1
|
Song S, Shi Y, Zeng D, Xu J, Yang Y, Guo W, Zheng Y, Tang H. circANKRD28 inhibits cisplatin resistance in non-small-cell lung cancer through the miR-221-3p/SOCS3 axis. J Gene Med 2023; 25:e3478. [PMID: 36740786 DOI: 10.1002/jgm.3478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is a common cancer. Chemotherapeutic drug resistance limits the therapeutic effect of NSCLC and leads to a poor prognosis. As a result, new specific targets may be better identified by studying the mechanism of drug resistance to cisplatin in NSCLC. METHODS In the present study, we performed a quantitative real-time polymerase chain reaction and western blotting to detect mRNA and protein levels. The proliferation of cells was analyzed by a Cell Counting Kit-8 and colony formation assays. Cell invasion was measured via the Transwell assay. A scratch assay was performed to measure cell migration in cisplatin (DDP)-resistant NSCLC cells. Apoptosis of cells was examined using flow cytometry. RESULTS We found that circANKRD28 was notably decreased in NSCLC. The results showed that circANKRD28 expression was not affected, and its half-life was more than 12 h. Functional experiments revealed that circANKRD28 overexpression inhibited DDP resistance in NSCLC cells in vitro. Mechanistic findings demonstrated that circANKRD28 regulated tumor cell progression and DDP sensitivity through the miR-221-3p/SOCS3 axis. CONCLUSIONS The present study revealed the regulatory effects and molecular mechanism of circANKRD28 on the development and cisplatin resistance in NSCLC, which may provide experimental basis and theoretical support to identify new targets for therapy of DDP resistance in NSCLC.
Collapse
Affiliation(s)
- Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuhan Shi
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dong Zeng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuexiang Yang
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenjuan Guo
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ye Zheng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Abdullah MN, Wah YB, Abdul Majeed AB, Zakaria Y, Shaadan N. Identification of blood-based transcriptomics biomarkers for Alzheimer's disease using statistical and machine learning classifier. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
3
|
Li X, Duan Y, Hao Y. Identification of super enhancer-associated key genes for prognosis of germinal center B-cell type diffuse large B-cell lymphoma by integrated analysis. BMC Med Genomics 2021; 14:69. [PMID: 33663517 PMCID: PMC7934469 DOI: 10.1186/s12920-021-00916-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/21/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The pathogenesis of germinal center B-cell type diffuse large B-cell lymphoma (GCB-DLBCL) is not fully elucidated. This study aims to explore the regulation of super enhancers (SEs) on GCB-DLBCL by identifying specific SE-target gene. METHODS Weighted gene co-expression network analysis (WGCNA) was used to screen modules associated with GCB subtype. Functional analysis was performed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. H3K27ac peaks were used to identify SEs. Overall survival analysis was performed using Kaplan-Meier curve with log-rank and Breslow test. The effect of ADNP, ANKRD28 and RTN4IP1 knockdown on Karpas 422 and SUDHL-4 cells proliferation was analyzed by CCK-8. Karpas 422 and SUDHL-4 cells were treated with bromodomain and extra-terminal domain (BET) inhibitor JQ1, and the expression of ADNP, ANKRD28 and RTN4IP1was measured by qRT-PCR. RESULTS A total of 26 modules were screened in DLBCL. Turquoise module was closely related to GCB-DLBCL, and its eigengenes were mainly related to autophagy. There were 971 SEs in Karpas 422 cell and 1088 SEs in SUDHL-4 cell. Function of the nearest genes of overall SEs were related to cancer. Six SE-related genes associated with GCB-DLBCL were identified as prognostic markers. Knockdown of ADNP, ANKRD28 and RTN4IP1 inhibited the proliferation of Karpas 422 and SUDHL-4 cells. JQ1 treatment suppressed ADNP, ANKRD28 and RTN4IP1 expression in Karpas 422 and SUDHL-4 cells. CONCLUSIONS A total of 6 SE-related genes associated with GCB-DLBCL overall survival were identified in this study. These results will serve as a theoretical basis for further study of gene regulation and function of GCB-DLBCL.
