2-iodo-tyrosine (123I-2IT) has been identified as a promising new amino acid tracer in animals. Uptake is mediated by LAT1 transport, which is increased in tumour cells. In this study we present the human biodistribution and first clinical results in glioma patients. METHODS For the biodistribution study, six male volunteers received 60-95 MBq 123I-2IT. Whole-body scans and blood and urine samples were obtained up to 24 h after injection; dosimetry was calculated using OLINDA 1.0 software. Initial clinical evaluation of 123I-2IT SPECT was performed in 35 patients with suspected or known glioma, either as primary diagnosis or for detection of recurrence. Tumour-to-background (T/B) ratios were calculated for semi-quantitative analysis. The results were correlated with clinical and MRI follow-up data or histology. RESULTS 123I-2IT showed both renal and intestinal clearance. Bladder (0.12 mGy/MBq) and small intestine (0.03 mGy/MBq) received the highest absorbed doses. The effective dose equivalent and effective dose were estimated at 0.020 and 0.016 mSv/MBq, respectively. In patients, 123I-2IT SPECT did not differentiate between neoplastic and non-neoplastic lesions after an indeterminate MRI. In follow-up of known glioma, 13/15 patients with disease recurrence had increased T/B values (range 1.39-3.91). Out of seven recurrence-negative patients, two showed an important increase in T/B, in one case due to radionecrosis (T/B 1.59) and in the other probably due to residual but stable disease (T/B 2.07). CONCLUSION 123I-2IT has a favourable biodistribution for a tumour imaging agent. It shows increased uptake in central nervous system glioma and is potentially useful in the follow-up of glioma patients.
Collapse
Affiliation(s)
- Marleen Keyaerts
- Department of Nuclear Medicine, Academic Hospital, Vrije Universiteit Brussel AZ-VUB, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|