1
|
Li Y, Yang HY, Lee DS. Biodegradable and Injectable Hydrogels in Biomedical Applications. Biomacromolecules 2022; 23:609-618. [PMID: 35133798 DOI: 10.1021/acs.biomac.1c01552] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Injectable hydrogels are a unique class of hydrogels that are formed upon injection into living bodies. They possess features of typical hydrogels such as softness, 3D network structures, large contents of water, the ability to load water-soluble substances, and so on. Furthermore, their injectability allows injectable hydrogels to be implanted into living bodies using a syringe in a minimally invasive way. After being loaded with different active substances (drugs, proteins, genes, viruses, cells, etc.), injectable hydrogels have been demonstrated to be potential in many different biomedical applications including controlled release and tissue engineering. However, biodegradability is also an important property of injectable hydrogels and allows removal of the hydrogels after accomplishment of their tasks. In this Perspective, we aim at introducing several different types of biodegradable and injectable hydrogels and compare their differences in properties and applications. Lastly, we also point out some remaining problems and future trends in the field of biodegradable and injectable hydrogels.
Collapse
Affiliation(s)
- Yi Li
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
2
|
Li W, Zhang X, Nan Y, Jia L, Sun J, Zhang L, Wang Y. Hyaluronidase and pH Dual-Responsive Nanoparticles for Targeted Breast Cancer Stem Cells. Front Oncol 2022; 11:760423. [PMID: 35004281 PMCID: PMC8739758 DOI: 10.3389/fonc.2021.760423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
pH-responsive and CD44 receptor-mediated targeted nanoparticles for eliminating cancer stem cells (CSCs) were developed based on complexes of PEG-poly(β-amino ester) (PEG-PBAE) micelles (PPM) coated with hyaluronic acid (HA) (HA-coated PPM complex, or HPPMc). Thioridazine (Thz) was loaded into HPPMc with a decent drug loading content. The release results of the drug in vitro showed that Thz was released from the HPPMc, which was stimulated by both the acidic pH and specific enzymes. Cytotoxicity studies on mammospheres (MS) revealed that the toxicity potential of Thz-loaded HPPMc (Thz–HPPMc) at pH 5.5 was better than drug solutions. Compared with that at pH 7.4, a higher cellular uptake of a coumarin-6 (C6)-labeled complex at pH 5.5 was observed, which demonstrated that complexes were efficiently taken up in MS. Meanwhile, free HA competitively inhibited the cellular uptake of HPPMc, which revealed that the uptake mechanism was CD44 receptor-mediated endocytosis. Within the acidic endolysosomal environment, the protonation of PBAE facilitated the escape of the complex from the lysosome and releases the drug. The results of in vivo distribution studies and tumor suppression experiments showed that HPMMc could stay in the tumor site of BALB/c nude mice for a longer period of time, and Thz–HPPMc could significantly improve the tumor-suppressing effect. All these results demonstrated the great potential of the multifunctional nanoparticle system for eliminating CSCs.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Jia
- Department of Pharmacy, Heze Medical College, Heze, China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, China
| | - Lina Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Iqbal S, Zhao Z. Poly (β amino esters) copolymers: Novel potential vectors for delivery of genes and related therapeutics. Int J Pharm 2022; 611:121289. [PMID: 34775041 DOI: 10.1016/j.ijpharm.2021.121289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
The unique properties of polymers have performed an essential contribution to the drug delivery system by providing an outstanding platform for the delivery of macromolecules and genes. However, the block copolymers have been the subject of many recently published works whose results have demonstrated excellent performance in drug targeting. Poly(β-amino esters) (PβAEs) copolymers are the synthetic cationic polymers that are tailored by chemically joining PβAEs with other additives to demonstrate extraordinary efficiency in designing pre-defined and pre-programmed nanostructures, site-specific delivery, andovercoming the distinct cellular barriers. Different compositional and structural libraries could be generated by combinatorial chemistry and by the addition of various novel functional additives that fulfill the multiple requirements of targeted delivery. These intriguing attributes allow PβAE-copolymers to have customized therapeutic functions such as excellent encapsulation capacity, high stability, and stimuli-responsive release. Here, we give an overview of PβAE copolymers-based formulations along with focusing on most notable improvements such as structural modifications, bio-conjugations, and stimuli-responsive approaches, for safe and effective nucleic acids delivery.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
4
|
Li J, Wang J, Zhang J, Han T, Hu X, Lee MMS, Wang D, Tang BZ. A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105999. [PMID: 34651361 DOI: 10.1002/adma.202105999] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Improving photothermal conversion efficiency (PCE) is critical to facilitate therapeutic performance during photothermal therapy (PTT). However, current strategies of prompting PCE always involve complex synthesis or modification of photothermal agents, thereby significantly inhibiting the practical applications and fundamental understanding of photothermal conversion. A facile strategy is herein present for boosting PCE by transforming photothermal agents from aggregated state to dispersed state. Compared to aggregated state, the developed photothermal agents with semiconducting nature can rotate freely in dispersed state, which allows for an efficient nonradiative dissipation through twisted intramolecular charge transfer (TICT) effect, consequentially offering excellent photothermal performance. Noteworthy, the state transformation can be achieved by virtue of releasing photothermal molecules from nanoparticles on the basis of a pH-responsive polymer nanocarrier, and the PCE is elevated from 43% to 60% upon changing the pH values from 7.4 to 5.0. Moreover, the nanoparticle disassembly and state transformation behaviors can also smoothly proceed in lysosome of cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation. It is hoped that this strategy of transforming state to boost PCE would be a new platform for practical applications of PTT technique.
