1
|
Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14225493. [PMID: 36428585 PMCID: PMC9688902 DOI: 10.3390/cancers14225493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
(1) Introduction: The aim of this study was to identify the plasma extracellular vesicle (EV)-specific transcriptional profile in small-cell lung cancer (SCLC) and to explore the application value of plasma EV long RNA (exLR) in SCLC treatment prediction and diagnosis. (2) Methods: Plasma samples were collected from 57 SCLC treatment-naive patients, 104 non-small-cell lung cancer (NSCLC) patients and 59 healthy participants. The SCLC patients were divided into chemo-sensitive and chemo-refractory groups based on the therapeutic effects. The exLR profiles of the plasma samples were analyzed by high-throughput sequencing. Bioinformatics approaches were used to investigate the differentially expressed exLRs and their biofunctions. Finally, a t-signature was constructed using logistic regression for SCLC treatment prediction and diagnosis. (3) Results: We obtained 220 plasma exLRs profiles in all the participants. Totals of 5787 and 1207 differentially expressed exLRs were identified between SCLC/healthy controls, between the chemo-sensitive/chemo-refractory groups, respectively. Furthermore, we constructed a t-signature that comprised ten exLRs, including EPCAM, CCNE2, CDC6, KRT8, LAMB1, CALB2, STMN1, UCHL1, HOXB7 and CDCA7, for SCLC treatment prediction and diagnosis. The exLR t-score effectively distinguished the chemo-sensitive from the chemo-refractory group (p = 9.268 × 10-9) with an area under the receiver operating characteristic curve (AUC) of 0.9091 (95% CI: 0.837 to 0.9811) and distinguished SCLC from healthy controls (AUC: 0.9643; 95% CI: 0.9256-1) and NSCLC (AUC: 0.721; 95% CI: 0.6384-0.8036). (4) Conclusions: This study firstly characterized the plasma exLR profiles of SCLC patients and verified the feasibility and value of identifying biomarkers based on exLR profiles in SCLC diagnosis and treatment prediction.
Collapse
|
2
|
Peng H, Wu X, Zhong R, Yu T, Cai X, Liu J, Wen Y, Ao Y, Chen J, Li Y, He M, Li C, Zheng H, Chen Y, Pan Z, He J, Liang W. Profiling Tumor Immune Microenvironment of Non-Small Cell Lung Cancer Using Multiplex Immunofluorescence. Front Immunol 2021; 12:750046. [PMID: 34804034 PMCID: PMC8600321 DOI: 10.3389/fimmu.2021.750046] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
This study attempted to profile the tumor immune microenvironment (TIME) of non-small cell lung cancer (NSCLC) by multiplex immunofluorescence of 681 NSCLC cases. The number, density, and proportion of 26 types of immune cells in tumor nest and tumor stroma were evaluated, revealing some close interactions particularly between intrastromal neutrophils and intratumoral regulatory T cells (Treg) (r2 = 0.439, P < 0.001), intrastromal CD4+CD38+ T cells and CD20-positive B cells (r2 = 0.539, P < 0.001), and intratumoral CD8-positive T cells and M2 macrophages expressing PD-L1 (r2 = 0.339, P < 0.001). Three immune subtypes correlated with distinct immune characteristics were identified using the unsupervised consensus clustering approach. The immune-activated subtype had the longest disease-free survival (DFS) and demonstrated the highest infiltration of CD4-positive T cells, CD8-positive T cells, and CD20-positive B cells. The immune-defected subtype was rich in cancer stem cells and macrophages, and these patients had the worst prognosis. The immune-exempted subtype had the highest levels of neutrophils and Tregs. Intratumoral CD68-positive macrophages, M1 macrophages, and intrastromal CD4+ cells, CD4+FOXP3- cells, CD8+ cells, and PD-L1+ cells were further found to be the most robust prognostic biomarkers for DFS, which were used to construct and validate the immune-related risk score for risk stratification (high vs. median vs. low) and the prediction of 5-year DFS rates (23.2% vs. 37.9% vs. 43.1%, P < 0.001). In conclusion, the intricate and intrinsic structure of TIME in NSCLC was demonstrated, showing potency in subtyping and prognostication.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Tao Yu
- Genecast Biotechnology Co., Ltd., Beijing, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Jun Liu
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yaokai Wen
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yiyuan Ao
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jiana Chen
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yutian Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Miao He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongbo Zheng
- Genecast Biotechnology Co., Ltd., Beijing, China
| | - Yanhui Chen
- Genecast Biotechnology Co., Ltd., Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhenkui Pan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Medical Oncology, The First People's Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
3
|
Zhen DZ, Li YS, Su CY, Cheng X, Zhou SJ, Han Y, Yu DP, Song XY, Xiao N, Liu ZD, Wang F. Expression level of epithelial cell adhesion molecule (EpCAM) of circulating tumor cells (CTCs) of patients with NSCLC as an early indicator to monitor the effects of postoperative adjuvant chemotherapy. Transl Cancer Res 2021; 10:3299-3305. [PMID: 35116636 PMCID: PMC8798637 DOI: 10.21037/tcr-21-205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND An early indicator for monitoring the effect of adjuvant treatment after lung cancer surgery is urgently needed. The study was to explore the effects of epithelial cell adhesion molecule (EpCAM) of circulating tumor cells (CTCs) in NSCLC patients with postoperative adjuvant chemotherapy. METHODS Two drugs (platinum-containing chemotherapeutics + platinum-free chemotherapeutics) first-line chemotherapy regimen were given after surgery. MRNA of EpCAM was detected. Chest computed tomography, head computed tomography and abdominal B-ultrasound were reviewed before the first and third chemotherapy. RESULTS EpCAM in CTCs from peripheral blood between the recurrent group and the non-recurrent group at 1 day before surgery, first, second and third adjuvant chemotherapy were no significant differences (P>0.05). Only one day before the fourth adjuvant chemotherapy treatment, it showed significant difference between the recurrent group and the non-recurrent group (P=0.008). There was a significant difference between the time of imaging diagnosis of recurrence or metastasis and the time of monitoring the expression level of EpCAM in CTCs from peripheral blood (P<0.0001). CONCLUSIONS EpCAM in CTCs from peripheral blood during postoperative adjuvant chemotherapy was related to recurrence or metastasis of NSCLC patients.
