1
|
Davidson KH, Starzomski BM, El‐Sabaawi R, Hocking MD, Reynolds JD, Wickham SB, Darimont CT. Marine subsidy promotes spatial and dietary niche variation in an omnivore, the Keen's mouse ( Peromyscus keeni). Ecol Evol 2021; 11:17700-17722. [PMID: 35003633 PMCID: PMC8717356 DOI: 10.1002/ece3.8225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Marine-derived resource subsidies can generate intrapopulation variation in the behaviors and diets of terrestrial consumers. How omnivores respond, given their multiple trophic interactions, is not well understood. We sampled mice (Peromyscus keeni) and their food sources at five sites on three islands of the Central Coast of British Columbia, Canada, to test predictions regarding variation in the spatial behavior and consumption of marine-subsidized foods among individuals. About 50% of detections (n = 27 recaptures) occurred at traps closest to shoreline (25 m), with capture frequencies declining significantly inland (up to 200 m). Stable isotope signatures (δ 13C and δ 15N), particularly δ 15N, in plant foods, forest arthropod prey, and mouse feces were significantly enriched near shorelines compared with inland, while δ 13C patterns were more variable. Bayesian isotope mixing models applied to isotope values in mouse hair indicated that over one-third (35-37%) of diet was comprised of beach-dwelling arthropods, a marine-derived food source. Males were more abundant near the shoreline than females and consumed more marine-derived prey, regardless of reproductive status or availability of other food sources. Our results identify how multiple pathways of marine nutrient transfer can subsidize terrestrial omnivores and how subsets of recipient populations can show variation in spatial and dietary response.
Collapse
Affiliation(s)
- Katie H. Davidson
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
| | - Brian M. Starzomski
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Rana El‐Sabaawi
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Morgan D. Hocking
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Ecofish Research Ltd.VictoriaBritish ColumbiaCanada
| | - John D. Reynolds
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Sara B. Wickham
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Present address:
School of Environment, Resources and SustainabilityUniversity of WaterlooWaterlooOntarioCanada
| | - Chris T. Darimont
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteHeriot BayBritish ColumbiaCanada
- Raincoast Conservation FoundationSidneyBritish ColumbiaCanada
| |
Collapse
|
2
|
White-footed mouse (Peromyscus leucopus) habitat selection and Amur honeysuckle (Lonicera maackii) canopy use in an urban forest. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Assessing Understory Complexity in Beech-dominated Forests ( Fagus sylvatica L.) in Central Europe-From Managed to Primary Forests. SENSORS 2019; 19:s19071684. [PMID: 30970553 PMCID: PMC6480241 DOI: 10.3390/s19071684] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
Abstract
Understory vegetation influences several ecosystem services and functions of European beech (Fagus sylvatica L.) forests. Despite this knowledge on the importance of understory vegetation, it is still difficult to measure its three-dimensional characteristics in a quantitative manner. With the recent advancements in terrestrial laser scanning (TLS), we now have the means to analyze detailed spatial patterns of forests. Here, we present a new measure to quantify understory complexity. We tested the approach for different management types, ranging from traditionally and alternatively managed forests and national parks in Germany to primary forests of Eastern Europe and the Ukraine, as well as on an inventory site with more detailed understory reference data. The understory complexity index (UCI) was derived from point clouds from single scans and tested for its relationship with forest management and conventional inventory data. Our results show that advanced tree regeneration is a strong driver of the UCI. Furthermore, the newly developed index successfully measured understory complexity of differently managed beech stands and was able to distinguish scanning positions located on and away from skid-trails in managed stands. The approach enables a deeper understanding of the complexity of understory structures of forests and their drivers and dependents.
Collapse
|
4
|
Marrotte RR, Gonzalez A, Millien V. Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal. Mol Ecol 2014; 23:3983-98. [DOI: 10.1111/mec.12847] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 02/05/2023]
Affiliation(s)
- R. R. Marrotte
- Redpath Museum; McGill University; 859 Sherbrooke Street W. Montréal Québec Canada H3A 0C4
- Department of Biology; McGill University; 1205 Ave Docteur Penfield Montréal Québec Canada H3A 1B1
| | - A. Gonzalez
- Department of Biology; McGill University; 1205 Ave Docteur Penfield Montréal Québec Canada H3A 1B1
| | - V. Millien
- Redpath Museum; McGill University; 859 Sherbrooke Street W. Montréal Québec Canada H3A 0C4
| |
Collapse
|
6
|
Simon JA, Marrotte RR, Desrosiers N, Fiset J, Gaitan J, Gonzalez A, Koffi JK, Lapointe FJ, Leighton PA, Lindsay LR, Logan T, Milord F, Ogden NH, Rogic A, Roy-Dufresne E, Suter D, Tessier N, Millien V. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol Appl 2014; 7:750-64. [PMID: 25469157 PMCID: PMC4227856 DOI: 10.1111/eva.12165] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/05/2014] [Indexed: 12/15/2022] Open
Abstract
Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.
Collapse
Affiliation(s)
- Julie A Simon
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Robby R Marrotte
- Redpath Museum, McGill University Montreal, QC, Canada ; Department of Biology, McGill University Montreal, QC, Canada
| | - Nathalie Desrosiers
- Ministère du Développement Durable, de l'Environnement, de la Faune et des Parcs du Québec City, QC, Canada
| | - Jessica Fiset
- Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | - Jorge Gaitan
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University Montreal, QC, Canada
| | - Jules K Koffi
- Zoonoses Division, Centre for Food-Borne, Environmental & Zoonotic Infectious Diseases, Public Health Agency of Canada Saint-Hyacinthe, QC, Canada
| | | | - Patrick A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Lindsay R Lindsay
- Zoonoses & Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada Winnipeg, MB, Canada
| | | | - Francois Milord
- Institut National de Santé Publique du Québec Longueuil, QC, Canada
| | - Nicholas H Ogden
- Groupe de recherche en épidémiologie des zoonoses et santé publique Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Anita Rogic
- Redpath Museum, McGill University Montreal, QC, Canada ; Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | | | - Daniel Suter
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Nathalie Tessier
- Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | | |
Collapse
|
8
|
Conard JM, Baumgardt JA, Gipson PS, Althoff DP. The influence of trap density and sampling duration on the detection of small mammal species richness. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/bf03194247] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|