1
|
Kumari S, Sikander M, Malik S, Tripathi MK, Hafeez BB, Yallapu MM, Chauhan SC, Khan S, Jaggi M. Steviol Represses Glucose Metabolism and Translation Initiation in Pancreatic Cancer Cells. Biomedicines 2021; 9:1814. [PMID: 34944630 PMCID: PMC8698284 DOI: 10.3390/biomedicines9121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer has the worst prognosis and lowest survival rate among all cancers. Pancreatic cancer cells are highly metabolically active and typically reprogrammed for aberrant glucose metabolism; thus they respond poorly to therapeutic modalities. It is highly imperative to understand mechanisms that are responsible for high glucose metabolism and identify natural/synthetic agents that can repress glucose metabolic machinery in pancreatic cancer cells, to improve the therapeutic outcomes/management of pancreatic cancer patients. We have identified a glycoside, steviol that effectively represses glucose consumption in pancreatic cancer cells via the inhibition of the translation initiation machinery of the molecular components. Herein, we report that steviol effectively inhibits the glucose uptake and lactate production in pancreatic cancer cells (AsPC1 and HPAF-II). The growth, colonization, and invasion characteristics of pancreatic cancer cells were also determined by in vitro functional assay. Steviol treatment also inhibited the tumorigenic and metastatic potential of human pancreatic cancer cells by inducing apoptosis and cell cycle arrest in the G1/M phase. The metabolic shift by steviol was mediated through the repression of the phosphorylation of mTOR and translation initiation proteins (4E-BP1, eIF4e, eIF4B, and eIF4G). Overall, the results of this study suggest that steviol can effectively suppress the glucose metabolism and translation initiation in pancreatic cancer cells to mitigate their aggressiveness. This study might help in the design of newer combination therapeutic strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
| | - Mohammed Sikander
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shabnam Malik
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Bilal B. Hafeez
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (M.S.); (S.M.); (M.K.T.); (B.B.H.); (M.M.Y.); (S.C.C.); (S.K.)
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
2
|
Forkasiewicz A, Dorociak M, Stach K, Szelachowski P, Tabola R, Augoff K. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell Mol Biol Lett 2020; 25:35. [PMID: 32528540 PMCID: PMC7285607 DOI: 10.1186/s11658-020-00228-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 12/28/2022] Open
Abstract
One of the hallmarks of cancer cells is increased energy requirements associated with the higher rate of cellular proliferative activity. Metabolic changes in rapidly dividing cancer cells are closely associated with increased uptake of glucose and abnormal activity of lactate dehydrogenase (LDH), which regulates the processing of glucose to lactic acid. As serum LDH levels were found to be commonly increased in cancer patients and correlated with poor clinical outcome and resistance to therapy, the determination of LDH has become a standard supportive tool in diagnosing cancers or monitoring the effects of cancer treatment. The aim of this review is to summarize the current knowledge about methods and the practical utility for measuring both the total LDH and LDH isoenzymatic activities in the diagnosis, prognosis and prediction of cancer diseases.
Collapse
Affiliation(s)
- Agata Forkasiewicz
- Department of Surgical Education, Wroclaw Medical University, ul. Sklodowskiej-Curie 66, 50-369 Wroclaw, Poland
| | - Maja Dorociak
- Department of Surgical Education, Wroclaw Medical University, ul. Sklodowskiej-Curie 66, 50-369 Wroclaw, Poland
| | - Kamilla Stach
- Department of Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Szelachowski
- Department of Surgical Education, Wroclaw Medical University, ul. Sklodowskiej-Curie 66, 50-369 Wroclaw, Poland
| | - Renata Tabola
- Second Department and Clinic of General and Oncological Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, ul. Sklodowskiej-Curie 66, 50-369 Wroclaw, Poland
| |
Collapse
|
3
|
Karaffa L, Kubicek CP. Citric acid and itaconic acid accumulation: variations of the same story? Appl Microbiol Biotechnol 2019; 103:2889-2902. [PMID: 30758523 PMCID: PMC6447509 DOI: 10.1007/s00253-018-09607-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023]
Abstract
Citric acid production by Aspergillus niger and itaconic acid production by Aspergillus terreus are two major examples of technical scale fungal fermentations based on metabolic overflow of primary metabolism. Both organic acids are formed by the same metabolic pathway, but whereas citric acid is the end product in A. niger, A. terreus performs two additional enzymatic steps leading to itaconic acid. Despite of this high similarity, the optimization of the production process and the mechanism and regulation of overflow of these two acids has mostly been investigated independently, thereby ignoring respective knowledge from the other. In this review, we will highlight where the similarities and the real differences of these two processes occur, which involves various aspects of medium composition, metabolic regulation and compartmentation, transcriptional regulation, and gene evolution. These comparative data may facilitate further investigations of citric acid and itaconic acid accumulation and may contribute to improvements in their industrial production.
