1
|
Požar M, Bolle J, Dogan-Surmeier S, Schneider E, Paulus M, Sternemann C, Perera A. On the dual behaviour of water in octanol-rich aqueous n-octanol mixtures: an X-ray scattering and computer simulation study. Phys Chem Chem Phys 2024; 26:4099-4110. [PMID: 38226462 DOI: 10.1039/d3cp04651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Aqueous n-octanol (n = 1, 2, 3, and 4) mixtures from the octanol rich side are studied by X-ray scattering and computer simulation, with a focus on structural changes, particularly in what concerns the hydration of the hydroxyl-group aggregated chain-like structures, under the influence of various branching of the alkyl tails. Previous studies have indicated that hydroxyl-group chain-cluster formation is hindered in proportion to the branching number. Here, water mole fractions up to x = 0.2 are examined, i.e. up to the miscibility limit. It is found that water molecules within the hydroxyl-chain domains participate in the chain formations in a different manner for 1-octanol and the branched octanols. The hydration of the octanol hydroxyl chains is confirmed by the shifting of the scattering pre-peak position kPP to smaller values, both from measured and simulated X-ray scattering intensities, which corresponds to an increased size of the clusters. Experimental pre-peak amplitudes are seen to increase with increasing water content for 1-octanol, while this trend is reversed in all branched octanols, with the amplitudes decreasing with the increase of the branching number. Conjecturing that the amplitudes of pre-peaks are related to the density of the corresponding aggregates, these results are interpreted as water breaking large OH hydroxyl chains in 1-octanol, hence increasing the density of aggregates, while enhancing hydroxyl aggregates in branched alcohols by inserting itself into the OH chains. The analysis of the cluster distributions from computer simulations provide more details on the role of water. For cluster sizes smaller than dc = 2π/kPP, water is found to always play the role of a structure enforcer for all n-octanols, while for clusters of size dc water is always a destructor. For cluster sizes larger than dc, the role of water differs from 1-octanol and the branched ones: it acts as a structure maker or breaker in inverse proportion to the hindering of OH hydroxyl chain structures arising from the topology of the alkyl tails (branched or not).
Collapse
Affiliation(s)
- Martina Požar
- Faculty of Science, University of Split, Ru era Boškovic'a 33, 21000 Split, Croatia.
| | - Jennifer Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | | | - Eric Schneider
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252, Paris cedex 05, France.
| |
Collapse
|
2
|
Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Kim HC, Kim HJ, Hirao A, Ree M. Molecular weight effect on the structural detail and chain characteristics of 33-armed star polystyrene. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Hirao A, Ree M. Seventeen-Armed Star Polystyrenes in Various Molecular Weights: Structural Details and Chain Characteristics. Polymers (Basel) 2020; 12:E1894. [PMID: 32842480 PMCID: PMC7563263 DOI: 10.3390/polym12091894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022] Open
Abstract
Star-shaped polymers are very attractive because of their potential application ability in various technological areas due to their unique molecular topology. Thus, information on the molecular structure and chain characteristics of star polymers is essential for gaining insights into their properties and finding better applications. In this study, we report molecular structure details and chain characteristics of 17-armed polystyrenes in various molecular weights: 17-Arm(2k)-PS, 17-Arm(6k)-PS, 17-Arm(10k)-PS, and 17-Arm(20k)-PS. Quantitative X-ray scattering analysis using synchrotron radiation sources was conducted for this series of star polymers in two different solvents (cyclohexane and tetrahydrofuran), providing a comprehensive set of three-dimensional structure parameters, including radial density profiles and chain characteristics. Some of the structural parameters were crosschecked by qualitative scattering analysis and dynamic light scattering. They all were found to have ellipsoidal shapes consisting of a core and a fuzzy shell; such ellipse nature is originated from the dendritic core. In particular, the fraction of the fuzzy shell part enabling to store desired chemicals or agents was confirmed to be exceptionally high in cyclohexane, ranging from 74 to 81%; higher-molecular-weight star polymer gives a larger fraction of the fuzzy shell. The largest fraction (81%) of the fuzzy shell was significantly reduced to 52% in tetrahydrofuran; in contrast, the lowest fraction (19%) of core was increased to 48%. These selective shell contraction and core expansion can be useful as a key mechanism in various applications. Overall, the 17-armed polystyrenes of this study are suitable for applications in various technological fields including smart deliveries of drugs, genes, biomedical imaging agents, and other desired chemicals.