Collapse
Affiliation(s)
- Jie Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxing Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiyao Hu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Michelle M S Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
5
|
Kuenen MK, Mullin JA, Letteri RA. Buffering effects on the solution behavior and hydrolytic degradation of poly(β‐amino ester)s. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mara K. Kuenen
- Department of Chemical Engineering University of Virginia Charlottesville Virginia USA
| | - James A. Mullin
- Department of Chemical Engineering University of Virginia Charlottesville Virginia USA
| | - Rachel A. Letteri
- Department of Chemical Engineering University of Virginia Charlottesville Virginia USA
| |
Collapse
|
6
|
Cai Q, Jiang J, Zhang H, Ge P, Yang L, Zhu W. Reduction-Responsive Anticancer Nanodrug Using a Full Poly(ethylene glycol) Carrier. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19387-19397. [PMID: 33876927 DOI: 10.1021/acsami.1c04648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(ethylene glycol) (PEG) is applied extensively in biomedical fields because of its nontoxic, nonimmunogenic, and protein resistance properties. However, the strong hydrophilicity of PEG prevents it from self-assembling into an amphiphilic micelle in water, making it a challenge to fabricate a full-PEG carrier to deliver hydrophobic anticancer drugs. Herein, a paclitaxel (PTX)-loaded nanodrug was readily prepared through self-assembly of PTX and an amphiphilic PEG derivative, which was synthesized via melt polycondensation of two PEG diols (i.e., PEG200 and PEG10k) and mercaptosuccinic acid. The full PEG component endows the nanocarrier with good biocompatibility. Furthermore, because of the core cross-linked structure via the oxidation of mercapto groups, the nanodrug can be selectively disassociated under an intratumor reductive microenvironment through the reduction of disulfide bonds to release the loaded PTX and kill the cancer cells while maintaining high stability under the extratumor physiological condition. Additionally, it was confirmed that the nanodrug not only prolongs the biocirculation time of PTX but also possesses excellent in vivo antitumor efficacy while avoiding side effects of free PTX, for example, liver damage, which is promising for delivering clinical hydrophobic drugs to treat a variety of malignant tumors.
