1
|
Aderibigbe O, Wood LB, Margulies SS. Cyclosporine A Accelerates Neurorecovery Transcriptional Trajectory in a Swine Model of Diffuse Traumatic Brain Injury. Int J Mol Sci 2025; 26:3531. [PMID: 40331981 PMCID: PMC12026708 DOI: 10.3390/ijms26083531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Mild traumatic brain injury (mTBI) is a leading cause of morbidity in children with both short- and long-term neurological, cognitive, cerebrovascular, and emotional deficits. These deficits have been attributed to ongoing pathophysiological cascades that occur acutely and persist post-injury. Given our limited understanding of the transcriptional changes associated with these pathophysiological cascades, we studied formalin-fixed paraffin-embedded (FFPE) tissues from the frontal cortex (FC) and the hippocampus + amygdala (H&A) regions of swine (N = 40) after a sagittal rapid non-impact head rotation (RNR). We then sequenced RNA to define transcriptional changes at 1 day and 1 week after injury and investigated the protective influence of cyclosporine A (CsA) treatment. Differentially expressed genes (DEGs) were classified into five temporal patterns (Early, Transient, Persistent, Intensified, Delayed, or Late). DEGs were more abundant at 1 week than 1 day. Shared significant gene ontology annotations in both regions included terms associated with neuronal distress at 1 day and neurorecovery at 1 week. CsA (20 mg/kg/day) infused for 1 day (beginning at 6 h after injury) accelerated 466 DEGs in the FC and 2794 DEGs in the H&A, such that the CsA-treated transcriptional profile was associated with neurorecovery. Overall, our data reveal the effects of anatomic region and elapsed time on gene expression post-mTBI and motivate future studies of CsA treatment.
Collapse
Affiliation(s)
- Oluwagbemisola Aderibigbe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan S. Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| |
Collapse
|
2
|
Lechner K, Zeeshana M, Noack M, Ali H, Neurath M, Weigmanna B. Small but powerful: Will nanoparticles be the future state‐of‐the‐art therapy for IBD? Expert Opin Drug Deliv 2022; 19:235-245. [DOI: 10.1080/17425247.2022.2043847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristina Lechner
- Medical Clinic I, University Hospital Erlangen, Research Campus, Hartmannstr.14, 91052, Erlangen, 91052 Erlangen, Germany
| | - Mahira Zeeshana
- Department of Pharmacy, Faculty of Biological Sciences, Quaid‐i‐Azam University, Islamabad, 45320, Pakistan
| | - Maxi Noack
- Medical Clinic I, University Hospital Erlangen, Research Campus, Hartmannstr.14, 91052, Erlangen, 91052 Erlangen, Germany
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid‐i‐Azam University, Islamabad, 45320, Pakistan
| | - Markus Neurath
- Medical Clinic I, University Hospital Erlangen, Ulmenweg 14, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Benno Weigmanna
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich‐Alexander University, Erlangen‐Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Giuffrida P, Di Sabatino A. Targeting T cells in inflammatory bowel disease. Pharmacol Res 2020; 159:105040. [PMID: 32585338 DOI: 10.1016/j.phrs.2020.105040] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
T cells play a pivotal role in the immune response underlying inflammatory bowel disease (IBD) pathogenesis. On this basis, over the past 25 years several drugs have assessed to target T cells in IBD patients. Amongst anti-CD3 antibodies, visilizumab and foralumab did not show clinical efficacy in ulcerative colitis (UC) and Crohn's disease (CD) patients, respectively, whereas otelixizumab has been tested in vitro only. The anti-CD4 BF-5 and cM-T412, and the anti-CD25 basiliximab and daclizumab were not effective in CD and UC patients, respectively. The anti-NKG2D antibody NNC0142-0002 showed clinical benefit in CD patients, in particular in biologic naïve ones, in a randomized, double-blind, parallel-group, placebo-controlled trial. The anti-CD40L M90 and the GSK1349571A blocking calcium release-activated calcium (CRAC) channels, which are involved in the T cell activation and proliferation, were tested only in ex vivo/in vitro experiments. Apart from ustekinumab, all the other drugs targeting T cell-derived cytokines failed. The reinduction of lamina propria T cell apoptosis is a mechanism to modulate T cell survival exploited by cyclosporin A, azathioprine and anti-tumor necrosis factor-α agents, such as infliximab, adalimumab and golimumab. In this article, we review the drugs targeting T cells via surface receptors, via T cell-derived cytokines, via CRAC channels or by inducing apoptosis.