Collapse
Affiliation(s)
- Xi Li
- Department of Lymphoma, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, People's Republic of China
| | - Yan Duan
- Department of Critical Care Medicine, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yuxia Hao
- Department of Gastroenterology, Shanxi Provincial People's Hospital, 29 shuangtasi Rd, Taiyuan, 030012, People's Republic of China.
| |
Collapse
|
4
|
Michmerhuizen NL, Klco JM, Mullighan CG. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. Blood 2020; 136:2275-2289. [PMID: 32766874 PMCID: PMC7702474 DOI: 10.1182/blood.2020007093] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are observed in a spectrum of hematologic malignancies, particularly pediatric leukemias with poor patient outcomes. Although wild-type full-length NUP98 is a member of the nuclear pore complex, the chromosomal translocations leading to NUP98 gene fusions involve the intrinsically disordered and N-terminal region of NUP98 with over 30 partner genes. Fusion partners include several genes bearing homeodomains or having known roles in transcriptional or epigenetic regulation. Based on data in both experimental models and patient samples, NUP98 fusion oncoprotein-driven leukemogenesis is mediated by changes in chromatin structure and gene expression. Multiple cofactors associate with NUP98 fusion oncoproteins to mediate transcriptional changes possibly via phase separation, in a manner likely dependent on the fusion partner. NUP98 gene fusions co-occur with a set of additional mutations, including FLT3-internal tandem duplication and other events contributing to increased proliferation. To improve the currently dire outcomes for patients with NUP98-rearranged malignancies, therapeutic strategies have been considered that target transcriptional and epigenetic machinery, cooperating alterations, and signaling or cell-cycle pathways. With the development of more faithful experimental systems and continued study, we anticipate great strides in our understanding of the molecular mechanisms and therapeutic vulnerabilities at play in NUP98-rearranged models. Taken together, these studies should lead to improved clinical outcomes for NUP98-rearranged leukemia.
Collapse
Affiliation(s)
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
5
|
A novel three-way rearrangement involving ETV6 (12p13) and ABL1 (9q34) with an unknown partner on 3p25 resulting in a possible ETV6-ABL1 fusion in a patient with acute myeloid leukemia: a case report and a review of the literature. Biomark Res 2016; 4:16. [PMID: 27570624 PMCID: PMC5000511 DOI: 10.1186/s40364-016-0070-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/02/2016] [Indexed: 11/30/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is commonly characterized by several chromosomal abnormalities resulting in the formation of chimeric genes that play various roles in leukemogenesis. Translocations resulting in the ETV6-ABL1 fusion gene are rare in AML and other hematologic malignancies with only thirty-two previously reported cases in the literature, five of which were AML. Findings Herein, we report the case of a 73-year-old male with acute myeloid leukemia arising from MDS, negative for PDGFRA and PDGFRB, positive for bone marrow eosinophilia, rash, and marked fluid retention, which improved dramatically with imatinib therapy. Conventional cytogenetics revealed a t(3;9)(p25;q34), t(5;18)(q13;p11.2), and additional material of unknown origin at 12p11.2 in 2 out of 10 metaphases analyzed. Interphase FISH studies showed evidence of ETV6 (12p13) and ABL1 (9q34) rearrangements in 41.3 % and 5.7 % of the cells respectively. FISH studies on previously G-banded metaphases showed colocalization of ABL1 and ETV6 signals to the short arm of chromosome 3 at 3p25 suggesting a possible ETV6-ABL1 fusion. Subtelomeric metaphase FISH studies also showed the presence of a subtelomere 3p signal on the long arm of the derivative 9, and no subtelomere 3p signal on the derivative chromosome 12. Conclusions These findings suggest a complex rearrangement involving an insertion of ETV6 into 3p25 followed by a reciprocal translocation involving 3p25 and 9q34, resulting in a possible ETV6-ABL1 fusion. This case highlights the importance of FISH to characterize complex rearrangements in myeloid malignancies, particularly those resulting in clinically significant chimeric genes.
