1
|
Mebratu AT, Asfaw YT, Merckx W, Hendriks WH, Janssens GPJ. Impact of brining and drying processes on the nutritive value of tambaqui fish (Colossoma macropomum). PLoS One 2024; 19:e0299926. [PMID: 38625887 PMCID: PMC11020844 DOI: 10.1371/journal.pone.0299926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/16/2024] [Indexed: 04/18/2024] Open
Abstract
Preservation of fish as diet ingredient is challenging in many tropical regions due to poor socioeconomic conditions and lack of freezing facilities. So, alternative preservation techniques could be viable to address the issue. The present study evaluated the effect of brine salting (15% w/v) prior to drying at different temperatures on the nutrient profiles of tambaqui fish (Colossoma macropomum). Whole fish samples (n = 48; 792 ± 16 g; 8 months old) were grouped into two as brine-salted and non-salted, and treated at seven different drying temperatures of 30, 35, 40, 45, 50, 55 and 60°C for a period of 23 h each. To evaluate the impact of Maillard reaction, reactive lysine was also quantified. Drying temperature had no effect on the evaluated macro- and micro-nutrients of tambaqui fish (P > 0.05) while brining reduced the overall protein concentration by 6% (58.8 to 55.4 g/100 g DM; P = 0.004). Brining significantly reduced many amino acids: taurine by 56% (7.1 to 3.1 g/kg; P < 0.001), methionine 17% (14.7 to 12.1 g/kg; P < 0.001), cysteine 11% (5.1 to 4.4 g/kg, P = 0.016), and reactive lysine 11% (52.0 to 46.4 g/kg; P = 0.004). However, alanine, arginine, and serine were not affected by brining (P > 0.05). Brining also reduced the concentrations of Se by 14% (149 to 128 μg/kg DM; P = 0.020), iodine 38% (604 to 373 μg/kg DM; P = 0.020), K 42% (9.71 to 5.61 g/kg DM; P < 0.001) and Mg 18% (1.32 to 1.10 g/kg DM; P = < 0.001) versus an anticipated vast increase in Na by 744% (2.70 to 22.90 g/kg DM; P < 0.001) and ash 28% (12.4 to 16.0 g/100g DM; P < 0.001) concentration. Neither brining nor drying temperature induced changes in % lysine reactivity and fat content of tambaqui fish (P > 0.05). Agreeably, results of multivariate analysis showed a negative association between brining, Na, and ash on one side of the component and most other nutrients on the other component. In conclusion, drying without brining may better preserve the nutritive value of tambaqui fish. However, as a practical remark to the industry sector, it is recommended that the final product may further evaluated for any pathogen of economic or public health importance.
Collapse
Affiliation(s)
- Awot Teklu Mebratu
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Animal Reproduction and Welfare, College of Veterinary Sciences, Mekelle University, Mekelle, Ethiopia
| | - Yohannes Tekle Asfaw
- Department of Veterinary Basic and Diagnostic Sciences, College of Veterinary Sciences, Mekelle University, Mekelle, Ethiopia
| | - Wouter Merckx
- TRANSfarm, Engineering and Technology Group, The Catholic University of Leuven, Lovenjoel, Belgium
| | - Wouter H. Hendriks
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Geert P. J. Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Lake FB, van Overbeek LS, Baars JJP, Abee T, den Besten HMW. Variability in growth and biofilm formation of Listeria monocytogenes in Agaricus bisporus mushroom products. Food Res Int 2023; 165:112488. [PMID: 36869500 DOI: 10.1016/j.foodres.2023.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/27/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Foods and food production environments can be contaminated with Listeria monocytogenes and may support growth of this foodborne pathogen. This study aims to characterize the growth and biofilm formation of sixteen L. monocytogenes strains, isolated from mushroom production and processing environments, in filter-sterilized mushroom medium. Strain performance was compared to twelve L. monocytogenes strains isolated from other sources including food and human isolates. All twenty-eight L. monocytogenes strains showed rather similar growth performance at 20 °C in mushroom medium, and also significant biofilm formation was observed for all strains. HPLC analysis revealed the presence of mannitol, trehalose, glucose, fructose and glycerol, that were all metabolized by L. monocytogenes, except mannitol, in line with the inability of L. monocytogenes to metabolize this carbohydrate. Additionally, the growing behavior of L. monocytogenes was tested on whole, sliced and smashed mushroom products to quantify performance in the presence of product-associated microbiota. A significant increase of L. monocytogenes was observed with higher increase of counts when the mushroom products were more damaged, even with the presence of high background microbiota counts. This study demonstrated that L. monocytogenes grows well in mushroom products, even when the background microbiota is high, highlighting the importance to control (re)contamination of mushrooms.