Collapse
Affiliation(s)
- De Zhi Zhen
- Department of Thoracic Surgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Yun Song Li
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chong Yu Su
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xu Cheng
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shi Jie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Da Ping Yu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiao Yun Song
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ning Xiao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhi Dong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Feng Wang
- Department of Breast Surgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Raniszewska A, Kwiecień I, Rutkowska E, Rzepecki P, Domagała-Kulawik J. Lung Cancer Stem Cells-Origin, Diagnostic Techniques and Perspective for Therapies. Cancers (Basel) 2021; 13:2996. [PMID: 34203877 PMCID: PMC8232709 DOI: 10.3390/cancers13122996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer remains one of the most aggressive solid tumors with an overall poor prognosis. Molecular studies carried out on lung tumors during treatment have shown the phenomenon of clonal evolution, thereby promoting the occurrence of a temporal heterogeneity of the tumor. Therefore, the biology of lung cancer is interesting. Cancer stem cells (CSCs) are involved in tumor initiation and metastasis. Aging is still the most important risk factor for lung cancer development. Spontaneously occurring mutations accumulate in normal stem cells or/and progenitor cells by human life resulting in the formation of CSCs. Deepening knowledge of these complex processes and improving early recognition and markers of predictive value are of utmost importance. In this paper, we discuss the CSC hypothesis with an emphasis on age-related changes that initiate carcinogenesis. We analyze the current literature in the field, describe our own experience in CSC investigation and discuss the technical challenges with special emphasis on liquid biopsy.
Collapse
Affiliation(s)
- Agata Raniszewska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Elżbieta Rutkowska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a Street, 02-097 Warsaw, Poland;
| |
Collapse
|
5
|
Raniszewska A, Vroman H, Dumoulin D, Cornelissen R, Aerts JGJV, Domagała-Kulawik J. PD-L1 + lung cancer stem cells modify the metastatic lymph-node immunomicroenvironment in nsclc patients. Cancer Immunol Immunother 2021; 70:453-461. [PMID: 32808188 PMCID: PMC7889682 DOI: 10.1007/s00262-020-02648-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cancer stem cells (CSCs) are implicated in tumor initiation and development of metastasis. However, whether CSCs also affect the immune system is not fully understood. We investigated correlations between the PD-L1+ CSCs, changes in T-cell phenotype in metastatic and non-metastatic lymph nodes (LNs) and response to treatment. METHODS LNs' aspirates were obtained during the EBUS/TBNA procedure of 20 NSCLC patients at different stages of the disease. CSCs and T-cell characteristics were determined by flow cytometry. RESULTS PD-L1+ CSCs positively correlated with the percentage of Tregs, PD-1+ CD4 T cells and Tim3+ CD4+ T cells, whereas PD-L1+ CSCs were negatively correlated with CD4+ T cells and CD28+ CD4+ T cells. The percentage of PD-L1+ CSCs was higher in patients with progressive disease (PD) as compared to patients with stable disease (SD) or partial response (PR). Among T cells, only PD-1+ CD4+ T cells and Tim3+ CD4+ T-cell frequencies were higher in patients with PD as compared to patients with SD or PR. CONCLUSION The frequency of PD-L1+ CSCs associates with an altered T-cell frequency and phenotype indicating that CSCs can affect the immune system. The higher percentage of PD-L1+ CSCs in patients with PD may confirm their resistance to conventional therapy, suggesting that CSCs may be an interesting target for immunotherapy.
Collapse
Affiliation(s)
- A Raniszewska
- Department of Pathology, Medical University of Warsaw, Pawinskiego 7 Street, 02-106, Warsaw, Poland
| | - H Vroman
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - D Dumoulin
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - R Cornelissen
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - J G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - J Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a Street, 02-097, Warsaw, Poland
| |
Collapse
|
6
|
Huang B, Feng Z, Zhu L, Zhang S, Duan J, Zhao C, Zhang X. Silencing of MicroRNA-503 in Rat Mesenchymal Stem Cells Exerts Potent Antitumorigenic Effects in Lung Cancer Cells. Onco Targets Ther 2021; 14:67-81. [PMID: 33442267 PMCID: PMC7797339 DOI: 10.2147/ott.s282322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose Mesenchymal stem cells (MSCs) are largely studied for their potential clinical use. Recently, there has been gained further interest in the relationship between MSCs and tumorigenesis. MSCs are reported to both promote and abrogate tumor growth. The present study was designed to investigate whether miRNAs are involved in the interactions between MSCs and tumor cells in the tumor microenvironment. Materials and Methods Rat bone marrow-derived MSCs (rMSCs) were cultured with or without tumor-conditioned medium (TCM) to observe the effect upon MSCs by TCM. Microarrays and real-time PCR were performed between the two groups. A series of experiments were used to reveal the functional significance of microRNA-503 (miR-503) in rMSCs. Furthermore, the antitumorigenic effect of silencing of miR-503 in rMSCs (miR-503-i-rMSCs) in vivo was measured. Results We found that rMSCs in vitro exhibited tumor-promoting properties in TCM, and the microRNA profiles of rMSCs were significantly altered in TCM. However, miR-503-i-rMSCs can decrease the angiogenesis and growth of A549 cells. We also demonstrated in an in vivo tumor model that miR-503-i-rMSCs inhibited A549 tumor angiogenesis and significantly abrogated tumor initiation and growth. CD133 assays in peripheral blood and A549 xenografts further validated that miR-503-i-rMSCs, rather than rMSCs, exerted an antitumorigenic action in the A549 tumor model. Conclusion Our results suggest that miR-503-i-rMSCs are capable of tumor suppression. Further studies are required to develop clinical therapies based on the inhibition of the tumor-promoting properties and potentiation of the anti-tumor properties of MSCs.
