1
|
Donik Ž, Li W, Nnate B, Pugar JA, Nguyen N, Milner R, Cerda E, Pocivavsek L, Kramberger J. A computational study of artery curvature and endograft oversize influence on seal zone behavior in endovascular aortic repair. Comput Biol Med 2024; 178:108745. [PMID: 38901185 PMCID: PMC11317088 DOI: 10.1016/j.compbiomed.2024.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Thoracic endovascular aortic repair (TEVAR) is a minimally invasive procedure involving the placement of an endograft inside the dissection or an aneurysm to direct blood flow and prevent rupture. A significant challenge in endovascular surgery is the geometrical mismatch between the endograft and the artery, which can lead to endoleak formation, a condition where blood leaks between the endograft and the vessel wall. This study uses computational modeling to investigate the effects of artery curvature and endograft oversizing, the selection of an endograft with a larger diameter than the artery, on endoleak creation. Finite element analysis is employed to simulate the deployment of endografts in arteries with varying curvature and diameter. Numerical simulations are conducted to assess the seal zone and to quantify the potential endoleak volume as a function of curvature and oversizing. A theoretical framework is developed to explain the mechanisms of endoleak formation along with proof-of-concept experiments. Two main mechanisms of endoleak creation are identified: local buckling due to diameter mismatch and global buckling due to centerline curvature mismatch. Local buckling, characterized by excess graft material buckling and wrinkle formation, increases with higher levels of oversizing, leading to a larger potential endoleak volume. Global buckling, where the endograft bends or deforms to conform to the centerline curvature of the artery, is observed to require a certain degree of oversizing to bridge the curvature mismatch. This study highlights the importance of considering both curvature and diameter mismatch in the design and clinical use of endografts. Understanding the mechanisms of endoleak formation can provide valuable insights for optimizing endograft design and surgical planning, leading to improved clinical outcomes in endovascular aortic procedures.
Collapse
Affiliation(s)
- Žiga Donik
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Willa Li
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, The University of Chicago, 5841 S Maryland Ave, MC 5028, Chicago, IL 60637, USA
| | - Blessing Nnate
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, The University of Chicago, 5841 S Maryland Ave, MC 5028, Chicago, IL 60637, USA
| | - Joseph A Pugar
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, The University of Chicago, 5841 S Maryland Ave, MC 5028, Chicago, IL 60637, USA
| | - Nhung Nguyen
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, The University of Chicago, 5841 S Maryland Ave, MC 5028, Chicago, IL 60637, USA
| | - Ross Milner
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, The University of Chicago, 5841 S Maryland Ave, MC 5028, Chicago, IL 60637, USA
| | - Enrique Cerda
- Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile (USACH), Santiago Chile
| | - Luka Pocivavsek
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, The University of Chicago, 5841 S Maryland Ave, MC 5028, Chicago, IL 60637, USA.
| | - Janez Kramberger
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Reyes Valdivia A, Oikonomou K, Milner R, Kasprzak P, Reijnen MMPJ, Pitoulias G, Torsello GB, Pfister K, de Vries JPPM, Chaudhuri A. The Effect of EndoAnchors on Aneurysm Sac Regression for Patients Treated With Infrarenal Endovascular Repair With Hostile Neck Anatomies: A Propensity Scored Analysis. J Endovasc Ther 2024; 31:438-449. [PMID: 36214450 DOI: 10.1177/15266028221127839] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To analyze sac evolution patterns in matched patients with hostile neck anatomy (HNA) treated with standard endovascular aneurysm repair (sEVAR) and endosutured aneurysm repair (ESAR). METHODS Observational retrospective study using prospectively collected data between June 2010 and December 2019. ESAR group data were extracted from the primary arm of the PERU registry with an assigned identifier (NCT04100499) at 8 centers and those from the sEVAR came from 4 centers. Suitability for inclusion required: no proximal endograft adjuncts (besides EndoAnchor use), ≤15 mm neck length and minimum of 12-months follow-up imaging. Bubble-shaped neck (noncylindrical short neck with discontinuous seal) aspect was analyzed. Both groups were analyzed using propensity score matching (PSM) for aortic neck length, width, angulation, and device fixation type. Main outcome assessed was sac evolution patterns (sac expansion and regression were defined as >5mm increase or decrease, of the maximum sac diameter respectively; all AAAs within this ±5 mm range in diameter change were considered stable) and secondary outcomes were type-Ia endoleaks; other endoleaks and mortality. A power analysis calculation >80% was confirmed for sac regression evaluation. RESULTS After exclusions, PSM resulted in 96 ESAR and 96 sEVAR patients. Mean imaging follow-up (months) was 44.4±21.3 versus 43.0±19.6 (p=0.643), respectively. The overall number of patients achieving sac regression was higher in the ESAR group (n=57, 59.4% vs n=31, 32.3%; p<0.001) and the cumulative sac regression achieved at 5 years was 65% versus 38% (p=0.003) in favor of the ESAR group. There were no statistically significant differences in type-Ia endoleak and/or other endoleaks. Univariate