Collapse
|
6
|
BRCA1 affects protein phosphatase 6 signalling through its interaction with ANKRD28. Biochem J 2016; 473:949-60. [PMID: 27026398 DOI: 10.1042/bj20150797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/04/2016] [Indexed: 11/17/2022]
Abstract
The tumour suppressor BRCA1 (breast and ovarian cancer-susceptibility gene 1) is implicated in several nuclear processes including DNA repair, transcription regulation and chromatin remodelling. BRCA1 also has some cytoplasmic functions including a pro-apoptotic activity. We identified ANKRD28 (ankyrin repeat domain 28) as a novel BRCA1-interacting protein in a yeast two-hybrid screen and confirmed this interaction by reciprocal immunoprecipitations of the two overexpressed proteins. Endogenous interaction between BRCA1 and ANKRD28 was also observed by co-immunoprecipitation and located in the cytoplasm by proximity ligation assay. The main site of interaction of ANKRD28 on BRCA1 is located in its intrinsically disordered scaffold central region. Whereas ANKRD28 silencing results in a destabilization of IκBε (inhibitor of nuclear factor κBε) through its activation of PP6 (protein phosphatase 6) co-regulator upon TNFα (tumour necrosis factor α) stimulation, BRCA1 overexpression stabilizes IκBε. A truncated form of BRCA1 that does not interact with ANKRD28 has no such effect. Our findings suggest that BRCA1 is a novel modulator of PP6 signalling via its interaction with ANKRD28. This new cytoplasmic process might participate in BRCA1 tumour-suppressor function.
Collapse
|
7
|
Higuchi M, Sasaki S, Kawadoko SI, Uchiyama H, Yasui T, Kamihira T, Aoki KI, Sasaguri T, Nakano R, Uchiyama A, Muta T, Ohshima K. Epstein–Barr virus-positive diffuse large B-cell lymphoma following acute myeloid leukemia: a common clonal origin indicated by chromosomal translocation t(3;4)(p25;q21). Int J Hematol 2015; 102:482-7. [DOI: 10.1007/s12185-015-1802-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022]
|
8
|
Takeda A, Yaseen NR. Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 2014; 27:3-10. [PMID: 24657637 DOI: 10.1016/j.semcancer.2014.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
Abstract
Hematologic malignancies are often associated with chromosomal rearrangements that lead to the expression of chimeric fusion proteins. Rearrangements of the genes encoding two nucleoporins, NUP98 and NUP214, have been implicated in the pathogenesis of several types of hematologic malignancies, particularly acute myeloid leukemia. NUP98 rearrangements result in fusion of an N-terminal portion of NUP98 to one of numerous proteins. These rearrangements often follow treatment with topoisomerase II inhibitors and tend to occur in younger patients. They have been shown to induce leukemia in mice and to enhance proliferation and disrupt differentiation in primary human hematopoietic precursors. NUP214 has only a few fusion partners. DEK-NUP214 is the most common NUP214 fusion in AML; it tends to occur in younger patients and is usually associated with FLT3 internal tandem duplications. The leukemogenic activity of NUP214 fusions is less well characterized. Normal nucleoporins, including NUP98 and NUP214, have important functions in nucleocytoplasmic transport, transcription, and mitosis. These functions and their disruptions by oncogenic nucleoporin fusions are discussed.
Collapse
Affiliation(s)
- Akiko Takeda
- Department of Pathology and Immunology, Washington University in St. Louis, United States.
| | - Nabeel R Yaseen
- Department of Pathology and Immunology, Washington University in St. Louis, United States.
| |
Collapse
|
9
|
Sarova I, Brezinova J, Zemanova Z, Bystricka D, Krejcik Z, Soukup P, Vydra J, Cermak J, Jonasova A, Michalova K. Characterization of chromosome 11 breakpoints and the areas of deletion and amplification in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer 2013; 52:619-35. [PMID: 23580398 DOI: 10.1002/gcc.22058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 02/24/2013] [Indexed: 01/08/2023] Open
Abstract
Chromosome 11 abnormalities are found in many hematological malignancies. In acute myeloid leukemia (AML), a proto-oncogene MLL (11q23.3) is frequently altered. However, rearrangements involving other regions of chromosome 11 have been reported. Therefore, we have characterized the chromosome 11 breakpoints and common deleted and amplified areas in the bone marrow or peripheral blood cells of newly diagnosed patients with AML. Using molecular-cytogenetic methods (multicolor fluorescence in situ hybridization (mFISH), multicolor banding (mBAND), microarrays, and FISH with bacterial artificial chromosome (BAC) probes, chromosome 11 abnormalities were delineated in 54 out of 300 (18%) newly diagnosed AML patients. At least 36 different chromosome 11 breakpoints were identified; two were recurrent (11p15.4 in the NUP98 gene and 11q23.3 in the MLL gene), and three were possibly nonrandom: 11p13 (ch11:29.31-31.80 Mb), 11p12 (ch11:36.75-37.49 Mb) and 11q13.2 (68.31-68.52 Mb). One new MLL gene rearrangement is also described. No commonly deleted region of chromosome 11 was identified. However, some regions were affected more often: 11pter-11p15.5 (n = 4; ch11:0-3.52 Mb), 11p14.1-11p13 (n = 4; ch11:28.00-31.00 Mb) and 11p13 (n = 4; ch11:31.00-31.50 Mb). One commonly duplicated (3 copies) region was identified in chromosomal band 11q23.3-11q24 (n = 9; ch11:118.35-125.00 Mb). In all eight cases of 11q amplification (>3 copies), only the 5' part of the MLL gene was affected. This study highlights several chromosome 11 loci that might be important for the leukemogeneic process in AML.