Collapse
Affiliation(s)
- Frank B Lake
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Leo S van Overbeek
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Johan J P Baars
- Plant Breeding, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
3
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E, Grudlewska-Buda K, Wnuk K, Buszko K, Gospodarek-Komkowska E. Assessment of the influence of selected stress factors on the growth and survival of Listeria monocytogenes. BMC Microbiol 2023; 23:27. [PMID: 36690941 PMCID: PMC9872351 DOI: 10.1186/s12866-023-02766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Listeria monocytogenes are Gram-positive rods, which are the etiological factor of listeriosis. L. monocytogenes quickly adapts to changing environmental conditions. Since the main source of rods is food, its elimination from the production line is a priority. The study aimed to evaluate the influence of selected stress factors on the growth and survival of L. monocytogenes strains isolated from food products and clinical material. RESULTS We distinguished fifty genetically different strains of L. monocytogenes (PFGE method). Sixty-two percent of the tested strains represented 1/2a-3a serogroup. Sixty percent of the rods possessed ten examined virulence genes (fbpA, plcA, hlyA, plcB, inlB, actA, iap, inlA, mpl, prfA). Listeria Pathogenicity Island 1 (LIPI-1) was demonstrated among 38 (76.0%) strains. Majority (92.0%) of strains (46) were sensitive to all examined antibiotics. The most effective concentration of bacteriophage (inhibiting the growth of 22 strains; 44.0%) was 5 × 108 PFU. In turn, the concentration of 8% of NaCl was enough to inhibit the growth of 31 strains (62.0%). The clinical strain tolerated the broadest pH range (3 to 10). Five strains survived the 60-min exposure to 70˚C, whereas all were alive at each time stage of the cold stress experiment. During the stress of cyclic freezing-defrosting, an increase in the number of bacteria was shown after the first cycle, and a decrease was only observed after cycle 3. The least sensitive to low nutrients content were strains isolated from frozen food. The high BHI concentration promoted the growth of all groups. CONCLUSIONS Data on survival in stress conditions can form the basis for one of the hypotheses explaining the formation of persistent strains. Such studies are also helpful for planning appropriate hygiene strategies within the food industry.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Kacper Wnuk
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Ludwik Rydygier Collegium Medium in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Buszko
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Ludwik Rydygier Collegium Medium in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
4
|
Zhang X, Zhang M, Xu B, Mujumdar AS, Guo Z. Light-emitting diodes (below 700 nm): Improving the preservation of fresh foods during postharvest handling, storage, and transportation. Compr Rev Food Sci Food Saf 2021; 21:106-126. [PMID: 34967490 DOI: 10.1111/1541-4337.12887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
In order to maintain the original taste, flavors, and appearance, fresh foods usually do not go through complex processing prior to sale; this makes them prone to deterioration due to external factors. Light-emitting diodes (LEDs) have many unique advantages over traditional preservation technologies leading to their increasing application in the food industry. This paper reviews the luminescence principles of LED, the advantages of LED compared with traditional lighting equipment, and its possible preservation mechanism, and then critically summarizes the beneficial effects of LED irradiation on the ripening and aging process of various fruits and vegetables (climacteric and non-climacteric). The activity changes of many enzymes closely related to crop development and quality maintenance, and the variation of flavor components caused by LED irradiation are discussed. LED illumination with a specific spectrum also has the important effect of maintaining the original color and flavor of meat, seafood, and dairy products. For microorganisms attached to the surface of animal-derived food, both 400-460 nm LED irradiation based on photodynamic inactivation principle and UV-LED irradiation based on ultraviolet sterilization principle have high bactericidal efficacy. Although there is still a lack of useful standards for matching optimal LED irradiation dose with wavelength, perhaps in the near future, the improved LED irradiation system will be applied extensively in the food industry.