Collapse
Affiliation(s)
- Bo Huang
- Public Health, Guilin Medical University, Guilin 541100, People's Republic of China
| | - Zhichun Feng
- Affiliated BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing 100700, People's Republic of China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, People's Republic of China
| | - Lina Zhu
- Affiliated BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing 100700, People's Republic of China
| | - Sheng Zhang
- Affiliated BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing 100700, People's Republic of China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, People's Republic of China
| | - Jun Duan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Chaochao Zhao
- Public Health, Guilin Medical University, Guilin 541100, People's Republic of China
| | - Xiaoying Zhang
- Public Health, Guilin Medical University, Guilin 541100, People's Republic of China.,Affiliated BaYi Children's Hospital, Seventh Medical Center of PLA General Hospital, Beijing 100700, People's Republic of China
| |
Collapse
|
7
|
Raniszewska A, Polubiec-Kownacka M, Rutkowska E, Domagala-Kulawik J. PD-L1 Expression on Lung Cancer Stem Cells in Metastatic Lymph Nodes Aspirates. Stem Cell Rev Rep 2020; 15:324-330. [PMID: 30397852 DOI: 10.1007/s12015-018-9860-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES An immunotherapy was found to be effective in achieving long-term survival in some lung cancer patients. It has emerged to searching for new immune biomarkers for select the best candidates to this therapy. It is suggested that cancer stem cells (CSCs) are responsible for tumor initiation, maintenance and its metastatic potential. However, a role of CSCs in escape of cancer from immunosurveillance is unknown. The aim of the study was assess the phenotype of putative CSCs and to examine the expression of PD-L1 on CSCs in metastatic lymph nodes (LNs) in lung cancer patients. MATERIAL AND METHODS Flow cytometry was used for CSCs evaluation in peripheral blood and EBUS/TBNA aspirates from N1,N2 lymph nodes in lung cancer patients. RESULTS Of 30 patients the LNs metastases were confirmed in 18 patients. We noticed presence of PD-L1 on putative lung CSCs- CD133 + EpCAM+ cells. A higher percentage of CD133 + EpCAM+PD-L1+ cells was observed in patients with metastatic in LNs- median value = 4.38% than in patients without LNs metastases- median value = 0,015% (p < 0.05). The highest proportion of PD-L1+ CSCs was found in adenocarcinoma patients and in those with oncogene addiction what indicate an particular biology of this type of lung cancer. CONCLUSION The presence of CSCs with expression of PD-L1 in the metastatic LNs might suggest their immunogenic potential. EBUS/TBNA is commonly used in diagnosis and staging of lung cancer, so the analysis of the cells in metastatic LNs may fit in "immunoscoring" before immunotherapy.
Collapse
Affiliation(s)
- Agata Raniszewska
- Department of Pathology, Medical University of Warsaw, Pawinskiego 7 Street, 02-106, Warsaw, Poland.,Department of Internal Medicine and Hematology Laboratory of Flow Cytometry, u, Szaserow 128 Street, 04-141, Warsaw, Poland
| | | | - Elzbieta Rutkowska
- Department of Internal Medicine and Hematology Laboratory of Flow Cytometry, u, Szaserow 128 Street, 04-141, Warsaw, Poland
| | - Joanna Domagala-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a Street, 02-097, Warsaw, Poland.
