1
|
Lebre PH, Aliyu H, De Maayer P, Cowan DA. In silico characterization of the global Geobacillus and Parageobacillus secretome. Microb Cell Fact 2018; 17:156. [PMID: 30285747 PMCID: PMC6171300 DOI: 10.1186/s12934-018-1005-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Geobacillus and Parageobacillus are two ecologically diverse thermophilic genera within the phylum Firmicutes. These taxa have long been of biotechnological interest due to their ability to secrete thermostable enzymes and other biomolecules that have direct applications in various industrial and clinical fields. Despite the commercial and industrial interest in these microorganisms, the full scope of the secreted protein, i.e. the secretome, of Geobacillus and Parageobacillus species remains largely unexplored, with most studies focusing on single enzymes. A genome-wide exploration of the global secretome can provide a platform for understanding the extracellular functional “protein cloud” and the roles that secreted proteins play in the survival and adaptation of these biotechnologically relevant organisms. Results In the present study, the global secretion profile of 64 Geobacillus and Parageobacillus strains, comprising 772 distinct proteins, was predicted using comparative genomic approaches. Thirty-one of these proteins are shared across all strains used in this study and function in cell-wall/membrane biogenesis as well as transport and metabolism of carbohydrates, amino acids and inorganic ions. An analysis of the clustering patterns of the secretomes of the 64 strains according to shared functional orthology revealed a correlation between the secreted profiles of different strains and their phylogeny, with Geobacillus and Parageobacillus species forming two distinct functional clades. Conclusions The in silico characterization of the global secretome revealed a metabolically diverse set of secreted proteins, which include proteases, glycoside hydrolases, nutrient binding proteins and toxins. Electronic supplementary material The online version of this article (10.1186/s12934-018-1005-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Habibu Aliyu
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Pieter De Maayer
- School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
Strep-tag II fusion technology for the modification and immobilization of lipase B from Candida antarctica (CALB). J Genet Eng Biotechnol 2017; 15:359-367. [PMID: 30647674 PMCID: PMC6296563 DOI: 10.1016/j.jgeb.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/15/2017] [Indexed: 11/21/2022]
Abstract
Fusion tags - amino acid sequences that are genetically coded to be expressed as attached moieties to a protein - have the potential to enhance the activity of native enzyme, enable specific purification of the enzyme, and promote simple and efficient immobilization of enzymes onto material supports. In this work, we demonstrate the effect of a Strep-tag II fusion tag on the properties of free and immobilized lipase B from Candida antarctica (CALB). The gene encoding the mature portion of CALB was codon-optimized and cloned in pASG-IBA2 plasmid for expression in E. coli. Purified recombinant Strep-tag II CALB was immobilized to Strep-Tactin based support through affinity binding, and the immobilized and free Strep-tag II CALB were compared to a commercial CALB. Following modification, the enzyme could be selectively purified from culture media with no observable non-specific binding. The catalytic efficiency of the purified fusion-tagged enzyme was significantly greater than that of the commercial CALB in its free form. Immobilization of the fusion-tagged enzyme to Strep-Tactin modified crosslinked agarose support yielded a catalytically active enzyme; however, the kcat of the immobilized enzyme was significantly reduced compared to the free tagged enzyme. This work indicates that a C-terminus Strep-tag II fusion tag may be employed to improve the catalytic efficiency of free CALB, but may not be suitable for immobilized applications that employ binding of the enzyme to a Strep-Tactin-modified support.
Collapse
|
3
|
Sahoo RK, Kumar M, Sukla LB, Subudhi E. Bioprospecting hot spring metagenome: lipase for the production of biodiesel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3802-3809. [PMID: 27896615 DOI: 10.1007/s11356-016-8118-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Screening of metagenomic library from Taptapani Hot Spring (Odisha) yielded a positive lipase clone (pUC-lip479). Sequence analysis showed an ORF (RK-lip479) of 416 amino acid residues which was overexpressed in Escherichia coli BL21 (DE3). Optimum pH and temperature of purified lipase RK-lip479 were 8.0 and 65 °C, respectively, and found to be stable over a pH range of 7.0-9.0 and temperatures 55-75 °C. RK-lip479 could hydrolyse a wide range of 4-nitrophenyl esters (4-nitrophenyoctanoate, 4-nitrophenyldodecanoate, 4-nitrophenylpalmitate, 4-nitrophenylmyristate and 4-nitrophenylstearate), and maximum activity was observed with 4-nitrophenyldodecanoate. RK-lip479 was resistant to many organic solvents, especially isopropanol, DMSO, methanol, DMF, ethanol, dichloromethane, acetone, glycerol and ethyl acetate. RK-lip479 also showed activity in the presence of monovalent (Na+ and K+), divalent (Mg2+, Mn2+, Ca2+, Hg2+, Cu2+, Co2+, Zn2+ and Ag2+ ) and trivalent cations (Fe3+ and Al3+). Yield of biodiesel production was in the range of 40-76% using various waste oils with RK-Lip479 under optimized conditions.
