1
|
Sun Y, Liu Z, Zhang Z, Kang Y, Wang X, Zhang Y, Liu Y, Zhao P. Human induced pluripotent stem cell models for Alzheimer's disease research: a bibliometric analysis. Front Hum Neurosci 2025; 19:1548701. [PMID: 40177166 PMCID: PMC11962003 DOI: 10.3389/fnhum.2025.1548701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Alzheimer's disease (AD), the leading cause of dementia, remains without adequate treatment. Current models do not fully replicate human physiology and pathology. The advent of human induced pluripotent stem cell (hiPSC) technology offers a novel approach to studying AD. Methods Our study conducted a bibliometric analysis to assess the application and development of hiPSC technology in AD research. We retrieved 531 articles on hiPSC models of AD from the Web of Science Core Collection, published between January 2010 and June 2024. CiteSpace and VOSviewer were used to analyze authorship, geographic contributions, journal influence, and citation patterns. Results Our findings reveal a steady increase in publications over 14 years, with the United States leading in contributions, followed by China. Li-Huei Tsai from the Massachusetts Institute of Technology is a prominent researcher. PLoS One emerges as the most influential journal. Research trends have focused on inflammation, astrocytes, microglia, apolipoprotein E (ApoE), and tau. Discussion Bibliometric analysis is crucial in identifying research gaps and trends and guiding future studies to address unmet needs in understanding and modeling human physiology and pathology. Leveraging hiPSC models to investigate the molecular mechanisms of familial and sporadic AD is expected to provide a crucial foundation for developing future treatment strategies. Conclusion In summary, the bibliometric findings from this study provide a comprehensive overview of the current research landscape in hiPSC models for AD. It also highlights emerging trends and research gaps, crucial for guiding future research efforts, particularly in exploring novel therapeutic targets and improving understanding of disease mechanisms.
Collapse
Affiliation(s)
- Yuning Sun
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Zhilong Liu
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Zongbo Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yufeng Kang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinlian Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yiping Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Pei Zhao
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| |
Collapse
|
2
|
Qian T, He Y, Han C, Yan R, He W. Current status and prospects of traditional Chinese medicine combined with stem cell therapy for chronic kidney disease. Front Pharmacol 2025; 15:1505206. [PMID: 39877385 PMCID: PMC11772437 DOI: 10.3389/fphar.2024.1505206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Renal fibrosis is one of the main pathological features of chronic kidney disease (CKD), and its treatment has been a hot research topic. Recent studies have shown that stem cell therapy can repair renal pathological changes and slow the progression of CKD. In addition, a large number of experiments have confirmed that traditional Chinese medicine (TCM), especially Chinese medicine compound preparations, has the advantage of multitargeting interventions to improve renal fibrosis. Therefore, stem cell therapy combined with TCM is expected to provide new therapeutic ideas and measures to solve kidney problems. This article reviews the current status of TCM combined with stem cell therapy for CKD, discusses existing problems, and proposes future prospects.
Collapse
Affiliation(s)
- Tianyang Qian
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yining He
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Han
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Yancheng Dafeng Hospital of Chinese Medicine, Teaching Hospital of Nanjing University of Chinese Medicine, Yancheng, China
| | - Ruxue Yan
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiming He
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
4
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
5
|
Kumar AHS. Discovery and Development of Stem Cells for Therapeutic Applications. DRUG DISCOVERY AND DEVELOPMENT 2021:267-296. [DOI: 10.1007/978-981-15-5534-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zhao Y, Liu H, Zhao C, Dang P, Li H, Farzaneh M. Paracrine Interactions Involved in Human Induced Pluripotent Stem Cells Differentiation into Chondrocytes. Curr Stem Cell Res Ther 2020; 15:233-242. [PMID: 31889496 DOI: 10.2174/1574888x15666191224122058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA), as a degenerative joint disease, is the most common form of joint disorder that causes pain, stiffness, and other symptoms associated with OA. Various genetic, biomechanical, and environmental factors have a relevant role in the development of OA. To date, extensive efforts are currently being made to overcome the poor self-healing capacity of articular cartilage. Despite the pivotal role of chondrocytes, their proliferation and repair capacity after tissue injury are limited. Therefore, the development of new strategies to overcome these constraints is urgently needed. Recent advances in regenerative medicine suggest that pluripotent stem cells are promising stem cell sources for cartilage repair. Pluripotent stem cells are undifferentiated cells that have the capacity to differentiate into different types of cells and can self-renew indefinitely. In the past few decades, numerous attempts have been made to regenerate articular cartilage by using induced pluripotent stem cells (iPSCs). The potential applications of patient-specific iPSCs hold great promise for regenerative medicine and OA treatment. However, there are different culture conditions for the preparation and characterization of human iPSCs-derived chondrocytes (hiChondrocytes). Recent biochemical analyses reported that several paracrine factors such as TGFb, BMPs, WNT, Ihh, and Runx have been shown to be involved in cartilage cell proliferation and differentiation from human iPSCs. In this review, we summarize and discuss the paracrine interactions involved in human iPSCs differentiation into chondrocytes in different cell culture media.