Collapse
Affiliation(s)
- Xijia Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Zhimei Guo
- R&D Center, Wuxi Haihe Equipment Co., Wuxi, China
| |
Collapse
|
5
|
Janež N, Škrlj B, Sterniša M, Klančnik A, Sabotič J. The role of the Listeria monocytogenes surfactome in biofilm formation. Microb Biotechnol 2021; 14:1269-1281. [PMID: 34106516 PMCID: PMC8313260 DOI: 10.1111/1751-7915.13847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.
Collapse
Affiliation(s)
- Nika Janež
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| | - Blaž Škrlj
- Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Meta Sterniša
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Anja Klančnik
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Jerica Sabotič
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| |
Collapse
|
6
|
Li X, Kim MJ, Yuk HG. Influence of 405 nm light-emitting diode illumination on the inactivation of Listeria monocytogenes and Salmonella spp. on ready-to-eat fresh salmon surface at chilling storage for 8 h and their susceptibility to simulated gastric fluid. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Jeyasanta I, Giftson KH, Patterson J. Quality Indicator Hypoxanthine Compared with Other Volatile Amine Indicators of Sea Foods Stored in Refrigerator. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ajava.2018.144.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress. Arch Microbiol 2016; 199:259-265. [PMID: 27695911 DOI: 10.1007/s00203-016-1300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/25/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry. This ubiquity can be partly explained by the ability of the organism to grow and persist at very low temperatures, a consequence of its ability to accumulate cryoprotective compound called osmolytes. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the stress response genes opuCA and betL (encoding carnitine and betaine transporters, respectively) and the housekeeping gene 16S rRNA. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting cold and freezing stress, conditions usually used to preserve foods. We showed that expression of the two cold-adapted genes encoded the transporters of the cryoprotectants carnitine and betaine in ATCC 19115 and the food-isolated L. monocytogenes S1 is induced after cold and freezing stress exposure. Furthermore, transcriptional analysis of the genes encoding opuCA and betL revealed that each transporter is induced to different degrees upon cold shock of L. monocytogenes ATCC 19115 and S1. Our results confirm an increase in carnitine uptake at low temperatures more than in betaine after cold-shocked temperature compared to the non-stress control treatment. It was concluded the use of carnitine and betaine as cryoprotectants is essential for rapid induction of the tested stress response under conditions typically encountered during food preservation.
Collapse
|
9
|
Liu C, Mou J, Su YC. Behavior of Salmonella and Listeria monocytogenes in Raw Yellowfin Tuna during Cold Storage. Foods 2016; 5:E16. [PMID: 28231111 PMCID: PMC5224575 DOI: 10.3390/foods5010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/04/2016] [Accepted: 02/15/2016] [Indexed: 11/24/2022] Open
Abstract
Behavior of Salmonella and Listeria monocytogenes in raw yellowfin tuna during refrigeration and frozen storage were studied. Growth of Salmonella was inhibited in tuna during refrigerated storage, while L. monocytogenes was able to multiply significantly during refrigerated storage. Populations of Salmonella in tuna were reduced by 1 to 2 log after 12 days of storage at 5-7 °C, regardless levels of contamination. However, populations of L. monocytogenes Scott A, M0507, and SFL0404 in inoculated tuna (10⁴-10⁵ CFU/g) increased by 3.31, 3.56, and 3.98 log CFU/g, respectively, after 12 days of storage at 5-7 °C. Similar increases of L. monocytogenes cells were observed in tuna meat with a lower inoculation level (10²-10³ CFU/g). Populations of Salmonella and L. monocytogenes declined gradually in tuna samples over 84 days (12 weeks) of frozen storage at -18 °C with Salmonella Newport 6962 being decreased to undetectable level (<10 CFU/g) from an initial level of 10³ log CFU/g after 42 days of frozen storage. These results demonstrate that tuna meat intended for raw consumption must be handled properly from farm to table to reduce the risks of foodborne illness caused by Salmonella and L. monocytogenes.