Collapse
Affiliation(s)
- Paolo Giuffrida
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Sato H, Kaneko Y, Yamada K, Ristroph KD, Lu HD, Seto Y, Chan HK, Prud’homme RK, Onoue S. Polymeric Nanocarriers With Mucus-Diffusive and Mucus-Adhesive Properties to Control Pharmacokinetic Behavior of Orally Dosed Cyclosporine A. J Pharm Sci 2020; 109:1079-1085. [DOI: 10.1016/j.xphs.2019.10.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
5
|
Cyclosporin A ameliorates eclampsia seizure through reducing systemic inflammation in an eclampsia-like rat model. Hypertens Res 2020; 43:263-270. [PMID: 31932642 DOI: 10.1038/s41440-019-0387-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Our previous studies have shown that the maternal hyperinflammatory response in pre-eclampsia lowered the eclampsia-like seizure threshold. Cyclosporin A (CsA), which is an effective immunosuppressant, could attenuate the inflammatory responses in LPS-induced pre-eclampsia rats. Here, we hypothesized that CsA may ameliorate seizure severity through reducing systemic inflammation in pre-eclampsia/eclampsia. In the current study, the effects of CsA on pre-eclampsia manifestation, eclampsia-like seizure activities and systemic inflammation were examined in a pre-eclampsia model. Pregnant rats were given an intraperitoneal injection of the epileptogenic drug pentylenetetrazol (PTZ) following a tail vein injection of lipopolysaccharide to establish the eclampsia-like seizure model. CsA (5 mg/kg) was administered intravenously through the tail after LPS infusion. Mean systolic blood pressure and proteinuria in pre-eclampsia were detected. After PTZ injection, seizure activity was assessed, inflammatory responses were determined and pregnancy outcomes were analyzed. The results showed that CsA treatment significantly decreased blood pressure and proteinuria and increased the fetal and placental weight (P < 0.01). Meanwhile, CsA treatment significantly reduced serum IL-1β, TNF-α, and IL-17 levels (P < 0.01), decreased the seizure scores and prolonged the latency to seizure (P < 0.01). CsA effectively attenuated pre-eclampsia manifestation and eclampsia-like seizure severity. In addition, CsA treatment significantly reduced the inflammatory cytokine levels and improved pregnancy outcomes following eclampsia-like seizures. The decreased inflammatory cytokines in pre-eclampsia are coincident with attenuated pre-eclampsia manifestation after CsA treatment, suggesting that CsA treatment might decrease the eclampsia-like seizure severity through decreasing systemic inflammation in pre-eclasmpsia/eclampsia.
Collapse
|
6
|
Yoo JH, Donowitz M. Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases. World J Gastroenterol 2019; 25:4125-4147. [PMID: 31435168 PMCID: PMC6700704 DOI: 10.3748/wjg.v25.i30.4125] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The introduction of biologics such as anti-tumor necrosis factor (TNF) monoclonal antibodies followed by anti-integrins has dramatically changed the therapeutic paradigm of inflammatory bowel diseases (IBD). Furthermore, a newly developed anti-p40 subunit of interleukin (IL)-12 and IL-23 (ustekinumab) has been recently approved in the United States for patients with moderate to severe Crohn’s disease who have failed treatment with anti-TNFs. However, these immunosuppressive therapeutics which focus on anti-inflammatory mechanisms or immune cells still fail to achieve long-term remission in a significant percentage of patients. This strongly underlines the need to identify novel treatment targets beyond immune suppression to treat IBD. Recent studies have revealed the critical role of intestinal epithelial cells (IECs) in the pathogenesis of IBD. Physical, biochemical and immunologic driven barrier dysfunctions of epithelial cells contribute to the development of IBD. In addition, the recent establishment of adult stem cell-derived intestinal enteroid/organoid culture technology has allowed an exciting opportunity to study human IECs comprising all normal epithelial cells. This long-term epithelial culture model can be generated from endoscopic biopsies or surgical resections and recapitulates the tissue of origin, representing a promising platform for novel drug discovery in IBD. This review describes the advantages of intestinal enteroids/organoids as a research tool for intestinal diseases, introduces studies with these models in IBD, and gives a description of the current status of therapeutic approaches in IBD. Finally, we provide an overview of the current endeavors to identify a novel drug target for IBD therapy based on studies with human enteroids/organoids and describe the challenges in using enteroids/organoids as an IBD model.
