Dzeroski S, Todorovski L. Equation discovery for systems biology: finding the structure and dynamics of biological networks from time course data.
Curr Opin Biotechnol 2008;
19:360-8. [PMID:
18672061 DOI:
10.1016/j.copbio.2008.07.002]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
Reconstructing biological networks, such as metabolic and signaling networks, is at the heart of systems biology. Although many approaches exist for reconstructing network structure, few approaches recover the full dynamic behavior of a network. We survey such approaches that originate from computational scientific discovery, a subfield of machine learning. These take as input measured time course data, as well as existing domain knowledge, such as partial knowledge of the network structure. We demonstrate the use of these approaches on illustrative tasks of finding the complete dynamics of biological networks, which include examples of rediscovering known networks and their dynamics, as well as examples of proposing models for unknown networks.
Collapse