analysis for sac regression patients in the sEVAR and ESAR group individually showed the bubble-shape neck as a predictor of sac regression failure. There were no statistical differences in overall and aneurysm-related mortality. CONCLUSION Endosutured aneurysm repair provided improved rates of sac regression for patients with AAA and HNA when compared with sEVAR at midterm and up to 5 years, despite similar rates of type-Ia endoleaks, and the need to consider some important limitations. The presence of bubble-shaped neck was a predictor of sac regression failure for both groups equally. CLINICAL IMPACT The use of EndoAnchors aids and improves EVAR treatment in hostile neck anatomies by an increased rate of sac regression when compared to EVAR treatment alone in up to 5 year analysis. Moreover, a trend to reduced number of type Ia endoleaks is also achieved, although not significant in the present study. This data, adds to current and growing evidence on the usefulness of EndoAnchors for AAA endovascular treatment.
Collapse
Affiliation(s)
- Andrés Reyes Valdivia
- Department of Vascular and Endovascular Surgery, Ramón y Cajal's University Hospital, Madrid, Spain
| | - Kyriakos Oikonomou
- Department of Vascular Surgery, University Medical Centre Regensburg, Regensburg, Germany
- Department of Vascular and Endovascular Surgery, Cardiovascular Surgery Clinic, University Hospital Frankfurt and Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Ross Milner
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Piotr Kasprzak
- Department of Vascular Surgery, University Medical Centre Regensburg, Regensburg, Germany
| | - Michel M P J Reijnen
- Department of Surgery, Rijnstate, Arnhem, The Netherlands
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Georgios Pitoulias
- Division of Vascular Surgery, 2nd Department of Surgery, Faculty of Medicine, "G. Gennimatas" Thessaloniki General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Karin Pfister
- Department of Vascular Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jean-Paul P M de Vries
- Division of Vascular Surgery, Department of Surgery, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Vascular Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Arindam Chaudhuri
- Bedfordshire-Milton Keynes Vascular Center, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| |
Collapse
|
3
|
Is Evar Feasible in Challenging Aortic Neck Anatomies? A Technical Review and Ethical Discussion. J Clin Med 2022; 11:jcm11154460. [PMID: 35956076 PMCID: PMC9369586 DOI: 10.3390/jcm11154460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Endovascular aneurysm repair (EVAR) has become an accepted alternative to open repair (OR) for the treatment of abdominal aortic aneurysm (AAA) despite “hostile” anatomies that may reduce its effectiveness. Guidelines suggest refraining from EVAR in such circumstances, but in clinical practice, up to 44% of EVAR procedures are performed using stent grafts outside their instruction for use (IFU), with acceptable outcomes. Starting from this “inconsistency” between clinical practice and guidelines, the aim of this contribution is to report the technical results of the use of EVAR in challenging anatomies as well as the ethical aspects to identify the criteria by which the “best interest” of the patient can be set. Materials and Methods: A literature review on currently available evidence on standard EVAR using commercially available endografts in patients with hostile aortic neck anatomies was conducted. Medline using the PubMed interface and The Cochrane Library databases were searched from 1 January 2000 to 6 May 2021, considering the following outcomes: technical success; need for additional procedures; conversion to OR; reintervention; migration; the presence of type I endoleaks; AAA-related mortality rate. Results: A total of 52 publications were selected by the investigators for a detailed review. All studies were either prospective or retrospective observational studies reporting the immediate, 30-day, and/or follow-up outcomes of standard EVAR procedures in patients with challenging neck anatomies. No randomized trials were identified. Fourteen different endo-grafts systems were used in the selected studies. A total of 45 studies reported a technical success rate ranging from 93 to 100%, and 42 the need for additional procedures (mean value of 9.04%). Results at 30 days: the incidence rate of type Ia endoleak was reported by 37 studies with a mean value of 2.65%; 31 studies reported a null migration rate and 32 a null conversion rate to OR; in 31 of the 35 studies that reported AAA-related mortality, the incidence was null. Mid-term follow-up: the incidence rate of type Ia endoleak was reported by 48 studies with a mean value of 6.65%; 30 studies reported a null migration rate, 33 a null conversion rate to OR, and 28 of the 45 studies reported that the AAA-related mortality incidence was null. Conclusions: Based on the present analysis, EVAR appears to be a safe and effective procedure—and therefore recommendable—even in the presence of hostile anatomies, in patients deemed unfit for OR. However, in order to identify and pursue the patient’s best interest, particular attention must be paid to the management of the patient’s informed consent process, which—in addition to being an essential ethical-legal requirement to legitimize the medical act—ensures that clinical data can be integrated with the patient’s personal preferences and background, beyond the therapeutic potential of the proposed procedures and what is generically stated in the guidelines.