| |
Collapse
|
8
|
Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, Alix-Panabières C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2020; 12:E867. [PMID: 32260071 PMCID: PMC7225923 DOI: 10.3390/cancers12040867] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Metastases and cancer recurrence are the main causes of cancer death. Circulating Tumor Cells (CTCs) and disseminated tumor cells are the drivers of cancer cell dissemination. The assessment of CTCs' clinical role in early metastasis prediction, diagnosis, and treatment requires more information about their biology, their roles in cancer dormancy, and immune evasion as well as in therapy resistance. Indeed, CTC functional and biochemical phenotypes have been only partially characterized using murine metastasis models and liquid biopsy in human patients. CTC detection, characterization, and enumeration represent a promising tool for tailoring the management of each patient with cancer. The comprehensive understanding of CTCs will provide more opportunities to determine their clinical utility. This review provides much-needed insights into this dynamic field of translational cancer research.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Mehdi Azizi
- Proteomics Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Maryam Heidarifard
- Drug Applied Research Center, Tabriz University of Medical Sciences, 51368 Tabriz, Iran;
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| |
Collapse
|
9
|
Immunomodulatory Molecules On Lung Cancer Stem Cells From Lymph Nodes Aspirates. Cancers (Basel) 2020; 12:cancers12040838. [PMID: 32244422 PMCID: PMC7226167 DOI: 10.3390/cancers12040838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitors have revolutionized the treatment of non-small cell lung cancer (NSCLC). Unfortunately, not all patients benefit from PD-(L)1 blockade, yet, the PD-L1 tumor cell expression is the only approved biomarker, and other biomarkers have been investigated. In the present study, we analyzed the presence of immunomodulatory molecules: PD-L1, CD47, CD73, Fas, and FasL on mature tumor cells (MTCs) and cancer stem cells (CSCs) in lymph nodes (LNs) aspirates and refer it to the lymphocyte subpopulation in peripheral blood (PB). PB samples and LNs aspirates obtained during the endobronchial ultrasound-guided transbronchial needle aspiration (EBUS/TBNA) procedure of 20 patients at different stages of NSCLC. The cells were analyzed by multiparameter flow cytometry. We reported the higher frequency of MTCs and CSCs expressing the investigated immunomodulating molecules in metastatic LNs than in nonmetastatic. The expression of CD47 and PD-L1 was significantly higher on CSCs than on MTCs. Among the lymphocyte subpopulation in PB, we observed a higher frequency of PD-1+ CD8 T cells and Fas+ CD8 T cells in patients with confirmed metastases than in nonmetastatic. Next, we found that the percentage of FasL+ MTCs correlated with the frequency of Fas+ CD3 T cells in LNs aspirates and Fas+ CD8 T cells in PB. Finally, we found that patients with metastatic disease had a significantly higher FasL+/Fas+ MTCs ratio than patients with nonmetastatic disease. Both MTCs and CSCs express different immunomodulatory molecules on their surface. The frequency of FasL+ MTCs associates with altered distribution of Fas+ lymphocyte subpopulations in LNs and PB.
Collapse
|
10
|
Domagala-Kulawik J. New Frontiers for Molecular Pathology. Front Med (Lausanne) 2019; 6:284. [PMID: 31867335 PMCID: PMC6904313 DOI: 10.3389/fmed.2019.00284] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains a serious oncological problem worldwide. The delayed diagnosis and a prevalence of advanced stages in up to 70% of cases at recognition are still observed. Thanks to targeted therapies and immunotherapy a significant progress in achieving prolonged survival in some lung cancer patients is reported. A precise histopathological diagnosis, especially the recognition of adenocarcinoma, and a progress in the methods of clinical staging underlie the proper qualification of patients for a tailored therapy. The deep molecular characteristics of lung cancer in liquid biopsy, for example blood, bronchoalveolar lavage fluid (BALF), cell suspension from needle aspirates, are currently available. The molecular characteristic has recently been extended with molecular aberrations of BRAF, KRAS, MET, ERBB2, RET, NTRK next to the well-known EGFR mutations and ALK, ROS-1 relocation. The present paper discusses the usefulness of adequate pathological methods and molecular testing for the identification of a broad spectrum of predictive biomarkers for a molecular-directed lung cancer therapy. Immunotherapy with immune checkpoint inhibitors (ICIs) is approved in the first line therapy of advanced non-small-cell lung cancer. To date only PD-L1 expression on tumor cells has been found to be a marker of response to ICIs. The efficacy of ICIs as well as the susceptibility to immune-related adverse events are highly individual, so immune biomarkers are widely investigated. The candidates for predictive factors for ICIs immunotherapy include cancer cell antigenicity, presence of regulatory/suppressory molecules on cancer cells, cancer stem cells or on exosomes, and, on the other hand, an immune status of the patient. Cancers with high immune infiltration in the tumor milieu, referred to as “hot” tumors, seem to ensure a better response to ICIs than the “cold” ones. BALF analysis may replace cancer tissue examination, which is of limited access in advanced stages, for the recognition of the nature of immune response in the tumor environment. Tumor mutational burden (TMB) was shown to correlate with a good response to ICIs, especially when combined with other anticancer therapies. The present paper demonstrates the results of recent studies on lung cancer characteristics which bring us closer to the definition of useful prognostic/predictive factors.
Collapse
Affiliation(s)
- Joanna Domagala-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Lee CH, Hsieh JCH, Wu TMH, Yeh TS, Wang HM, Lin YC, Chen JS, Lee CL, Huang WK, Hung TM, Yen TT, Chan SC, Chou WC, Kuan FC, Hu CC, Chang PH. Baseline circulating stem-like cells predict survival in patients with metastatic breast Cancer. BMC Cancer 2019; 19:1167. [PMID: 31791269 PMCID: PMC6889331 DOI: 10.1186/s12885-019-6370-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Circulating tumor cells (CTCs) are associated with breast cancer prognosis. Research is limited regarding the role of circulating cancer stem-like cells (cCSCs) considering the treatment response and survival among patients with metastatic breast cancer. Accordingly, we performed this prospective study to clarify the prognostic significance of baseline cCSCs for metastatic breast cancer in terms of first-line chemotherapy. Methods Between April 2014 and January 2016, we prospectively enrolled 48 patients with stage IV breast invasive ductal carcinoma who underwent first-line chemotherapy. We identified and analyzed CTCs and cCSCs by using a protocol based on negative selection and flow cytometry before chemotherapy. CTCs were identified as EpCAM+Hoechst+CD45– cells and cCSCs as CD133+EpCAM+Hoechst+CD45– cells. cCSCs were expressed as a percentage of CTCs. The associations between CTCs, cCSCs, and the clinicopathological variables that were predictive of the treatment response and survival outcome were analyzed using univariate and multivariate analyses. Results We identified CTCs in all the enrolled patients, with a median number of 33.9/mL CTCs. CSCs were isolated in 97.9% of the patients; the median percentage of cCSCs was 14.7%. A high baseline level of cCSCs was correlated with an inferior tumor response rate (54.2% vs. 95.8%, p < 0.001), overall survival (OS; median: 27.7 months vs. not reached, p < 0.001), and progression-free survival (PFS; median: 5.7 vs. 18.0 months, p < 0.001). Multivariate analysis revealed that along with other clinical variables, baseline cCSCs remained an independent prognostic factor for OS and PFS. Conclusions Baseline cCSCs predict the treatment response as well as survival in patients with metastatic breast cancer undergoing first-line chemotherapy. Therefore, the measurement of cCSCs may assist in identifying early cancer treatment response and prognosis.