Collapse
Affiliation(s)
- Jia Chyi Wong
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (J.C.W.); (K.H.N.)
- Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Li Xiang
- Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Kuan Hoon Ngoi
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (J.C.W.); (K.H.N.)
- Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Chin Hua Chia
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (J.C.W.); (K.H.N.)
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Akira Hirao
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Engineering, Tokyo Institute of Technology, 2-12-1-S1-13, Ohokayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Moonhor Ree
- Department of Chemistry and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| |
Collapse
|
4
|
Ree BJ, Satoh T, Yamamoto T. Micelle Structure Details and Stabilities of Cyclic Block Copolymer Amphiphile and Its Linear Analogues. Polymers (Basel) 2019; 11:E163. [PMID: 30960147 PMCID: PMC6401893 DOI: 10.3390/polym11010163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigate structures and stabilities of the micelles of a cyclic amphiphile (c-PBA-b-PEO) composed of poly(n-butyl acrylate) (PBA) and poly(ethylene oxide) (PEO) blocks and its linear diblock and triblock analogues (l-PBA-b-PEO and l-PBA-b-PEO-b-PBA) by using synchrotron X-ray scattering and quantitative data analysis. The comprehensive scattering analysis gives details and insights to the micellar architecture through structural parameters. Furthermore, this analysis provides direct clues for structural stabilities in micelles, which can be used as a good guideline to design highly stable micelles. Interestingly, in water, all topological polymers are found to form ellipsoidal micelles rather than spherical micelles; more interestingly, the cyclic polymer and its linear triblock analog make oblate-ellipsoidal micelles while the linear diblock analog makes a prolate-ellipsoidal micelle. The analysis results collectively inform that the cyclic topology enables more compact micelle formation as well as provides a positive impact on the micellar structural integrity.
Collapse
Affiliation(s)
- Brian J Ree
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
5
|
Katyal D, Kant R. Dynamics of Branched Polymers in Random Layered Flows with Intramolecular Hydrodynamic Coupling: Star and Dendrimer. MACROMOL THEOR SIMUL 2017. [DOI: 10.1002/mats.201700009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Divya Katyal
- Complex Systems Group; Department of Chemistry; University of Delhi; Delhi 110007 India
| | - Rama Kant
- Complex Systems Group; Department of Chemistry; University of Delhi; Delhi 110007 India
| |
Collapse
|
6
|
Katyal D, Kant R. Dynamics of generalized Gaussian polymeric structures in random layered flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042602. [PMID: 25974520 DOI: 10.1103/physreve.91.042602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Indexed: 06/04/2023]
Abstract
We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the Matheron-de Marsily model for the random layered flow. The expression for the average square displacement (ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal noise and the external random flow. Although the formalism is valid for branched polymers with various complex topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of the topology (the number and length of branches for stars and the number of generations for dendrimers) on the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity, persistence flow length, and flow exponent α. Our analysis shows two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime, while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the value of α, the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure.
Collapse
Affiliation(s)
- Divya Katyal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rama Kant
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
7
|
Pozza GME, Crotty S, Rawiso M, Schubert US, Lutz PJ. Molecular and Structural Characterization of Hybrid Poly(ethylene oxide)–Polyhedral Oligomeric Silesquioxanes Star-Shaped Macromolecules. J Phys Chem B 2015; 119:1669-80. [DOI: 10.1021/jp505191d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Gladys M.-E. Pozza
- University of Strasbourg, Institut Charles Sadron, CNRS UPR 22, 23, rue du Loess 67034, Strasbourg, France
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Sarah Crotty
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Michel Rawiso
- University of Strasbourg, Institut Charles Sadron, CNRS UPR 22, 23, rue du Loess 67034, Strasbourg, France
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany
| | - Pierre J. Lutz
- University of Strasbourg, Institut Charles Sadron, CNRS UPR 22, 23, rue du Loess 67034, Strasbourg, France
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| |
Collapse
|
8
|
Ree M. Probing the self-assembled nanostructures of functional polymers with synchrotron grazing incidence X-ray scattering. Macromol Rapid Commun 2014; 35:930-59. [PMID: 24706560 DOI: 10.1002/marc.201400025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Indexed: 11/09/2022]
Abstract
For advanced functional polymers such as biopolymers, biomimic polymers, brush polymers, star polymers, dendritic polymers, and block copolymers, information about their surface structures, morphologies, and atomic structures is essential for understanding their properties and investigating their potential applications. Grazing incidence X-ray scattering (GIXS) is established for the last 15 years as the most powerful, versatile, and nondestructive tool for determining these structural details when performed with the aid of an advanced third-generation synchrotron radiation source with high flux, high energy resolution, energy tunability, and small beam size. One particular merit of this technique is that GIXS data can be obtained facilely for material specimens of any size, type, or shape. However, GIXS data analysis requires an understanding of GIXS theory and of refraction and reflection effects, and for any given material specimen, the best methods for extracting the form factor and the structure factor from the data need to be established. GIXS theory is reviewed here from the perspective of practical GIXS measurements and quantitative data analysis. In addition, schemes are discussed for the detailed analysis of GIXS data for the various self-assembled nanostructures of functional homopolymers, brush, star, and dendritic polymers, and block copolymers. Moreover, enhancements to the GIXS technique are discussed that can significantly improve its structure analysis by using the new synchrotron radiation sources such as third-generation X-ray sources with picosecond pulses and partial coherence and fourth-generation X-ray laser sources with femtosecond pulses and full coherence.
