1
|
Oroszi T, Felszeghy K, Luiten PG, Schoemaker RG, van der Zee EA, Nyakas C. Whole body vibration ameliorates anxiety-like behavior and memory functions in 30 months old senescent male rats. Heliyon 2024; 10:e26608. [PMID: 38404823 PMCID: PMC10884920 DOI: 10.1016/j.heliyon.2024.e26608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Whole body vibration (WBV) is a form of passive exercise that offers an alternative physical training to aged individuals with limitations in their physical and mental capabilities. The aim of the present study was to explore the therapeutic potential of five weeks of WBV on anxiety-like behaviors as well as learning and memory abilities in senescent thirty months old rats. Animals were exposed to 5 min vibration twice per day, five times per week during the five consecutive weeks. Pseudo WBV treated animals served as controls. After five weeks of WBV treatment, animals were tested for anxiety-like behavior by the open field test and for spatial and object memory functions by the novel and spatial object recognition tests, respectively. As a result, anxiety-like and exploratory behaviors were significantly improved in the WBV treated group compared to the pseudo WBV group. Furthermore, WBV treatment increased discrimination performance in both spatial and object memory function testing. These results indicate that WBV treatment in thirty months old rats seems to have comparable beneficial effects on age-related emotional and cognitive performance as what has been reported in younger age groups.
Collapse
Affiliation(s)
- Tamás Oroszi
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Klára Felszeghy
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, Budapest, Hungary
| | - Paul G.M. Luiten
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G. Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Eddy A. van der Zee
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Washington TA, Healey JM, Thompson RW, Lowe LL, Carson JA. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload. Exp Gerontol 2014; 57:66-74. [PMID: 24835193 DOI: 10.1016/j.exger.2014.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022]
Abstract
Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (p<0.05). Aging also reduced LDH-A mRNA abundance, however there was no age effect on LDH-B mRNA abundance. In 5-month muscle, both ND and OV decreased LDH-A and LDH-B activity. However, there was no synergistic or additive effect. In 5-month muscle, ND and OV decreased LDH-A mRNA expression with no change in LDH-B expression. In 25-month muscle, ND and OV increased LDH-A and LDH-B activity. LDH-A mRNA expression was not altered by ND or OV in aged muscle. However, there was a main effect of OV to decrease LDH-B mRNA expression. There was also an age-induced LDH isoform shift. ND and OV treatment increased the "fast" LDH isoforms in aged muscle, whereas ND and OV increased the "slow" isoforms in young muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration.
Collapse
Affiliation(s)
- Tyrone A Washington
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR 72701, United States; Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States.
| | - Julie M Healey
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Raymond W Thompson
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Larry L Lowe
- Department of Biological and Physical Sciences, Benedict College, Columbia, SC 29208, United States
| | - James A Carson
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
3
|
Martin V, Ratel S, Siracusa J, Le Ruyet P, Savary-Auzeloux I, Combaret L, Guillet C, Dardevet D. Whey proteins are more efficient than casein in the recovery of muscle functional properties following a casting induced muscle atrophy. PLoS One 2013; 8:e75408. [PMID: 24069411 PMCID: PMC3777906 DOI: 10.1371/journal.pone.0075408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the effect of whey supplementation, as compared to the standard casein diet, on the recovery of muscle functional properties after a casting-induced immobilization period. After an initial (I0) evaluation of the contractile properties of the plantarflexors (isometric torque-frequency relationship, concentric power-velocity relationship and a fatigability test), the ankle of 20 male adult rats was immobilized by casting for 8 days. During this period, rats were fed a standard diet with 13% of casein (CAS). After cast removal, rats received either the same diet or a diet with 13% of whey proteins (WHEY). A control group (n = 10), non-immobilized but pair-fed to the two other experimental groups, was also studied and fed with the CAS diet. During the recovery period, contractile properties were evaluated 7 (R7), 21 (R21) and 42 days (R42) after cast removal. The immobilization procedure induced a homogeneous depression of average isometric force at R7 (CAS: − 19.0±8.2%; WHEY: − 21.7±8.4%; P<0.001) and concentric power (CAS: − 26.8±16.4%, P<0.001; WHEY: − 13.5±21.8%, P<0.05) as compared to I0. Conversely, no significant alteration of fatigability was observed. At R21, isometric force had fully recovered in WHEY, especially for frequencies above 50 Hz, whereas it was still significantly depressed in CAS, where complete recovery occurred only at R42. Similarly, recovery of concentric power was faster at R21 in the 500−700°/s range in the WHEY group. These results suggest that recovery kinetics varied between diets, the diet with the whey proteins promoting a faster recovery of isometric force and concentric power output as compared to the casein diet. These effects were more specifically observed at force level and movement velocities that are relevant for functional abilities, and thus natural locomotion.