Collapse
Affiliation(s)
- Iveta Sarova
- Cytogenetic Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cannizzaro LA. Fluorescent in situ hybridization of DNA probes in the interphase and metaphase stages of the cell cycle. Methods Mol Biol 2013. [PMID: 23179826 DOI: 10.1007/978-1-62703-128-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the past decade, fluorescent in situ hybridization (FISH) has been used routinely in detecting molecular abnormalities in the interphase and metaphase stages of the cell cycle. Many of the molecular anomalies which are detected in this manner are diagnostic of a prenatal, postnatal, or neoplastic genetic disorder. With the continuous isolation of commercially available DNA probes specific to a particular chromosome region, FISH analysis has become standardized in its ability to detect characteristic chromosomal anomalies in association with genetic and neoplastic diseases. In recent years, FISH has also become automated to accommodate the increased volume of slide preparations necessary for the number of DNA probes needed to detect characteristic molecular anomalies in cancer tissues and bone marrow samples. FISH technology provides essential information to the physician regarding the diagnosis, response to treatment, and ultimately the prognosis of their patients' disorder. It has become an important source of information routinely used in conjunction with chromosome analyses, and presently to confirm molecular alterations detected by array comparative genomic hybridization (aCGH) analyses. In this chapter we describe the methods for performing FISH analyses in order to determine the presence or the absence of genetic abnormalities which define whether the patient has either a genetic syndrome or malignant disease.
Collapse
Affiliation(s)
- Linda A Cannizzaro
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Abstract
Structural chromosomal rearrangements of the Nucleoporin 98 gene (NUP98), primarily balanced translocations and inversions, are associated with a wide array of hematopoietic malignancies. NUP98 is known to be fused to at least 28 different partner genes in patients with hematopoietic malignancies, including acute myeloid leukemia, chronic myeloid leukemia in blast crisis, myelodysplastic syndrome, acute lymphoblastic leukemia, and bilineage/biphenotypic leukemia. NUP98 gene fusions typically encode a fusion protein that retains the amino terminus of NUP98; in this context, it is important to note that several recent studies have demonstrated that the amino-terminal portion of NUP98 exhibits transcription activation potential. Approximately half of the NUP98 fusion partners encode homeodomain proteins, and at least 5 NUP98 fusions involve known histone-modifying genes. Several of the NUP98 fusions, including NUP98-homeobox (HOX)A9, NUP98-HOXD13, and NUP98-JARID1A, have been used to generate animal models of both lymphoid and myeloid malignancy; these models typically up-regulate HOXA cluster genes, including HOXA5, HOXA7, HOXA9, and HOXA10. In addition, several of the NUP98 fusion proteins have been shown to inhibit differentiation of hematopoietic precursors and to increase self-renewal of hematopoietic stem or progenitor cells, providing a potential mechanism for malignant transformation.