Collapse
Affiliation(s)
- Rajesh Kumar Sahoo
- Centre of Biotechnology, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Mohit Kumar
- Department of Biotechnology, Mahatma Jyoti Rao Phoole University, Jaipur, 303002, India.
| | - Lala Behari Sukla
- Multi-disciplinary Research Cell, Siksha 'O' Anusandhan University, Khandagiri Square, Bhubaneswar, 751030, India
| | - Enketeswara Subudhi
- Centre of Biotechnology, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases. PLoS One 2016; 11:e0149851. [PMID: 26934700 PMCID: PMC4774917 DOI: 10.1371/journal.pone.0149851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/06/2016] [Indexed: 12/01/2022] Open
Abstract
Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.
Collapse
|
5
|
Characterization of a Hyperthermostable Alkaline Lipase from Bacillus sonorensis 4R. Enzyme Res 2016; 2016:4170684. [PMID: 26904276 PMCID: PMC4745284 DOI: 10.1155/2016/4170684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 01/17/2023] Open
Abstract
Hyperthermostable alkaline lipase from Bacillus sonorensis 4R was purified and characterized. The enzyme production was carried out at 80°C and 9.0 pH in glucose-tween inorganic salt broth under static conditions for 96 h. Lipase was purified by anion exchange chromatography by 12.15 fold with a yield of 1.98%. The molecular weight of lipase was found to be 21.87 KDa by SDS-PAGE. The enzyme activity was optimal at 80°C with t1/2 of 150 min and at 90°C, 100°C, 110°C, and 120°C; the respective values were 121.59 min, 90.01 min, 70.01 min, and 50 min. The enzyme was highly activated by Mg and t1/2 values at 80°C were increased from 150 min to 180 min when magnesium and mannitol were added in combination. The activation energy calculated from Arrhenius plot was 31.102 KJ/mol. At 80–120°C, values of ΔH and ΔG were in the range of 28.16–27.83 KJ/mol and 102.79 KJ/mol to 111.66 KJ/mol, respectively. Lipase activity was highest at 9.0 pH and stable for 2 hours at this pH at 80°C. Pretreatment of lipase with MgSO4 and CaSO4 stimulated enzyme activity by 249.94% and 30.2%, respectively. The enzyme activity was greatly reduced by CoCl2, CdCl2, HgCl2, CuCl2, Pb(NO3)2, PMSF, orlistat, oleic acid, iodine, EDTA, and urea.
Collapse
|
6
|
Hadzir MH, Abbasiliasi S, Ariff AB, Yusoff SB, Ng HS, Tan JS. Partitioning behavior of recombinant lipase in Escherichia coli by ionic liquid-based aqueous two-phase systems. RSC Adv 2016. [DOI: 10.1039/c6ra16722e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluations of ILATPSs were performed with a variety of ionic liquids and salts as phase components to figure out their competencies in the recovery of lipase from a fermentation broth of E. coli using banana waste as a substrate.
Collapse
Affiliation(s)
| | - Sahar Abbasiliasi
- Halal Products Research Institute
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Arbakariya B. Ariff
- Department of Bioprocess Technology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Siti Baidurah Yusoff
- Bioprocess Technology
- School of Industrial Technology
- Universiti Sains Malaysia
- Malaysia
| | - Hui Suan Ng
- Faculty of Applied Sciences
- UCSI University
- Kuala Lumpur
- Malaysia
| | - Joo Shun Tan
- Bioprocess Technology
- School of Industrial Technology
- Universiti Sains Malaysia
- Malaysia
| |
Collapse
|
7
|
Tian R, Chen H, Ni Z, Zhang Q, Zhang Z, Zhang T, Zhang C, Yang S. Expression and Characterization of a Novel Thermo-Alkalistable Lipase from Hyperthermophilic Bacterium Thermotoga maritima. Appl Biochem Biotechnol 2015; 176:1482-97. [DOI: 10.1007/s12010-015-1659-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022]
|
8
|
Tan JS, Abbasiliasi S, Lin YK, Mohamed MS, Kapri MR, Kadkhodaei S, Tam YJ, Rahman RNZRA, Ariff AB. Primary recovery of thermostable lipase 42 derived from recombinant Escherichia coli BL21 in aqueous two-phase flotation. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.06.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
The Role of Lid in Protein-Solvent Interaction of the Simulated Solvent Stable Thermostable Lipase fromBacillusStrain 42 in Water-Solvent Mixtures. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.2478/v10133-009-0015-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Shao H, Xu L, Yan Y. Thermostable lipases from extremely radioresistant bacteriumDeinococcus radiodurans: Cloning, expression, and biochemical characterization. J Basic Microbiol 2013; 54:984-95. [DOI: 10.1002/jobm.201300434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/21/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Hua Shao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan P. R. China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan P. R. China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan P. R. China
| |
Collapse
|
11
|
Nelofer R, Ramanan RN, Rahman RNZRA, Basri M, Ariff AB. Comparison of the estimation capabilities of response surface methodology and artificial neural network for the optimization of recombinant lipase production by E. coli BL21. ACTA ACUST UNITED AC 2012; 39:243-54. [DOI: 10.1007/s10295-011-1019-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/09/2011] [Indexed: 11/24/2022]
Abstract
Abstract