Collapse
Affiliation(s)
- Chengchu Liu
- Sea Grant College Extension Program, University of Maryland, Princess Anne, MD 21853, USA.
| | - Jing Mou
- Seafood Research and Education Center, Oregon State University, Astoria, OR 97103, USA.
| | - Yi-Cheng Su
- Seafood Research and Education Center, Oregon State University, Astoria, OR 97103, USA.
| |
Collapse
|
10
|
Humblot MJPO, Carter L, Mytilianios I, Lambert RJW. Assessing the survival of Listeria monocytogenes in a domestic freezer by analyzing subsequent growth at 30°C using a novel reference method. J Food Prot 2015; 78:349-54. [PMID: 25710150 DOI: 10.4315/0362-028x.jfp-14-319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a serious pathogen capable of extensive survival under frozen storage. Using optical density and multiple initial inocula in multiple identically prepared microtiter plates, the effect of storage time at -22°C on the subsequent growth at 30°C of the organism when defrosted was studied using a technique that compared the growth (through time to detection) of a test plate (previously frozen) with that of an identically prepared control plate, analyzed at the start of the experiment. Experiments were carried out using tryptic soy broth (TSB) or TSB supplemented with 3% salt. Plates were stored and frozen for up to 6 months (10 days, 20 days, 2 months, and 6 months). As storage time increased, there was only a small relative increase in the lag and the variance in the time to detection observed. When compared with storage in 3% salt TSB, which reduced the specific growth rate relative to growth in standard TSB, there were only marginally greater increases in lag and data variance. After 6 months storage in 3% salt TSB, there were some indications of inactivation (observed as small reductions of the initial optical density (equal to 1 × 10(9) CFU/ml) equivalent to a 50% inactivation. The method and the analyses suggest that this technique could allow easy examination of the effect of frozen storage on given cultures, with respect to the effects of pH, water activity, and also the effect of preservatives commonly used as extra hurdles in foods.
Collapse
Affiliation(s)
- Mathilde J P O Humblot
- Applied Microbiology Group, School of Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK; Polytech' Clermont-Ferrand, Campus des Cézeaux 24, Avenue des Landais, 63174 Aubière Cedex, France
| | - Lauren Carter
- Applied Microbiology Group, School of Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK
| | - Ioannis Mytilianios
- Applied Microbiology Group, School of Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK
| | - Ronald J W Lambert
- Applied Microbiology Group, School of Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
11
|
Tocmo R, Krizman K, Khoo WJ, Phua LK, Kim M, Yuk HG. Listeria monocytogenes in Vacuum-Packed Smoked Fish Products: Occurrence, Routes of Contamination, and Potential Intervention Measures. Compr Rev Food Sci Food Saf 2014; 13:172-189. [PMID: 33412645 DOI: 10.1111/1541-4337.12052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/14/2003] [Indexed: 12/15/2022]
Abstract
The occurrence of Listeria monocytogenes in ready-to-eat (RTE) fish products is well documented and represents an important food safety concern. Contamination of this pathogen in vacuum-packed (VP) smoked fish products at levels greater than the RTE food limit (100 CFU/g) has been traced to factors such as poor sanitary practices, contaminated processing environments, and temperature abuse during prolonged storage in retail outlets. Intervention technologies including physical, biological, and chemical techniques have been studied to control transmission of L. monocytogenes to these products. High-pressure processing, irradiation, and pulsed UV-light treatment have shown promising results. Potential antilisterial effects of some sanitizers and combined chemical preservatives have also been demonstrated. Moreover, the concept of biopreservation, use of bioactive packaging, and a combination of different intervention technologies, as in the hurdle concept, are also under consideration. In this review, the prevalence, routes of contamination, and potential intervention technologies to control transmission of L. monocytogenes in VP smoked fish products are discussed.