Collapse
Affiliation(s)
- Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary.
| | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.,, 1100, Vienna, Austria
| |
Collapse
|
8
|
Manti L, Durante M, Cirrone GAP, Grossi G, Lattuada M, Pugliese M, Sabini MG, Scampoli P, Valastro L, Gialanella G. Modelled microgravity does not modify the yield of chromosome aberrations induced by high-energy protons in human lymphocytes. Int J Radiat Biol 2005; 81:147-55. [PMID: 16019924 DOI: 10.1080/09553000500091188] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim was to evaluate the effect of modelled microgravity on radiation-induced chromosome aberrations (CAs). G0 peripheral blood lymphocytes were exposed to 60 MeV protons or 250 kVp X-rays in the dose range 0-6 Gy, and allowed to repair DNA damage for 24 h under either normal gravity or microgravity modelled by the NASA-designed rotating-wall bioreactor. Cells were then stimulated to proliferate by phytohaemagglutinin (PHA) under normal gravity conditions and prematurely condensed chromosomes were harvested after 48 h. CAs were scored in chromosomes 1 and 2 by fluorescence in-situ hybridization. Proliferation gravisensitivity was examined by cell growth curves and by morphological evaluation of mitogen-induced activation. Cell replication rounds were monitored by bromodeoxyuridine labelling. Modelled microgravity markedly reduced PHA-mediated lymphocyte blastogenesis and cell growth. However, no significant differences between normal gravity and modelled microgravity were found in the dose-response curves for the induction of aberrant cells or total interchromosomal exchange frequency. Rotating-wall bioreactor-based microgravity reproduced space-related alterations of mitogen stimulation in human lymphocytes but did not affect the yield of CAs induced by low-linear energy transfer radiation.
Collapse
Affiliation(s)
- L Manti
- Department of Physical Sciences, University of Naples Federico II, and National Institute for Nuclear Physics (INFN), Section of Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wittmann C, Kiefer P, Zelder O. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 2005; 70:7277-87. [PMID: 15574927 PMCID: PMC535182 DOI: 10.1128/aem.70.12.7277-7287.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-(13C)Fru]sucrose, [1-(13C)Glc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTS(Man) or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.
Collapse
|
10
|
Pfeiffer T, Bonhoeffer S. An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci U S A 2003; 100:1095-8. [PMID: 12547910 PMCID: PMC298732 DOI: 10.1073/pnas.0335420100] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary transition from single cells toward multicellular forms of life represents one of the major transitions in the evolution of complex organisms. In this transition, single autonomously reproducing cells became parts of larger reproducing entities that eventually constituted a new unit of selection. The first step in the evolutionary transition to multicellularity likely was the evolution of simple, undifferentiated cell clusters. However, what the selective advantage of such cell clusters may have been remains unclear. Here, we argue that in populations of unicellular organisms with cooperative behavior, clustering may be beneficial by reducing interactions with noncooperative individuals. In support of this hypothesis, we present a set of computer simulations showing that clustering can evolve as a biological, heritable trait for cells that cooperate in the use of external energy resources. Following the evolution of simple cell clusters, further benefits could have arisen from the exchange of resources between cells of a cluster.
Collapse
Affiliation(s)
- Thomas Pfeiffer
- Department of Environmental Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
| | | |
Collapse
|
13
|
Glass-Marmor L, Penso J, Beitner R. Ca2+-induced changes in energy metabolism and viability of melanoma cells. Br J Cancer 1999; 81:219-24. [PMID: 10496345 PMCID: PMC2362860 DOI: 10.1038/sj.bjc.6690680] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer cells are characterized by a high rate of glycolysis, which is their primary energy source. We show here that a rise in intracellular-free calcium ion (Ca2+), induced by Ca2+-ionophore A23187, exerted a deleterious effect on glycolysis and viability of B16 melanoma cells. Ca2+-ionophore caused a dose-dependent detachment of phosphofructokinase (EC 2.7.1.11), one of the key enzymes of glycolysis, from cytoskeleton. It also induced a decrease in the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis. All these changes occurred at lower concentrations of the drug than those required to induce a reduction in viability of melanoma cells. We also found that low concentrations of Ca2+-ionophore induced an increase in adenosine 5'-triphosphate (ATP), which most probably resulted from the increase in mitochondrial-bound hexokinase, which reflects a defence mechanism. This mechanism can no longer operate at high concentrations of the Ca2+-ionophore, which causes a decrease in mitochondrial and cytosolic hexokinase, leading to a drastic fall in ATP and melanoma cell death. The present results suggest that drugs which are capable of inducing accumulation of intracellular-free Ca2+ in melanoma cells would cause a reduction in energy-producing systems, leading to melanoma cell death.
Collapse
Affiliation(s)
- L Glass-Marmor
- Health Sciences Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|