Collapse
Affiliation(s)
- Chun-Hui Lee
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jason Chia-Hsun Hsieh
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Tyler Min-Hsien Wu
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Ting-Shiuan Yeh
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hung-Ming Wang
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Chan Lin
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Shi Chen
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Lin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Kuan Huang
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden, Cancer Center Karolinska, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Tsung-Min Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Tsen Yen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sheng-Chieh Chan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Chi Chou
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Department of Medicine, Chang-Gung Memorial Hospital, Chiayi, 61363, Taiwan
| | - Ching-Chih Hu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Pei-Hung Chang
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
12
|
Fakiruddin KS, Lim MN, Nordin N, Rosli R, Zakaria Z, Abdullah S. Targeting of CD133+ Cancer Stem Cells by Mesenchymal Stem Cell Expressing TRAIL Reveals a Prospective Role of Apoptotic Gene Regulation in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11091261. [PMID: 31466290 PMCID: PMC6770521 DOI: 10.3390/cancers11091261] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are emerging as vehicles for anti-tumor cytotherapy; however, investigation on its efficacy to target a specific cancer stem cell (CSC) population in non-small cell lung cancer (NSCLC) is lacking. Using assays to evaluate cell proliferation, apoptosis, and gene expression, we investigated the efficacy of MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) to target and destroy CD133+ (prominin-1 positive) NSCLC-derived CSCs. Characterization of TRAIL death receptor 5 (DR5) revealed that it was highly expressed in the CD133+ CSCs of both H460 and H2170 cell lines. The human MSC-TRAIL generated in the study maintained its multipotent characteristics, and caused significant tumor cell inhibition in NSCLC-derived CSCs in a co-culture. The MSC-TRAIL induced an increase in annexin V expression, an indicator of apoptosis in H460 and H2170 derived CD133+ CSCs. Through investigation of mitochondria membrane potential, we found that MSC-TRAIL was capable of inducing intrinsic apoptosis to the CSCs. Using pathway-specific gene expression profiling, we uncovered candidate genes such as NFKB1, BAG3, MCL1, GADD45A, and HRK in CD133+ CSCs, which, if targeted, might increase the sensitivity of NSCLC to MSC-TRAIL-mediated inhibition. As such, our findings add credibility to the utilization of MSC-TRAIL for the treatment of NSCLC through targeting of CD133+ CSCs.
Collapse
Affiliation(s)
- Kamal Shaik Fakiruddin
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia.
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam 40170, Malaysia.
| | - Moon Nian Lim
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam 40170, Malaysia
| | - Norshariza Nordin
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Zubaidah Zakaria
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam 40170, Malaysia
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
13
|
A Polyamidoamine Dendrimer-Based Electrochemical Immunosensor for Label-Free Determination of Epithelial Cell Adhesion Molecule- Expressing Cancer Cells. SENSORS 2019; 19:s19081879. [PMID: 31010258 PMCID: PMC6515256 DOI: 10.3390/s19081879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
A new electrochemical immunosensor for cancer cell detection based on a specific interaction between the metastasis-related antigen of epithelial cell adhesion molecule (EpCAM) on the cell membrane and its monoclonal antibody (Anti-EpCAM) immobilized on a gold electrode has been developed. The amino-terminated polyamidoamine dendrimer (G6 PAMAM) was first covalently attached to the 3-mercaptopropionic acid (MPA)-functionalized gold electrode to obtain a thin film, and then completely carboxylated by succinic anhydride (SA). Next, the Anti-EpCAM was covalently bound with the G6 PAMAM to obtain a stable recognition layer. In the presence of the EpCAM expressing hepatocellular carcinomas cell line of HepG2, the specific immune recognition (Anti-EpCAM/EpCAM) led to an obvious change of the electron transfer ability. The properties of the layer-by-layer assembly process was examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The final determination of HepG2 cells was performed in the presence of the reversible [Fe(CN)6]3−/4− redox couple using impedance technique. Based on the advantages of PAMAM nanomaterial and immune reaction, a linear response to HepG2 cells ranging from 1 × 104 to 1 × 106 cells mL−1 with a calculated detection limit of 2.1 × 103 cells mL−1 was obtained. We expect this method can provide a potential tool for cancer cell monitoring and protein expression analysis.