Collapse
Affiliation(s)
- Qiuquan Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiahong Jiang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hongjie Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou 310027, China
| |
Collapse
|
7
|
Iqbal S, Qu Y, Dong Z, Zhao J, Rauf Khan A, Rehman S, Zhao Z. Poly (β‐amino esters) based potential drug delivery and targeting polymer; an overview and perspectives (review). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Binary blended co-delivery nanoparticles with the characteristics of precise pH-responsive acting on tumor microenvironment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111370. [PMID: 32919698 DOI: 10.1016/j.msec.2020.111370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 01/12/2023]
Abstract
Although combined chemotherapy had achieved the ideal efficacy in clinical anti-cancer therapeutic, the issues that need to be addressed are non-targeting and toxic-side effects of small molecule chemical drug (SMCD). In this study, we designed and prepared a novel binary blended co-delivered nanoparticles (BBCD NPs) with pH-responsive feature on tumor microenvironment. The BBCD NPs consists of two kind of drug-loaded NPs, in one of which carboxymethyl chitosan (CMC) and Poly (lactic-co-glycolic acid) (PLGA) were chosen as delivery carrier to load anti-cancer drug vincristine (VCR), named CMC-PLGA-VCR NPs (or CPNPVCR); and in the other of which methoxy poly(ethylene glycol)-poly(β-amino ester) (mPEG-PAE) were chosen as delivery carrier to load anti-fibrotic drug pirfenidone (PFD), named mPEG-PAE-PFD NPs (or PPNPPFD). Then, the two types of NPs (CPNPVCR and PPNPPFD) were physically mixed in mass ratios to form BBCD NPs, which was named CPNPVCR&PPNPPFD. CPNPVCR&PPNPPFD had good encapsulation efficiency and loading capacity, and the particle size distribution was uniform. In cytotoxicity experiments and non-contact co-culture studies in vitro, the model drugs loaded in CPNPVCR&PPNPPFD could respectively target cancer cell and cancer associated fibroblast (CAF) owing to the precise pH-sensitive drug release in the pharmacological targets and show stronger synergism than that of the combined treatment of two free drugs. As a modularity and assemble ability feature in design, BBCD NPs would have the advantages on the terms of concise on preparation process, controllable on quality standard, stable in natural environment storage. The research results can provide scientific evidence for the further development of a novel drug co-delivery system with multi-type cell targets.
Collapse
|
9
|
Yu Y, Peng L, Liao G, Chen Z, Li C. Noncovalent Complexation of Amphotericin B with Poly(β-Amino Ester) Derivates for Treatment of C. Neoformans Infection. Polymers (Basel) 2019; 11:polym11020270. [PMID: 30960254 PMCID: PMC6419036 DOI: 10.3390/polym11020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 01/15/2023] Open
Abstract
Our goal was to improve treatment outcomes for C. neoformans infection by designing nanocarriers that enhance drug-encapsulating capacity and stability. Thus, a noncovalent complex of methoxy poly(ethylene glycol)-poly(lactide)-poly(β-amino ester) (MPEG-PLA-PAE) and amphotericin B (AMB) was developed and characterized. The MPEG-PLA-PAE copolymer was synthesized by a Michael-type addition reaction; the copolymer was then used to prepare the AMB-loaded nanocomplex. AMB was in a highly aggregated state within complex cores. A high encapsulation efficiency (>90%) and stability of the AMB-loaded nanocomplex were obtained via electrostatic interaction between AMB and PAE blocks. This nanocomplex retained drug activity against C. neoformans in vitro. Compared with micellar AMB, the AMB nanocomplex was more efficient in terms of reducing C. neoformans burden in lungs, liver, and spleen, based on its improved biodistribution. The AMB/MPEG-PLA-PAE complex with enhanced drug-loading capacity and stability can serve as a platform for effective treatment of C. neoformans infection.
Collapse
Affiliation(s)
- Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Li Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Zhangbao Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Bingol HB, Demir Duman F, Yagci Acar H, Yagci MB, Avci D. Redox-responsive phosphonate-functionalized poly(β-amino ester) gels and cryogels. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Delivery of anticancer drug using pH-sensitive micelles from triblock copolymer MPEG-b-PBAE-b-PLA. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Chen Y, Yue Q, De G, Wang J, Li Z, Xiao S, Yu H, Ma H, Sui F, Zhao Q. Inhibition of breast cancer metastasis by paclitaxel-loaded pH responsive poly(β-amino ester) copolymer micelles. Nanomedicine (Lond) 2017; 12:147-164. [DOI: 10.2217/nnm-2016-0335] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Tumor metastasis is one of the leading causes of insufficient chemotherapy during cancer treatment. In this study, a poly(β-amino ester) derivate was developed to fabricate paclitaxel (PTX) entrapped pH-responsive copolymer micelles for inhibition of breast cancer metastasis. Materials & methods: PTX-loaded micelles were fabricated by thin film hydration method. The inhibition efficacy of the as-prepared micelles was evaluated on MDA-MB-231 cells and tumor bearing mice. Results: PTX-loaded micelles were successfully prepared. Such micelles could promote drug uptake and MDA-MB-231 cell deaths, and suppress tumor metastasis. Conclusion: The pH-responsive PTX-loaded micelles are promising candidates in developing stimuli triggered drug delivery systems in acidic tumor microenvironments with improved inhibitory effects on tumor metastasis.