Collapse
|
12
|
Sarma NJ, Yaseen NR. Amino-terminal enhancer of split (AES) interacts with the oncoprotein NUP98-HOXA9 and enhances its transforming ability. J Biol Chem 2011; 286:38989-9001. [PMID: 21937451 DOI: 10.1074/jbc.m111.297952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NUP98-HOXA9 is the prototype of NUP98 fusion oncoproteins that cause acute myeloid leukemia. It consists of an N-terminal FG-rich portion of the nucleoporin NUP98 fused to the homeodomain region of the homeobox protein HOXA9, and acts as an aberrant transcription factor. To identify interacting partners of NUP98-HOXA9, we used a cytoplasmic yeast two-hybrid assay to avoid the nonspecific trans-activation that would occur with the traditional yeast two-hybrid assay due to the transactivating properties of NUP98-HOXA9. We identified amino-terminal enhancer of split (AES), a transcriptional regulator of the transducin-like enhancer/Groucho family as a novel interaction partner of NUP98-HOXA9. The interaction was confirmed by in vitro pulldown and co-immunoprecipitation assays and was shown to require the FG repeat region of NUP98-HOXA9. Immunofluorescence analysis showed that AES localizes primarily to the interior of the nucleus. AES also showed a strong interaction with wild-type NUP98. AES augmented the transcriptional activity of NUP98-HOXA9. In the presence of NUP98-HOXA9, AES caused an increase in long-term proliferation of primary human CD34+ cells with a marked increase in the numbers of primitive cells. These effects of AES were not observed in the absence of NUP98-HOXA9. AES knockdown diminished the transcriptional and proliferative effects of NUP98-HOXA9. AES caused a shift away from the erythroid lineage in cells expressing NUP98-HOXA9. These data establish AES as an interacting partner of NUP98-HOXA9 and show that it cooperates with NUP98-HOXA9 in transcriptional regulation and cell transformation.
Collapse
Affiliation(s)
- Nayan J Sarma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
13
|
Gene expression profiling in the leukemic stem cell-enriched CD34+ fraction identifies target genes that predict prognosis in normal karyotype AML. Leukemia 2011; 25:1825-33. [PMID: 21760593 DOI: 10.1038/leu.2011.172] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In order to identify acute myeloid leukemia (AML) CD34(+)-specific gene expression profiles, mononuclear cells from AML patients (n=46) were sorted into CD34(+) and CD34(-) subfractions, and genome-wide expression analysis was performed using Illumina BeadChip Arrays. AML CD34(+) and CD34(-) gene expression was compared with a large group of normal CD34(+) bone marrow (BM) cells (n=31). Unsupervised hierarchical clustering analysis showed that CD34(+) AML samples belonged to a distinct cluster compared with normal BM and that in 61% of the cases the AML CD34(+) transcriptome did not cluster together with the paired CD34(-) transcriptome. The top 50 of AML CD34(+)-specific genes was selected by comparing the AML CD34(+) transcriptome with the AML CD34(-) and CD34(+) normal BM transcriptomes. Interestingly, for three of these genes, that is, ankyrin repeat domain 28 (ANKRD28), guanine nucleotide binding protein, alpha 15 (GNA15) and UDP-glucose pyrophosphorylase 2 (UGP2), a high transcript level was associated with a significant poorer overall survival (OS) in two independent cohorts (n=163 and n=218) of normal karyotype AML. Importantly, the prognostic value of the continuous transcript levels of ANKRD28 (OS hazard ratio (HR): 1.32, P=0.008), GNA15 (OS HR: 1.22, P=0.033) and UGP2 (OS HR: 1.86, P=0.009) was shown to be independent from the well-known risk factors FLT3-ITD, NPM1c(+) and CEBPA mutation status.
Collapse
|
14
|
Van de Vosse DW, Wan Y, Wozniak RW, Aitchison JD. Role of the nuclear envelope in genome organization and gene expression. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:147-66. [PMID: 21305702 DOI: 10.1002/wsbm.101] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although often depicted as a static structure upon which proteinaceous factors bind to control gene expression, the genome is actually highly mobile and capable of exploring the complex domain architecture of the nucleus, which in turn controls genome maintenance and gene expression. Numerous genes relocate from the nuclear periphery to the nuclear interior upon activation and are hypothesized to interact with pre-assembled sites of transcription. In contrast to the nuclear interior, the nuclear periphery is widely regarded as transcriptionally silent. This is reflected by the preferential association of heterochromatin with the nuclear envelope (NE). However, some activated genes are recruited to the nuclear periphery through interactions with nuclear pore complexes (NPCs), and NPC components are capable of preventing the spread of silent chromatin into adjacent regions of active chromatin, leading to the speculation that NPCs may facilitate the transition of chromatin between transcriptional states. Thus, the NE might better be considered as a discontinuous platform that promotes both gene activation and repression. As such, it is perhaps not surprising that many disease states are frequently associated with alterations in the NE. Here, we review the effects of the NE and its constituents on chromatin organization and gene expression.