Collapse
Affiliation(s)
- Restituto Tocmo
- Food Science & Technology Programme, Dept. of Chemistry, Natl. Univ. of Singapore, 3 Science Drive 3, Singapore, 117543
| | - Katja Krizman
- Food Science & Technology Programme, Dept. of Chemistry, Natl. Univ. of Singapore, 3 Science Drive 3, Singapore, 117543
| | - Wei Jie Khoo
- Food Science & Technology Programme, Dept. of Chemistry, Natl. Univ. of Singapore, 3 Science Drive 3, Singapore, 117543
| | - Li Kai Phua
- Food Science & Technology Programme, Dept. of Chemistry, Natl. Univ. of Singapore, 3 Science Drive 3, Singapore, 117543
| | - Minjeong Kim
- Food Science & Technology Programme, Dept. of Chemistry, Natl. Univ. of Singapore, 3 Science Drive 3, Singapore, 117543
| | - Hyun-Gyun Yuk
- Food Science & Technology Programme, Dept. of Chemistry, Natl. Univ. of Singapore, 3 Science Drive 3, Singapore, 117543
| |
Collapse
|
12
|
Influence of freezing stress on morphological alteration and biofilm formation by Listeria monocytogenes: relationship with cell surface hydrophobicity and membrane fluidity. Arch Microbiol 2013; 195:705-15. [DOI: 10.1007/s00203-013-0921-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/23/2013] [Accepted: 08/17/2013] [Indexed: 12/25/2022]
|
13
|
Survival of Listeria monocytogenes Cells and the Effect of Extended Frozen Storage (−20 °C) on the Expression of Its Virulence Gene. Appl Biochem Biotechnol 2013; 170:1174-83. [DOI: 10.1007/s12010-013-0253-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 04/21/2013] [Indexed: 12/27/2022]
|
14
|
Ben Slama R, Kouidhi B, Zmantar T, Chaieb K, Bakhrouf A. Anti-listerial and Anti-biofilm Activities of Potential Probiotic Lactobacillus
Strains Isolated from Tunisian Traditional Fermented Food. J Food Saf 2013. [DOI: 10.1111/jfs.12017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rihab Ben Slama
- Laboratoire d'Analyses, Traitement et Valorisation des Polluants de l'Environnement et des Produits; Faculté de Pharmacie; Monastir Tunisie
| | - Bochra Kouidhi
- Laboratoire d'Analyses, Traitement et Valorisation des Polluants de l'Environnement et des Produits; Faculté de Pharmacie; Monastir Tunisie
- College of Applied Medical Sciences, Yanbu; Taibah University; Al-Madinah Al-Munawarah Kingdom of Saudi Arabia
| | - Tarek Zmantar
- Laboratoire d'Analyses, Traitement et Valorisation des Polluants de l'Environnement et des Produits; Faculté de Pharmacie; Monastir Tunisie
| | - Kamel Chaieb
- Laboratoire d'Analyses, Traitement et Valorisation des Polluants de l'Environnement et des Produits; Faculté de Pharmacie; Monastir Tunisie
- College of Arts and Sciences, Yanbu; Taibah University; Al-Madinah Al-Munawarah Kingdom of Saudi Arabia
| | - Amina Bakhrouf
- Laboratoire d'Analyses, Traitement et Valorisation des Polluants de l'Environnement et des Produits; Faculté de Pharmacie; Monastir Tunisie
| |
Collapse
|
15
|
KANG JIHUN, TANG SILIN, LIU RUIHAI, WIEDMANN MARTIN, BOOR KATHRYNJ, BERGHOLZ TERESAM, WANG SIYUN. Effect of Curing Method and Freeze-Thawing on Subsequent Growth of Listeria monocytogenes on Cold-Smoked Salmon. J Food Prot 2012; 75:1619-26. [DOI: 10.4315/0362-028x.jfp-11-561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence of the foodborne pathogen Listeria monocytogenes on cold-smoked salmon is a major concern for the seafood industry. Understanding processing and postprocessing handling factors that affect the ability of this pathogen to grow on cold-smoked salmon is critical for developing effective control strategies. In this study, we investigated the effect of curing method and freeze-thawing of cold-smoked salmon on (i) physicochemical properties and (ii) subsequent growth of genetically diverse strains of L. monocytogenes (inoculated after freeze-thawing) and endogenous lactic acid bacteria. The majority of the measured physicochemical properties were unaffected by freezing and thawing. Overall, wet-cured cold-smoked salmon had higher pH, water activity, and moisture, as well as lower fat, water-phase salt, and phenolic content compared with dry-cured cold-smoked salmon. The curing method and freeze-thawing did not affect growth of endogenous lactic acid bacteria. Freeze-thawing cold-smoked salmon prior to inoculation led to pronounced growth of L. monocytogenes at 7°C. The increase in cell density between days 0 and 30 was significantly (P = 0.0078) greater for cold-smoked salmon that was frozen and thawed prior to inoculation compared with nonfrozen cold-smoked salmon. On dry-cured, freeze-thawed cold-smoked salmon, L. monocytogenes had a lag phase ranging from 3.7 ± 0.1 to 11.2 ± 1.4 days compared with salmon that was wet cured and freeze-thawed, on which L. monocytogenes began to grow within 24 h. Variation in growth among L. monocytogenes strains was also observed, indicating the significance of assessing multiple strains. Further efforts to understand the impact of processing and postprocessing handling steps of cold-smoked salmon on the growth of genetically diverse L. monocytogenes will contribute to improved challenge study designs and data. This, in turn, will likely lead to more reliable and unbiased risk assessments and control measures.