Collapse
Affiliation(s)
- Yanjun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Qiaoxin Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Zhenzhen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Huatao Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700, China
| |
Collapse
|
13
|
Nanomedicine-based paclitaxel induced apoptotic signaling pathways in A562 leukemia cancer cells. Colloids Surf B Biointerfaces 2017; 149:16-22. [DOI: 10.1016/j.colsurfb.2016.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/31/2016] [Accepted: 08/17/2016] [Indexed: 12/16/2022]
|
14
|
Fu L, Liu L, Ruan Z, Zhang H, Yan L. Folic acid targeted pH-responsive amphiphilic polymer nanoparticles conjugated with near infrared fluorescence probe for imaging-guided drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra05657a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel folic acid targeted pH-responsive amphiphilic polymer conjugated with near infrared (NIR) probe has been synthesized by the combination of RAFT polymerization, ring-opening polymerization of N-carboxy anhydride (NCA) and click reaction.
Collapse
Affiliation(s)
- Liyi Fu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM
- University of Science and Technology of China
- Hefei
| | - Le Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM
- University of Science and Technology of China
- Hefei
| | - Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM
- University of Science and Technology of China
- Hefei
| | - Houbing Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM
- University of Science and Technology of China
- Hefei
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM
- University of Science and Technology of China
- Hefei
| |
Collapse
|
15
|
Tamer Y, Yıldırım H. Biodegradable and stimuli sensitive amphiphilic graft copolymers and their sol-gel phase transition behavior. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yasemin Tamer
- Department of Chemistry; Department of Chemistry; Istanbul 34220 Turkey
- Department of Polymer Engineering; Yalova University; Yalova 77100 Turkey
| | - Hüseyin Yıldırım
- Department of Chemistry; Department of Chemistry; Istanbul 34220 Turkey
- Department of Polymer Engineering; Yalova University; Yalova 77100 Turkey
| |
Collapse
|
16
|
Feng L, Yu H, Liu Y, Hu X, Li J, Xie A, Zhang J, Dong W. Construction of efficacious hepatoma-targeted nanomicelles non-covalently functionalized with galactose for drug delivery. Polym Chem 2014. [DOI: 10.1039/c4py01022a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Yu Y, Zhang X, Qiu L. The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly(β-amino ester) derivates. Biomaterials 2014; 35:3467-79. [DOI: 10.1016/j.biomaterials.2013.12.096] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/29/2013] [Indexed: 11/30/2022]
|
18
|
Abstract
Drug-delivery system responses to stimuli have been well investigated recently. As pH decrease is observed in most solid tumors, drug-delivery systems responsive to the slightly acidic extracellular pH environment of solid tumors have been developed as a general strategy for tumor targeting. Drug vehicles that are sensitive to acidic endosome/lysosome pH have been constructed for efficient drug release in tumor cells. This review explains the mechanisms of acidic pH in the tumor microenvironment and endocytic-related organelles, endosomes and lysosomes. Nanoparticle responses to acidic extracellular pH are discussed, along with approaches for improving tumor-specific therapy. Endosome/lysosome pH-triggered vehicles are reviewed, which achieve rapid drug release in tumor cells and overcome multidrug resistance.
Collapse
|
19
|
Li Y, Gao GH, Lee DS. pH-sensitive polymeric micelles based on amphiphilic polypeptide as smart drug carriers. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Li
- Departments of Polymer Science and Chemical Engineering; Sungkyunkwan University; Suwon 440-746 Republic of Korea
| | - Guang Hui Gao
- Departments of Polymer Science and Chemical Engineering; Sungkyunkwan University; Suwon 440-746 Republic of Korea
| | - Doo Sung Lee
- Departments of Polymer Science and Chemical Engineering; Sungkyunkwan University; Suwon 440-746 Republic of Korea
| |
Collapse
|
20
|
Dayananda K, He C, Hu YQ, Kim MS, Lee DS. MPEG-b-poly(amino urethane) amphiphilic block copolymers and their pH-Dependent micellization behavior. Macromol Res 2013. [DOI: 10.1007/bf03218602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Li Y, Gao GH, Lee DS. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv Healthc Mater 2013. [PMID: 23184586 DOI: 10.1002/adhm.201200313] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polymeric nanoparticles are promising candidates as drug and gene carriers. Among polymeric nanoparticles, those that are responsive to internal or external stimuli are of greater interest because they allow more efficient delivery of therapeutics to pathological regions. Stimulus-sensitive polymeric nanoparticles have been fabricated based on numerous nanostructures, including micelles, vesicles, crosslinked nanoparticles, and hybrid nanoparticles. The changes in chemical or physical properties of polymeric nanoparticles that occur in response to single, dual, or multiple stimuli endow these nanoparticles with the ability to retain cargoes during circulation, target the pathological region, and release their cargoes after cell internalization. This Review focuses on the most recent developments in the preparation of stimulus-sensitive polymeric nanoparticles and their applications in drug and gene delivery.