Collapse
|
4
|
Association between blood flow pattern and rupture risk of abdominal aortic aneurysm based on computational fluid dynamics. Eur J Vasc Endovasc Surg 2022; 64:155-164. [PMID: 35605907 DOI: 10.1016/j.ejvs.2022.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This study aimed to derive a novel classification of blood flow pattern in AAA based on computational fluid dynamics, and determine the predicting value of flow pattern in abdominal aortic aneurysm (AAA) rupture. DESIGN Age, gender matched case-control study MATERIALS: Case patients were identified as those who underwent emergent endovascular or open repair due to ruptured or impending rupture AAA. Control patients were those age and gender matched AAA patients who were asymptomatic and confirmed unruptured from CTA images from the same period. METHODS Classification of blood flow pattern (Type I: non-helical main flow channel with multiple vortices; Type II: non-helical main flow channel with single vortices; Type III, helical main flow channel with helical vortices) and hemodynamic parameters [areas of low wall shear stress (A low WSS), aneurysm pressure drop (Δ pressure), etc.] were derived from computational fluid dynamic (CFD) analyses. Multivariate regression was used to determine independent risk factors of AAA rupture. The incremental discriminant and reclassification abilities for AAA rupture were compared among different models. RESULTS This study included 53 ruptured and 53 intact AAA patients. Ruptured AAA showed higher prevalence of type III flow pattern (60.38% vs. 15.09%, P<.001) compared to intact AAA. Type III flow pattern was associated with a significantly increased risk of aneurysm rupture (OR 10.22, 95%CI 3.43-30.49). Among all predicting models, combination of AAA diameter, hemodynamic parameters (A low WSS or Δ pressure) and flow pattern showed highest discriminant abilities in both overall population (concordance statistic [c-index] .862) and subgroup patients with AAAs <55mm (c-index .972). Compared to AAA diameter, adding flow pattern could significantly improve the reclassification abilities in both overall population (net reclassification index [NRI] .321; p<.001) and subgroup of AAAs < 55mm (NRI .732, P<.001). CONCLUSION Type III flow pattern was associated with a significantly increased risk of AAA rupture. Integration of blood flow pattern may improve the identification of high-risk aneurysms in both overall population and AAAs smaller than 55mm.
Collapse
|
5
|
Hemmler A, Lin A, Thierfelder N, Franz T, Gee MW, Bezuidenhout D. Customized stent-grafts for endovascular aneurysm repair with challenging necks: A numerical proof of concept. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3316. [PMID: 32022404 DOI: 10.1002/cnm.3316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Endovascular aortic repair (EVAR) is a challenging intervention whose long-term success strongly depends on the appropriate stent-graft (SG) selection and sizing. Most off-the-shelf SGs are straight and cylindrical. Especially in challenging vessel morphologies, the morphology of off-the-shelf SGs is not able to meet the patient-specific demands. Advanced manufacturing technologies facilitate the development of highly customized SGs. Customized SGs that have the same morphology as the luminal vessel surface could considerably improve the quality of the EVAR outcome with reduced likelihoods of EVAR related complications such as endoleaks type I and SG migration. In this contribution, we use an in silico EVAR methodology that approximates the deployed state of the elastically deformable SG in a hyperelastic, anisotropic vessel. The in silico EVAR results of off-the-shelf SGs and customized SGs are compared qualitatively and quantitatively in terms of mechanical and geometrical parameters such as stent stresses, contact tractions, SG fixation forces and the SG-vessel attachment. In a numerical proof of concept, eight different vessel morphologies, such as a conical vessel, a barrel shaped vessel and a curved vessel, are used to demonstrate the added value of customized SGs compared to off-the-shelf SGs. The numerical investigation has shown large benefits of the highly customized SGs compared to off-the-shelf SGs with respect to a better SG-vessel attachment and a considerable increase in SG fixation forces of up to 50% which indicate decreased likelihoods of EVAR related complications. Hence, this numerical proof of concept motivates further research and development of highly customized SGs for the use in challenging vessel morphologies.