Collapse
Affiliation(s)
- Moonhor Ree
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang, 790-784, Republic of Korea
| |
Collapse
|
9
|
Heo K, Kim YY, Kitazawa Y, Kim M, Jin KS, Yamamoto T, Ree M. Structural Characteristics of Amphiphilic Cyclic and Linear Block Copolymer Micelles in Aqueous Solutions. ACS Macro Lett 2014; 3:233-239. [PMID: 35590513 DOI: 10.1021/mz5000224] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural characteristics of aqueous micelles composed of amphiphilic cyclic poly(n-butyl acrylate-b-ethylene oxide) (cyclic PBA-b-PEO) or a linear analogue (i.e., linear poly(n-butyl acrylate-b-ethylene oxide-b-n-butyl acrylate) (linear PBA-b-PEO-b-PBA)) were examined for the first time using synchrotron X-ray scattering techniques and quantitative data analysis. The scattering data were analyzed using a variety of methodologies in a comprehensive complementary manner. These analyses provided details of the structural information about the micelles. Both micelles were found to consist of a core and a fuzzy shell; however, the cyclic block copolymer had a strong tendency to form micelles with core and shell parts that were more compact and dense than the corresponding parts of the linear block copolymer micelles. The PBA block of the cyclic copolymer was found to form a hydrophobic core with a density that exceeded the density of the homopolymer in the bulk state. The structural differences originated primarily from the topological difference between the cyclic and linear block copolymers. The elimination of the chain end groups (which introduced entropy and increased the excess excluded volume) from the amphiphilic block copolymer yielded more stable dense micelles in solution.
Collapse
Affiliation(s)
- Kyuyoung Heo
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Young Yong Kim
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Yu Kitazawa
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mihee Kim
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Takuya Yamamoto
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Moonhor Ree
- Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang Accelerator Laboratory, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
10
|
Zhang H, He J, Zhang C, Ju Z, Li J, Yang Y. Continuous Process for the Synthesis of Dendrimer-Like Star Polymers by Anionic Polymerization. Macromolecules 2011. [DOI: 10.1021/ma2024039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hefeng Zhang
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Junpo He
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Chao Zhang
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Zhenhua Ju
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jia Li
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yuliang Yang
- The State
Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Dendrimer-like star-branched polymers: novel structurally well-defined hyperbranched polymers. Polym J 2010. [DOI: 10.1038/pj.2010.109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Composition-dependent phase segregation and cocrystallization behaviors of blends of metallocene-catalyzed octene-LLDPE(D) and LDPE(H). POLYMER 2010. [DOI: 10.1016/j.polymer.2010.09.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Jin S, Higashihara T, Jin KS, Yoon J, Rho Y, Ahn B, Kim J, Hirao A, Ree M. Synchrotron X-ray Scattering Characterization of the Molecular Structures of Star Polystyrenes with Varying Numbers of Arms. J Phys Chem B 2010; 114:6247-57. [DOI: 10.1021/jp911928b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sangwoo Jin
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| | - Tomoya Higashihara
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| | - Kyeong Sik Jin
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| | - Jinhwan Yoon
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| | - Yecheol Rho
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| | - Byungcheol Ahn
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| | - Jehan Kim
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| | - Akira Hirao
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| | - Moonhor Ree
- Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea, Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-127, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552,
| |
Collapse
|
14
|
|