Collapse
Affiliation(s)
- Yi Li
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | |
Collapse
|
22
|
Synthesis and characterization of pH-Responsive Poly(2-hydroxyethyl aspartamide)-g-Poly(β-amino ester) graft copolymer micelles as potential drug carriers. Macromol Res 2012. [DOI: 10.1007/s13233-013-1046-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Zhang CY, Yang YQ, Huang TX, Zhao B, Guo XD, Wang JF, Zhang LJ. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials 2012; 33:6273-83. [DOI: 10.1016/j.biomaterials.2012.05.025] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 05/11/2012] [Indexed: 12/27/2022]
|
24
|
Song W, Tang Z, Li M, Lv S, Yu H, Ma L, Zhuang X, Huang Y, Chen X. Tunable pH-Sensitive Poly(β
-amino ester)s Synthesized from Primary Amines and Diacrylates for Intracellular Drug Delivery. Macromol Biosci 2012; 12:1375-83. [DOI: 10.1002/mabi.201200122] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/16/2012] [Indexed: 11/06/2022]
|
25
|
Luo Z, Jiang J. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: Integrating molecular dynamics and dissipative particle dynamics simulations. J Control Release 2012; 162:185-93. [DOI: 10.1016/j.jconrel.2012.06.027] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/21/2012] [Accepted: 06/18/2012] [Indexed: 11/17/2022]
|
26
|
Ding J, He C, Xiao C, Chen J, Zhuang X, Chen X. pH-responsive drug delivery systems based on clickable poly(L-glutamic acid)-grafted comb copolymers. Macromol Res 2012. [DOI: 10.1007/s13233-012-0051-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Kim MS, Gao GH, Kang SW, Lee DS. Evaluation of pH-Sensitive Poly(β-amino ester)-graft-poly(ethylene glycol) and its Usefulness as a pH-Sensor and Protein Carrier. Macromol Biosci 2011; 11:946-51. [DOI: 10.1002/mabi.201100020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 11/08/2022]
|
28
|
Zheng Y, He C, Huynh CT, Lee DS. Biodegradable pH- and temperature-sensitive multiblock copolymer hydrogels based on poly(amino-ester urethane)s. Macromol Res 2010. [DOI: 10.1007/s13233-010-1002-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
|
30
|
Gao GH, Im GH, Kim MS, Lee JW, Yang J, Jeon H, Lee JH, Lee DS. Magnetite-nanoparticle-encapsulated pH-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1201-1204. [PMID: 20449849 DOI: 10.1002/smll.200902317] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Guang Hui Gao
- Department of Polymer Science and Engineering Sungkyunkwan University Suwon 440-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Min KH, Kim JH, Bae SM, Shin H, Kim MS, Park S, Lee H, Park RW, Kim IS, Kim K, Kwon IC, Jeong SY, Lee DS. Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 2010; 144:259-66. [DOI: 10.1016/j.jconrel.2010.02.024] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 11/25/2022]
|
32
|
Gao G, Heo H, Lee J, Lee D. An acidic pH-triggered polymeric micelle for dual-modality MR and optical imaging. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00317d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Kim MS, Lee DS. Biodegradable and pH-sensitive polymersome with tuning permeable membrane for drug delivery carrier. Chem Commun (Camb) 2010; 46:4481-3. [DOI: 10.1039/c001500h] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
|
35
|
Evaluation of the anti-tumor effects of paclitaxel-encapsulated pH-sensitive micelles. Macromol Res 2009. [DOI: 10.1007/bf03218661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Characterizations and release behavior of poly [(R)-3-hydroxy butyrate]-co-methoxy poly(ethylene glycol) with various block ratios. Macromol Res 2008. [DOI: 10.1007/bf03218539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
|
38
|
Kang H, Ryu SH, Hahn SK, Oh EJ, Park JK, Kim KS. Characterization of PEGylated Anti-VEGF aptamers using surface plasmon resonance. Macromol Res 2008. [DOI: 10.1007/bf03218849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|