Collapse
Affiliation(s)
- Vincent Martin
- Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques, CRNH Auvergne, Clermont-Ferrand, France
- * E-mail:
| | - Sébastien Ratel
- Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques, CRNH Auvergne, Clermont-Ferrand, France
| | - Julien Siracusa
- Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques, CRNH Auvergne, Clermont-Ferrand, France
| | | | | | - Lydie Combaret
- INRA, Unité de Nutrition Humaine (UNH, UMR 1019), CRNH Auvergne, Clermont-Ferrand, France
| | - Christelle Guillet
- INRA, Unité de Nutrition Humaine (UNH, UMR 1019), CRNH Auvergne, Clermont-Ferrand, France
- Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
| | - Dominique Dardevet
- INRA, Unité de Nutrition Humaine (UNH, UMR 1019), CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
4
|
Mackrell JG, Arias EB, Cartee GD. Fiber type-specific differences in glucose uptake by single fibers from skeletal muscles of 9- and 25-month-old rats. J Gerontol A Biol Sci Med Sci 2012; 67:1286-94. [PMID: 23042591 DOI: 10.1093/gerona/gls194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The primary purpose of this study was to assess the feasibility of applying a novel approach to measure myosin heavy chain (MHC) isoform expression, glucose uptake, fiber volume, and protein abundance in single muscle fibers of adult (9 months) and old (25 months) rats. Epitrochlearis muscle fibers were successfully isolated and analyzed for MHC isoform expression, glucose uptake, fiber volume, and protein (COXIV, APPL1, IκB-β) abundance. Insulin-stimulated glucose uptake by single fibers did not differ between age groups, but there was a significant difference between fiber types (IIA > IIX > IIB/X ≈ IIB). There were also significant main effects of fiber type on APPL1 (IIX > IIB) and COXIV (IIA > IIX > IIB/X ≈ IIB) abundance, and IIB fibers were significantly larger than IIA fibers. This study established the feasibility of a new approach for assessing age-related differences in muscle at the single-fiber level and demonstrated the magnitude and rank order for fiber-type differences in insulin-stimulated glucose uptake of 9-month-old and 25-month-old rats.
Collapse
Affiliation(s)
- James G Mackrell
- University of Michigan, School of Kinesiology, Room 4745F 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA
| | | | | |
Collapse
|
5
|
Łochyński D, Krutki P, Celichowski J. Effect of ageing on the regulation of motor unit force in rat medial gastrocnemius muscle. Exp Gerontol 2007; 43:218-28. [PMID: 18160241 DOI: 10.1016/j.exger.2007.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 11/06/2007] [Accepted: 11/13/2007] [Indexed: 11/25/2022]
Abstract
The influence of ageing on the regulation of force through the firing rate (force-frequency relationship) and motor unit contractile output were investigated in three types of motor unit (MU): FF, FR and S, in the medial gastrocnemius muscle. A control group of young (5-10 months) Wistar rats was compared to three groups of older (20-21, 24-25 and 28-30 months) animals. The optimal tetanus characterized by the maximum contractile output (force-time area - FTA - per single pulse) was determined. During ageing, the steep part of the force-frequency relationship of medial gastrocnemius MUs shifted towards lower stimulation rates. However, in all MU types of the oldest rats, the opposite shift (towards higher rates) was observed. Ageing induced a substantial increase in the maximal FTA per pulse, particularly in S and FF units, but only subtly altered the fusion index of the optimal tetanus of MUs. Moreover, a transient increase in the mean forces of FF MUs was revealed in the groups of 20-21 and 24-25 months rats, and a significant decrease in the fatigue resistance of FR MUs accompanied ageing. These findings increase our understanding of the functional mechanisms responsible for changes in rate coding and alterations in muscle fatigability during ageing.
Collapse
Affiliation(s)
- Dawid Łochyński
- Department of Neurobiology, University School of Physical Education, Poznań, Poland.
| | | | | |
Collapse
|