Response surface methodology (RSM) and artificial neural network (ANN) were used to optimize the effect of four independent variables, viz. glucose, sodium chloride (NaCl), temperature and induction time, on lipase production by a recombinant Escherichia coli BL21. The optimization and prediction capabilities of RSM and ANN were then compared. RSM predicted the dependent variable with a good coefficient of correlation determination (R2) and adjusted R2 values for the model. Although the R2 value showed a good fit, absolute average deviation (AAD) and root mean square error (RMSE) values did not support the accuracy of the model and this was due to the inferiority in predicting the values towards the edges of the design points. On the other hand, ANN-predicted values were closer to the observed values with better R2, adjusted R2, AAD and RMSE values and this was due to the capability of predicting the values throughout the selected range of the design points. Similar to RSM, ANN could also be used to rank the effect of variables. However, ANN could not predict the interactive effect between the variables as performed by RSM. The optimum levels for glucose, NaCl, temperature and induction time predicted by RSM are 32 g/L, 5 g/L, 32°C and 2.12 h, and those by ANN are 25 g/L, 3 g/L, 30°C and 2 h, respectively. The ANN-predicted optimal levels gave higher lipase activity (55.8 IU/mL) as compared to RSM-predicted levels (50.2 IU/mL) and the predicted lipase activity was also closer to the observed data at these levels, suggesting that ANN is a better optimization method than RSM for lipase production by the recombinant strain.
Collapse
Affiliation(s)
- Rubina Nelofer
- grid.11142.37 000000012231800X Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- grid.440425.3 Chemical and Sustainable Process Engineering Research Group, School of Engineering Monash University 46150 Bandar Sunway Selangor Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- grid.11142.37 000000012231800X Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Mahiran Basri
- grid.11142.37 000000012231800X Department of Chemistry, Faculty of Science University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Arbakariya B Ariff
- grid.11142.37 000000012231800X Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences University Putra Malaysia 43400 Serdang Selangor Malaysia
| |
Collapse
|
12
|
Chaiyaso T, Seesuriyachan P, Zimmermann W, H-Kittikun A. Purification and characterization of lipase from newly isolated Burkholderia multivorans PSU-AH130 and its application for biodiesel production. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-011-0418-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
13
|
Khusaini MS, Rahman RNZRA, Mohamad Ali MS, Leow TC, Basri M, Salleh AB. Crystallization and preliminary X-ray crystallographic analysis of a thermostable organic solvent-tolerant lipase from Bacillus sp. strain 42. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:401-3. [PMID: 21393852 PMCID: PMC3053172 DOI: 10.1107/s1744309111002028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022]
Abstract
An organic solvent-tolerant lipase from Bacillus sp. strain 42 was crystallized using the capillary-tube method. The purpose of studying this enzyme was in order to better understand its folding and to characterize its properties in organic solvents. By initially solving its structure in the native state, further studies on protein-solvent interactions could be performed. X-ray data were collected at 2.0 Å resolution using an in-house diffractometer. The estimated crystal dimensions were 0.09×0.19×0.08 mm. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a=117.41, b=80.85, c=99.44 Å, β=96.40°.
Collapse
Affiliation(s)
- Mohd Saif Khusaini
- Enzyme and Microbial Technology Research, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Enzyme and Microbial Technology Research, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mahiran Basri
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Faculty of Science, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
14
|
Sequential optimization of production of a thermostable and organic solvent tolerant lipase by recombinant Escherichia coli. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0170-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Ji Q, Xiao S, He B, Liu X. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Hamid THTA, Rahman RNZRA, Salleh AB, Basri M. Molten globule-triggered inactivation of a thermostable and solvent stable lipase in hydrophilic solvents. Protein J 2010; 29:290-7. [PMID: 20509044 DOI: 10.1007/s10930-010-9251-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The use of lipase in hydrophilic solvent is usually hampered by inactivation. The solvent stability of a recombinant solvent stable lipase isolated from thermostable Bacillus sp. strain 42 (Lip 42), in DMSO and methanol were studied at different solvent-water compositions. The enzymatic activities were retained in up to 45% v/v solvent compositions. The near-UV CD spectra indicated that tertiary structures were perturbed at 60% v/v and above. Far-UV CD in methanol indicated the secondary structure in Lip 42 was retained throughout all solvent compositions. Fluorescence studies indicated formations of molten globules in solvent compositions of 60% v/v and above. The enzyme was able to retain its secondary structures in the presence of methanol; however, there was a general reduction in beta-sheet and an increase in alpha-helix contents. The H-bonding arrangements triggered in methanol and DMSO, respectively, caused different forms of tertiary structure perturbations on Lip 42, despite both showing partial denaturation with molten globule formations.
Collapse
|