Collapse
|
14
|
Chang PH, Wu MH, Liu SY, Wang HM, Huang WK, Liao CT, Yen TC, Ng SH, Chen JS, Lin YC, Lin HC, Hsieh JCH. The Prognostic Roles of Pretreatment Circulating Tumor Cells, Circulating Cancer Stem-Like Cells, and Programmed Cell Death-1 Expression on Peripheral Lymphocytes in Patients with Initially Unresectable, Recurrent or Metastatic Head and Neck Cancer: An Exploratory Study of Three Biomarkers in One-time Blood Drawing. Cancers (Basel) 2019; 11:cancers11040540. [PMID: 30991692 PMCID: PMC6521270 DOI: 10.3390/cancers11040540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
Circulating tumor cells (CTCs) and immune status are strongly related to cancer prognosis, although few studies have examined both factors. This prospective observational study (ClinicalTrials.gov: NCT02420600) evaluated whether CTCs, circulating cancer stem-like cells (cCSCs), and peripheral lymphocytes with/without Programmed cell death protein 1 (PD-1) expression were associated with prognosis among patients receiving palliative chemotherapy for initially unresectable, recurrent/metastatic head and neck squamous cell carcinoma (rmHNSCC). Thirty-four patients were enrolled between January 2015 and June 2016. Overall survival (OS) was associated with a higher CTC number (hazard ratio [HR]: 1.01, p = 0.0004) and cCSC ratio (HR: 29.903, p < 0.0001). Progression-free survival (PFS) was also associated with CTC number (HR: 1.013, p = 0.002) and cCSC ratio (HR: 10.92, p = 0.003). A CD8+ proportion of ≥ 17% was associated with improved OS (HR: 0.242, p = 0.004). A CD4: CD8 ratio of >1.2 was associated with poorer trend of PFS (HR: 2.12, p = 0.064). PD-1 expression was not associated with survival outcomes. Baseline CTCs, cCSC ratio, and CD8+ ratio may predict prognosis in rmHNSCC.
Collapse
Affiliation(s)
- Pei-Hung Chang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
- Cancer Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Min-Hsien Wu
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| | - Sen-Yu Liu
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Hung-Ming Wang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Wen-Kuan Huang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Department of Oncology⁻Pathology, Karolinska Institutet, Stockholm, Sweden; Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Chun-Ta Liao
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
| | - Tzu-Chen Yen
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
| | - Shu-Hang Ng
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan.
| | - Jen-Shi Chen
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Yung-Chang Lin
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Hung-Chih Lin
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| | - Jason Chia-Hsun Hsieh
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
- Circulating Tumor Cell Lab, Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkuo 333, Taiwan.
| |
Collapse
|
15
|
Satar NA, Fakiruddin KS, Lim MN, Mok PL, Zakaria N, Fakharuzi NA, Abd Rahman AZ, Zakaria Z, Yahaya BH, Baharuddin P. Novel triple‑positive markers identified in human non‑small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics. Oncol Rep 2018; 40:669-681. [PMID: 29845263 PMCID: PMC6072294 DOI: 10.3892/or.2018.6461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non-small cell lung cancer (NSCLC). Initially, we sorted two subpopulations known as the triple-positive (EpCAM+/CD166+/CD44+) and triple-negative (EpCAM−/CD166−/CD44−) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple-positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5-fluouracil and cisplatin with 80% expression of ALDH was observed in the triple-positive subpopulation, compared to only 67% detected in the triple-negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple-positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple-negative subpopulation on day 2. This was similarly observed on day 3 in the triple-positive subpopulation with 36% higher cellular migration compared to the triple-negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple-positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple-positive subpopulation demonstrated similar characteristics to CSCs compared to the triple-negative subpopulation. It also confirmed the feasibility of using the triple-positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.
Collapse
Affiliation(s)
- Nazilah Abdul Satar
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
| | - Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Noor Atiqah Fakharuzi
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Ahmad Zuhairi Abd Rahman
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Puteri Baharuddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Wang L, Dumenil C, Julié C, Giraud V, Dumoulin J, Labrune S, Chinet T, Emile JF, He B, Giroux Leprieur E. Molecular characterization of circulating tumor cells in lung cancer: moving beyond enumeration. Oncotarget 2017; 8:109818-109835. [PMID: 29312651 PMCID: PMC5752564 DOI: 10.18632/oncotarget.22651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Molecular characterization of tumor cells is a key step in the diagnosis and optimal treatment of lung cancer. However, analysis of tumor samples, often corresponding to small biopsies, can be difficult and does not accurately reflect tumor heterogeneity. Recent studies have shown that isolation of circulating tumor cells (CTCs) is feasible in non-small cell lung cancer patients, even at early disease stages. The amount of CTCs corresponds to the metastatic potential of the tumor and to patient prognosis. Moreover, molecular analyses, even at the single-cell level, can be performed on CTCs. This review describes the technologies currently available for detecting and capturing CTCs, the potential for downstream molecular diagnostics, and the clinical applications of CTCs isolated from lung cancer patients as screening, prognostic, and predictive tools. Main limitations of CTCs are also discussed.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Catherine Julié
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Sylvie Labrune
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Jean-François Emile
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| |
Collapse
|
17
|
Jimenez-Hernandez LE, Vazquez-Santillan K, Castro-Oropeza R, Martinez-Ruiz G, Muñoz-Galindo L, Gonzalez-Torres C, Cortes-Gonzalez CC, Victoria-Acosta G, Melendez-Zajgla J, Maldonado V. NRP1-positive lung cancer cells possess tumor-initiating properties. Oncol Rep 2017; 39:349-357. [PMID: 29138851 PMCID: PMC5783600 DOI: 10.3892/or.2017.6089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor-initiating cells possess the capacity for self-renewal and to create heterogeneous cell lineages within a tumor. Therefore, the identification and isolation of cancer stem cells is an essential step in the analysis of their biology. The aim of the present study was to determine whether the cell surface protein neuropilin 1 (NRP1) can be used as a biomarker of stem-like cells in lung cancer tumors. For this purpose, NRP1-negative (NRP1-) and NRP1-positive (NRP1+) cell subpopulations from two lung cancer cell lines were sorted by flow cytometry. The NRP1+ cell subpopulation showed an increased expression of pluripotency markers OCT-4, Bmi-1 and NANOG, as well as higher cell migration, clonogenic and self-renewal capacities. NRP1 gene knockdown resulted not only in a decreased expression of stemness markers but also in a decrease in the clonogenic, cell migration and self-renewal potential. In addition, the NRP1+ cell subpopulation exhibited dysregulated expression of epithelial-to-mesenchymal transition-associated genes, including the ΔNp63 isoform protein, a previously reported characteristic of cancer stem cells. Notably, a genome-wide expression analysis of NRP1-knockdown cells revealed a potential new NRP1 pathway involving OLFML3 and genes associated with mitochondrial function. In conclusion, we demonstrated that NRP1+ lung cancer cells have tumor-initiating properties. NRP1 could be a useful biomarker for tumor-initiating cells in lung cancer tumors.