Collapse
Affiliation(s)
- Jun-Hwan Yoo
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam 13496, South Korea
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
7
|
Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflammatory bowel disease. Intest Res 2018; 16:26-42. [PMID: 29422795 PMCID: PMC5797268 DOI: 10.5217/ir.2018.16.1.26] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory state of the gastrointestinal tract and can be classified into 2 main clinical phenomena: Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis of IBD, including CD and UC, involves the presence of pathogenic factors such as abnormal gut microbiota, immune response dysregulation, environmental changes, and gene variants. Although many investigations have tried to identify novel pathogenic factors associated with IBD that are related to environmental, genetic, microbial, and immune response factors, a full understanding of IBD pathogenesis is unclear. Thus, IBD treatment is far from optimal, and patient outcomes can be unsatisfactory. As result of massive studying on IBD, T helper 17 (Th17) cells and innate lymphoid cells (ILCs) are investigated on their effects on IBD. A recent study of the plasticity of Th17 cells focused primarily on colitis. ILCs also emerging as novel cell family, which play a role in the pathogenesis of IBD. IBD immunopathogenesis is key to understanding the causes of IBD and can lead to the development of IBD therapies. The aim of this review is to explain the pathogenesis of IBD, with a focus on immunological factors and therapies.
Collapse
Affiliation(s)
- Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Jeong eun Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
8
|
Abstract
Various therapeutic advances have led to a paradigm shift in the clinical management of patients with IBD. The introduction of immunosuppressive (such as azathioprine) and biologic agents (such as TNF blockers) has markedly reduced the need to use corticosteroids for therapy. Furthermore, the α4β7 integrin blocker vedolizumab has been introduced for clinical IBD therapy. Moreover, various new inhibitors of cytokines (for example, IL-6-IL-6R and IL-12-IL-23 blockers or apremilast), modulators of cytokine signalling events (for example, JAK inhibitors or SMAD7 blocker), inhibitors of transcription factors (for example, GATA3 or RORγt) and new anti-adhesion and anti-T-cell-activation and migration strategies (for example, β7 integrin, sphingosine 1-phosphate receptors and MAdCAM1 inhibitors, regulatory T-cell therapy and stem cells) are currently being evaluated in controlled clinical trials. This Review aims to provide a comprehensive overview about current and future therapeutic approaches for IBD therapy. Furthermore, potential mechanisms of action of these therapeutic approaches and their implications for clinical therapy in IBD are discussed.
Collapse
Affiliation(s)
- Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Ding Q, Zhou H, Yun B, Zhou L, Zhang N, Yin G, Fan J. Interleukin-13 Inhibits Expression of cyp27b1 in Peripheral CD14+ Cells That Is Correlated With Vertebral Bone Mineral Density of Patients With Ulcerative Colitis. J Cell Biochem 2016; 118:376-381. [PMID: 27381199 DOI: 10.1002/jcb.25646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a common problem in aged people and those with related diseases, such as inflammatory bowel diseases. Deregulation of vitamin D metabolism plays a role in the pathogenesis of osteoporosis. Micro RNA (miR) can regulate cytokine expression in cells. This study test a hypothesis that inflammatory cytokine interleukin (IL)-13 increases miR-19a to compromise cyp27b1 (a vitamin D hydroxylase) in peripheral CD14+ cells. Bone mineral density of L2-L4 was measured in 20 patients with ulcerative colitis (UC) and 20 healthy subjects. Peripheral CD14+ cells were isolated from healthy people and patients with UC. Expression of cyp27b1 by CD14+ cells was analyzed in the presence or absence of IL-13 in the culture. We observed that bone mineral density (BMD) in UC patients was significantly lower than healthy subjects. The BMD is negatively correlated with miR-19a in peripheral CD14+ cells. MiR-19a in peripheral CD14+ cell was correlated with serum IL-13 in UC patients. Expression of cyp27b1 in peripheral CD14+ cells was correlated with miR-19a and serum IL-13 in UC patients. IL-13 suppressed cyp27b1 expression in CD14+ cells. IL-13 increased expression of miR-19a in CD14+ cells. IL-13 suppresses cyp27b1 expression in peripheral CD14+ cells via up regulating miR-19a expression. J. Cell. Biochem. 118: 376-381, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qingfeng Ding
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Hao Zhou
- Emergency Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Bo Yun
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Lingjie Zhou
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Ning Zhang
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Guoyong Yin
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Jin Fan
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|