Collapse
|
15
|
Wang Y, Xue Y, Chen S, Wu Y, Pan J, Zhang J, Shen J. A novel t(5;11)(q31;p15) involving the NUP98 gene on 11p15 is associated with a loss of the EGR1 gene on 5q31 in a patient with acute myeloid leukemia. ACTA ACUST UNITED AC 2010; 199:9-14. [PMID: 20417862 DOI: 10.1016/j.cancergencyto.2010.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 11/26/2022]
Abstract
To date, at least 25 translocations involving the NUP98 gene and different partner genes have been reported in the literature. Here, we describe a novel reciprocal t(5;11)(q31;p15) involving NUP98, as revealed by conventional karyotypic analysis using R-banding technique and fluorescence in situ hybridization (FISH) using a BAC RP11-120E20 probe and whole chromosome paint probes for chromosomes 5 and 11 in a 77-year-old woman who was diagnosed as having de novo acute myeloid leukemia. The patient received two courses of intensive combined chemotherapy but did not reach complete remission. She eventually died from the progressive disease, surviving for only 1 month after diagnosis. FISH analysis using WCP5 together with BAC RP11-878F9 or RP11-155N22 demonstrated that the breakpoint of chromosome 5 is located on 5q31. In addition, the EGR1 gene was unexpectedly found to be lost in the FISH study using EGR1 (red)/D5S23, D5S721 (green) dual-color probe. We supposed that the fusion gene created by t(5;11)(q31;p15) consisting of the NUP98 and its partner gene, as well as the loss of the EGR1 gene, may play a cooperative role in leukemogenesis. The partner gene of NUP98 in t(5;11)(q31;p15) is unclear at this time. Further molecular study is required to identify this partner gene in our patient.
Collapse
Affiliation(s)
- Yong Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institutes of Hematology, Suzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Kiyokawa E, Matsuda M. Regulation of focal adhesion and cell migration by ANKRD28-DOCK180 interaction. Cell Adh Migr 2009; 3:281-4. [PMID: 19458477 DOI: 10.4161/cam.3.3.8857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
DOCK180 is an atypical guanine nucleotide exchange factor of Rac1 identified originally as one of the two major proteins bound to the SH3 domain of the Crk adaptor protein. DOCK180 induces tyrosine phosphorylation of p130(Cas), and recruits the Crk-p130(Cas) complex to focal adhesions. Recently, we searched for DOCK180-binding proteins with a nano-LC/MS/MS system, and found that ANKRD28, a protein with twenty-six ankyrin domain-repeats, interacts with the SH3 domain of DOCK180. Knockdown of ANKRD28 reduced the migration velocity and altered the distribution of focal adhesion proteins such as Crk, paxillin and p130(Cas). On the other hand, the expression of ANKRD28, p130(Cas), Crk and DOCK180 induced hyper-phosphorylation of p130(Cas), which paralleled the induction of multiple long cellular processes. Depletion of ELMO, another protein bound to the SH3 domain of DOCK180, also retarded cell migration, but its expression together with p130(Cas), Crk and DOCK180 induced extensive lamellipodial protrusion around the entire circumference without 130(Cas) hyperphosphorylation. These data suggest the dual modes of DOCK180-Rac regulation for cell migration.
Collapse
Affiliation(s)
- Etsuko Kiyokawa
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
17
|
Xu S, Powers MA. Nuclear pore proteins and cancer. Semin Cell Dev Biol 2009; 20:620-30. [PMID: 19577736 DOI: 10.1016/j.semcdb.2009.03.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 12/28/2022]
Abstract
Nucleocytoplasmic trafficking of macromolecules, a highly specific and tightly regulated process, occurs exclusively through the nuclear pore complex. This immense structure is assembled from approximately 30 proteins, termed nucleoporins. Here we discuss the four nucleoporins that have been linked to cancers, either through elevated expression in tumors (Nup88) or through involvement in chromosomal translocations that encode chimeric fusion proteins (Tpr, Nup98, Nup214). In each case we consider the normal function of the nucleoporin and its translocation partners, as well as what is known about their mechanistic contributions to carcinogenesis, particularly in leukemias. Studies of nucleoporin-linked cancers have revealed novel mechanisms of oncogenesis and in the future, should continue to expand our understanding of cancer biology.
Collapse
Affiliation(s)
- Songli Xu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|