Collapse
|
18
|
Brugnoli F, Grassilli S, Lanuti P, Marchisio M, Al-Qassab Y, Vezzali F, Capitani S, Bertagnolo V. Up-modulation of PLC-β2 reduces the number and malignancy of triple-negative breast tumor cells with a CD133 +/EpCAM + phenotype: a promising target for preventing progression of TNBC. BMC Cancer 2017; 17:617. [PMID: 28870198 PMCID: PMC5584040 DOI: 10.1186/s12885-017-3592-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/22/2017] [Indexed: 01/16/2023] Open
Abstract
Background The malignant potential of triple negative breast cancer (TNBC) is also dependent on a sub-population of cells with a stem-like phenotype. Among the cancer stem cell markers, CD133 and EpCAM strongly correlate with breast tumor aggressiveness, suggesting that simultaneous targeting of the two surface antigens may be beneficial in treatment of TNBC. Since in TNBC-derived cells we demonstrated that PLC-β2 induces the conversion of CD133high to CD133low cells, here we explored its possible role in down-modulating the expression of both CD133 and EpCAM and, ultimately, in reducing the number of TNBC cells with a stem-like phenotype. Methods A magnetic step-by-step cell isolation with antibodies directed against CD133 and/or EpCAM was performed on the TNBC-derived MDA-MB-231 cell line. In the same cell model, PLC-β2 was over-expressed or down-modulated and cell proliferation and invasion capability were evaluated by Real-time cell assays. The surface expression of CD133, EpCAM and CD44 in the different experimental conditions were measured by multi-color flow cytometry immunophenotyping. Results A CD133+/EpCAM+ sub-population with high proliferation rate and invasion capability is present in the MDA-MB-231 cell line. Over-expression of PLC-β2 in CD133+/EpCAM+ cells reduced the surface expression of both CD133 and EpCAM, as well as proliferation and invasion capability of this cellular subset. On the other hand, the up-modulation of PLC-β2 in the whole MDA-MB-231 cell population reduced the number of cells with a CD44+/CD133+/EpCAM+ stem-like phenotype. Conclusions Since selective targeting of the cells with the highest aggressive potential may have a great clinical importance for TNBC, the up-modulation of PLC-β2, reducing the number of cells with a stem-like phenotype, may be a promising goal for novel therapies aimed to prevent the progression of aggressive breast tumors. Electronic supplementary material The online version of this article (10.1186/s12885-017-3592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Brugnoli
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Silvia Grassilli
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center of Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Yasamin Al-Qassab
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.,College of Medicine, Department of Anatomy, University of Baghdad, Baghdad, Iraq
| | - Federica Vezzali
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy
| | - Silvano Capitani
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Signal Transduction Unit, Division of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44121, Ferrara, Italy.
| |
Collapse
|
19
|
Circulating tumor cells in peripheral and pulmonary venous blood predict poor long-term survival in resected non-small cell lung cancer patients. Sci Rep 2017; 7:4971. [PMID: 28694485 PMCID: PMC5503943 DOI: 10.1038/s41598-017-05154-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/24/2017] [Indexed: 11/11/2022] Open
Abstract
We tested the hypothesis that circulating tumor cells (CTCs) in preoperative peripheral blood (PPB) and intraoperative pulmonary venous blood (IPVB) could predict poor long-term survival in resected non-small cell lung cancer (NSCLC) patients. CTCs were separated from blood using magnetic beads coated with antibodies against epithelial-cell adhesion molecule (EpCAM) via magnetic-activated cell sorting (MACS). CTCs were quantified with fluorescence-labeled antibodies against pan-cytokeratin through flow cytometry. CTCs were quantified in PPB and IPVB in 23 consecutive stage I-IIIA patients with resected NSCLC. The association between CTCs and prognosis in these patients was evaluated after a 5-year follow-up. In NSCLC patients, outcomes were assessed according to CTC levels at surgery. NSCLC patients identified as high-risk groups exhibited >5 CTCs/15 mL in PPB and >50 CTCs/15 mL in IPVB. Univariate Cox proportional-hazards regression analysis showed that the CTC count in PPB or IPVB was an independent risk factor for tumor-free surivival (TFS) and overall survival (OS). The high-risk group of patients had a shorter median TFS (22 months vs. >60.0 months, p < 0.0012) and shorter OS (27 months vs. >60 months, p < 0.0015). The number of CTCs counted in PPB and IPVB was an independent risk factor for TFS and OS in resected NSCLC patients.