Collapse
Affiliation(s)
- André Hemmler
- Mechanics & High Performance Computing Group, Technische Universität München, Garching bei München, Germany
| | - Andrew Lin
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Nikolaus Thierfelder
- Herzchirurgische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, München, Germany
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Michael W Gee
- Mechanics & High Performance Computing Group, Technische Universität München, Garching bei München, Germany
| | - Deon Bezuidenhout
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| |
Collapse
|
6
|
Hemmler A, Lutz B, Reeps C, Gee MW. In silico study of vessel and stent-graft parameters on the potential success of endovascular aneurysm repair. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3237. [PMID: 31315160 DOI: 10.1002/cnm.3237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
The variety of stent-graft (SG) design variables (eg, SG type and degree of SG oversizing) and the complexity of decision making whether a patient is suitable for endovascular aneurysm repair (EVAR) raise the need for the development of predictive tools to assist clinicians in the preinterventional planning phase. Recently, some in silico EVAR methods have been developed to predict the deployed SG configuration. However, only few studies investigated how to assess the in silico EVAR outcome with respect to EVAR complication likelihoods (eg, endoleaks and SG migration). Based on a large literature study, in this contribution, 20 mechanical and geometrical parameters (eg, SG drag force and SG fixation force) are defined to evaluate the quality of the in silico EVAR outcome. For a cohort of n = 146 realizations of parameterized vessel and SG geometries, the in silico EVAR results are studied with respect to these mechanical and geometrical parameters. All degrees of SG oversizing in the range between 5% and 40% are investigated continuously by a computationally efficient parameter continuation approach. The in silico investigations have shown that the mechanical and geometrical parameters are able to indicate candidates at high risk of postinterventional complications. Hence, this study provides the basis for the development of a simulation-based metric to assess the potential success of EVAR based on engineering parameters.
Collapse
Affiliation(s)
- André Hemmler
- Mechanics & High Performance Computing Group, Technische Universität München, Parkring 35, Garching b. München, 85748, Germany
| | - Brigitta Lutz
- Klinik für Viszeral-, Thorax- und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, Dresden, 01307, Germany
| | - Christian Reeps
- Klinik für Viszeral-, Thorax- und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, Dresden, 01307, Germany
| | - Michael W Gee
- Mechanics & High Performance Computing Group, Technische Universität München, Parkring 35, Garching b. München, 85748, Germany
| |
Collapse
|
7
|
Ammar CP, Larion S, Ahanchi SS, Lavingia KS, Dexter DJ, Panneton JM. Anatomic severity grading score for primary descending thoracic aneurysms predicts procedural difficulty and aortic-related reinterventions after thoracic endovascular aortic repair. J Vasc Surg 2016; 64:912-920.e1. [DOI: 10.1016/j.jvs.2016.03.451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/22/2016] [Indexed: 10/21/2022]
|
8
|
De Bock S, Iannaccone F, De Beule M, Vermassen F, Segers P, Verhegghe B. What if you stretch the IFU? A mechanical insight into stent graft Instructions For Use in angulated proximal aneurysm necks. Med Eng Phys 2014; 36:1567-76. [DOI: 10.1016/j.medengphy.2014.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/23/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
9
|
Mwipatayi BP, Picardo A, Wong J, Thomas SD, Vijayan V. Endovascular Repair of Abdominal Aortic Aneurysms With Reverse Taper Neck Anatomy Using the Endurant Stent-Graft: Analysis of Stent-Graft Oversizing. J Endovasc Ther 2013; 20:514-22. [DOI: 10.1583/13-4321.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
|
11
|
Walker TG, Kalva SP, Yeddula K, Wicky S, Kundu S, Drescher P, d'Othee BJ, Rose SC, Cardella JF. Clinical Practice Guidelines for Endovascular Abdominal Aortic Aneurysm Repair: Written by the Standards of Practice Committee for the Society of Interventional Radiology and Endorsed by the Cardiovascular and Interventional Radiological Society of Europe and the Canadian Interventional Radiology Association. J Vasc Interv Radiol 2010; 21:1632-55. [DOI: 10.1016/j.jvir.2010.07.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/24/2010] [Accepted: 07/11/2010] [Indexed: 12/17/2022] Open
|