Collapse
Affiliation(s)
- JIHUN KANG
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - SILIN TANG
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - RUI HAI LIU
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - MARTIN WIEDMANN
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - KATHRYN J. BOOR
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - TERESA M. BERGHOLZ
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - SIYUN WANG
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
16
|
Miladi H, Soukri A, Bakhrouf A, Ammar E. Expression of ferritin-like protein in Listeria monocytogenes after cold and freezing stress. Folia Microbiol (Praha) 2012; 57:551-6. [PMID: 22674417 PMCID: PMC3474906 DOI: 10.1007/s12223-012-0172-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
The cold shock protein family consists of the transfer of the foodborne pathogen Listeria monocytogenes from 37 to 4 and -20 °C and was characterized by the sharp induction of a low molecular mass protein. This major cold shock protein ferritin-like protein (Flp) has an important role in regulation of various microbial physiological processes. Flp have a molecular mass of about 18 kDa, as observed on SDS-PAGE. The purification procedure including ammonium sulfate fractionation was used. Monospecific polyclonal antibodies raised in rabbits against the purified new Flp immunostained a single 18-kDa Flp band in extracts from different cytoplasmic proteins blotted onto nitrocellulose. A 411-bp cDNA fragment that corresponds to an internal region of an flp gene was obtained by RT-PCR. Our result indicated a surexpression of major cold shock protein and an important increase in flp mRNA amount after a downshift temperature especially at -20 °C.
Collapse
Affiliation(s)
- Hanene Miladi
- Laboratoire d'Analyses, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie, rue Avicenne 5000, Monastir, Tunisia.
| | | | | | | |
Collapse
|
17
|
MILADI HANENE, BAKHROUF AMINA, AMMAR EMNA. CELLULAR LIPID FATTY ACID PROFILES OF REFERENCE AND FOOD ISOLATESLISTERIA MONOCYTOGENESAS A RESPONSE TO REFRIGERATION AND FREEZING STRESS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00607.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ye M, Neetoo H, Chen H. Prior frozen storage enhances the effect of edible coatings against Listeria monocytogenes on cold-smoked salmon during subsequent refrigerated storage. J Appl Microbiol 2011; 111:865-76. [PMID: 21794035 DOI: 10.1111/j.1365-2672.2011.05111.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Listeria monocytogenes is a major safety concern for ready-to-eat foods. The overall objective of this study was to investigate whether prior frozen storage could enhance the efficacy of edible coatings against L. monocytogenes on cold-smoked salmon during subsequent refrigerated storage. METHODS AND RESULTS A formulation consisting of sodium lactate (SL, 1·2-2·4%) and sodium diacetate (SD, 0·125-0·25%) or 2·5% Opti.Form (a commercial formulation of SL and SD) was incorporated into each of five edible coatings: alginate, κ-carrageenan, pectin, gelatin and starch. The coatings were applied onto the surface of cold-smoked salmon slices inoculated with L. monocytogenes at a level of 500 CFU cm⁻². In the first phase, the slices were first frozen at -18°C for 6 days and stored at 22°C for 6 days. Alginate, gelatin and starch appeared to be the most effective carriers. In the second phase, cold-smoked salmon slices were inoculated with L. monocytogenes, coated with alginate, gelatin or starch with or without the antimicrobials and stored frozen at -18°C for 12 months. Every 2 months, samples were removed from the freezer and kept at 4°C for 30 days. Prior frozen storage at -18°C substantially enhanced the antilisterial efficacy of the edible coatings with or without antimicrobials during the subsequent refrigerated storage. CONCLUSIONS Plain coatings with ≥ 2 months frozen storage and antimicrobial edible coatings represent an effective intervention to inhibit the growth of L. monocytogenes on cold-smoked salmon. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the effectiveness of the conjunct application of frozen storage and edible coatings to control the growth of L. monocytogenes to enhance the microbiological safety of cold-smoked salmon.
Collapse
Affiliation(s)
- M Ye
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | | | | |
Collapse
|