Collapse
|
20
|
Pallela R, Chandra P, Noh HB, Shim YB. An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fluid. Biosens Bioelectron 2016; 85:883-890. [DOI: 10.1016/j.bios.2016.05.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
|
21
|
Yang J, Chen J, He J, Li J, Shi J, Cho WC, Liu X. Wnt signaling as potential therapeutic target in lung cancer. Expert Opin Ther Targets 2016; 20:999-1015. [PMID: 26882052 DOI: 10.1517/14728222.2016.1154945] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Wingless-type (Wnt) signaling is tightly regulated at multiple cellular levels and is dysregulated in lung cancer. Therefore, it offers therapeutic targets for developing novel agents for lung cancer treatment. AREAS COVERED In this article, we discuss the role of the Wnt signaling pathway in lung cancer, highlighting the aberrant activation of Wnt in lung cancer stem cells and its implication in resistance to radiotherapy, chemotherapy and targeted therapy. We also expound the regulatory roles of microRNAs in Wnt signaling, as well as the potential of the Wnt pathway to provide biomarkers and therapeutic targets in lung cancer. The potential use of small molecule and biological inhibitors targeting the Wnt pathway for lung cancer therapy and prevention is also discussed. EXPERT OPINION Wnt signaling plays an important role in the development and metastasis of lung cancer; the pathway provides targets to develop agents towards for cancer prevention and therapy. A number of clinical trials have shown the effectiveness of Wnt pathway inhibitors in epithelial tumors. However, the side effects should be considered. Nevertheless, the results from clinical studies suggest that inhibitors targeting the Wnt signaling show promise against lung cancer.
Collapse
Affiliation(s)
- Jiali Yang
- a Ningxia Key laboratory of Clinical and Pathogenic Microbiology , Center of Laboratory Medicine of General Hospital at Ningxia Medical University , Yinchuan , Ningxia 750004 , China
| | - Juan Chen
- b Department of Pulmonary and Critical Care Medicine , General Hospital, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Jinxi He
- c Department of Thoracic Surgery , General Hospital, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Jing Li
- c Department of Thoracic Surgery , General Hospital, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Juan Shi
- a Ningxia Key laboratory of Clinical and Pathogenic Microbiology , Center of Laboratory Medicine of General Hospital at Ningxia Medical University , Yinchuan , Ningxia 750004 , China
| | - William C Cho
- d Department of Clinical Oncology , Queen Elizabeth Hospital , Kowloon , Hong Kong
| | - Xiaoming Liu
- a Ningxia Key laboratory of Clinical and Pathogenic Microbiology , Center of Laboratory Medicine of General Hospital at Ningxia Medical University , Yinchuan , Ningxia 750004 , China
- e Human Stem Cell Institute, General Hospital, Ningxia Medical University , Yinchuan , Ningxia , China
| |
Collapse
|
22
|
Alama A, Gangemi R, Ferrini S, Barisione G, Orengo AM, Truini M, Bello MGD, Grossi F. CD133-Positive Cells from Non-Small Cell Lung Cancer Show Distinct Sensitivity to Cisplatin and Afatinib. Arch Immunol Ther Exp (Warsz) 2015; 63:207-14. [PMID: 25678473 DOI: 10.1007/s00005-015-0330-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/07/2014] [Indexed: 01/26/2023]
Abstract
The standard of care for advanced non-small cell lung cancer (NSCLC) consists in cisplatin-combination chemotherapy. In patients bearing tumors with activating mutations of the epidermal growth factor receptor (EGFR), the inhibition of the EGFR intracellular tyrosine kinase can induce up to 80 % response rates. However, both therapeutic strategies will eventually lead to recurrent disease due to the development of drug resistance. The identification of rare cancer stem-like cells able to repopulate the tumor, after failure to standard treatment modalities, has led to characterize these cells as potential therapeutic targets. This article will address the role of the CD133/EpCAM stem cell-related markers and explore cell sensitivity to cisplatin and to the EGFR-tyrosine kinase inhibitor, afatinib. Three human NSCLC cell lines, one wild-type (A549) and two harboring EGFR mutations (H1650 and H1975), as well as 20 NSCLC primary cultures, were grown in non-differentiating culture conditions for stem cell enrichment. Flow-cytometry analyses of CD133 and EpCAM and cell sensitivity to cisplatin and afatinib were performed. Moreover, the expression of activated EGFR was assessed by Western blot. The cell lines and primary cultures grown in non-differentiating culture conditions were enriched with CD133/EpCAM-positive cells and were significantly more resistant to cisplatin and more sensitive to afatinib as compared to the differentiated counterpart. In addition, increased EGFR-phosphorylation in non-differentiated cultures was observed. The present findings suggest that afatinib might be beneficial for patients bearing tumors with constitutively activated EGFR, to target chemo-resistant CD133/EpCAM-positive cancer stem cells.
Collapse
Affiliation(s)
- Angela Alama
- Lung Cancer Unit, IRCCS A.O.U. San Martino-IST, National Institute for Cancer Research, Largo Rosanna Benzi, 10, 16132, Genoa, Italy,
| | | | | | | | | | | | | | | |
Collapse
|