Collapse
Affiliation(s)
- Yunchang Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Honghao Liu
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Chunjie Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Peng Dang
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Haijian Li
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Comput Struct Biotechnol J 2020; 18:3649-3665. [PMID: 33304462 PMCID: PMC7710510 DOI: 10.1016/j.csbj.2020.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases and have enabled tremendous progress in the field of regenerative medicine. We here outline the structural and molecular frameworks of the well-characterized type II CRISPR system and several computational tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease models has advanced research into the molecular aspects of disease conditions, including unraveling the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials, we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic approach to tackling a multitude of disease conditions.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
- CHA Stem Cell Institute, CHA University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
8
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
9
|
de Carvalho Ribeiro P, Oliveira LF, Filho MA, Caldas HC. Differentiating Induced Pluripotent Stem Cells into Renal Cells: A New Approach to Treat Kidney Diseases. Stem Cells Int 2020; 2020:8894590. [PMID: 32831854 PMCID: PMC7428838 DOI: 10.1155/2020/8894590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Renal disease is a major issue for global public health. Despite some progress in supportive care, the mortality rates among patients with this condition remain alarmingly high. Studies in pursuit of innovative strategies to treat renal diseases, especially stimulating kidney regeneration, have been developed. In this field, stem cell-based therapy has been a promising area. Induced pluripotent stem cell-derived renal cells (iPSC-RCs) represent an interesting source of cells for treating kidney diseases. Advances in regenerative medicine using iPSC-RCs and their application to the kidney are discussed in this review. Furthermore, the way differentiation protocols of induced pluripotent stem cells into renal cells may also be applied for the generation of kidney organoids is also described, contributing to studies in renal development, kidney diseases, and drug toxicity tests. The translation of the differentiation methodologies into animal model studies and the safety and feasibility of renal differentiated cells as a treatment for kidney injury are also highlighted. Although only few studies were published in this field, the results seem promising and support the use of iPSC-RCs as a potential therapy in the future.
Collapse
Affiliation(s)
- Patrícia de Carvalho Ribeiro
- Laboratory of Immunology and Experimental Transplantation-LITEX, Medical School of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | - Lucas Felipe Oliveira
- Physiology Division, Natural and Biological Sciences Institute, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Abbud Filho
- Laboratory of Immunology and Experimental Transplantation-LITEX, Medical School of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Sao Paulo, Brazil
- Kidney Transplant Unit, Hospital de Base, FAMERP/FUNFARME, Sao Jose do Rio Preto, Sao Paulo, Brazil
- Urology and Nephrology Institute, Sao Jose Rio Preto, Sao Paulo, Brazil
| | - Heloisa Cristina Caldas
- Laboratory of Immunology and Experimental Transplantation-LITEX, Medical School of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Sao Paulo, Brazil
- Kidney Transplant Unit, Hospital de Base, FAMERP/FUNFARME, Sao Jose do Rio Preto, Sao Paulo, Brazil
| |
Collapse
|
10
|
Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21155467. [PMID: 32751747 PMCID: PMC7432218 DOI: 10.3390/ijms21155467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells are laboratory-produced cells that combine the biological advantages of somatic adult and stem cells for cell-based therapy. The reprogramming of cells, such as fibroblasts, to an embryonic stem cell-like state is done by the ectopic expression of transcription factors responsible for generating embryonic stem cell properties. These primary factors are octamer-binding transcription factor 4 (Oct3/4), sex-determining region Y-box 2 (Sox2), Krüppel-like factor 4 (Klf4), and the proto-oncogene protein homolog of avian myelocytomatosis (c-Myc). The somatic cells can be easily obtained from the patient who will be subjected to cellular therapy and be reprogrammed to acquire the necessary high plasticity of embryonic stem cells. These cells have no ethical limitations involved, as in the case of embryonic stem cells, and display minimal immunological rejection risks after transplant. Currently, several clinical trials are in progress, most of them in phase I or II. Still, some inherent risks, such as chromosomal instability, insertional tumors, and teratoma formation, must be overcome to reach full clinical translation. However, with the clinical trials and extensive basic research studying the biology of these cells, a promising future for human cell-based therapies using iPS cells seems to be increasingly clear and close.
Collapse
|
11
|
Liu W, Ju L, Cheng S, Wang G, Qian K, Liu X, Xiao Y, Wang X. Conditional reprogramming: Modeling urological cancer and translation to clinics. Clin Transl Med 2020; 10:e95. [PMID: 32508060 PMCID: PMC7403683 DOI: 10.1002/ctm2.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Patient-derived models, including cell models (organoids and conditionally reprogrammed cells [CRCs]) and patient-derived xenografts, are urgently needed for both basic and translational cancer research. Conditional reprogramming (CR) technique refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. Considering its robust features, the CR technique may facilitate cancer research in many aspects. Under in vitro culturing, malignant CRCs can share certain genetic aberrations and tumor phenotypes with their parental specimens. Thus, tumor CRCs can promisingly be utilized for the study of cancer biology, the discovery of novel therapies, and the promotion of precision medicine. For normal CRCs, the characteristics of normal karyotype maintenance and lineage commitment suggest their potential in toxicity testing and regenerative medicine. In this review, we discuss the applications, limitations, and future potential of CRCs in modeling urological cancer and translation to clinics.
Collapse
Affiliation(s)
- Wei Liu
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Lingao Ju
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Songtao Cheng
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Gang Wang
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Kaiyu Qian
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Yu Xiao
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Xinghuan Wang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Medical Research InstituteWuhan UniversityWuhanChina
| |
Collapse
|
12
|
Liu MC, Chang ML, Wang YC, Chen WH, Wu CC, Yeh SD. Revisiting the Regenerative Therapeutic Advances Towards Erectile Dysfunction. Cells 2020; 9:E1250. [PMID: 32438565 PMCID: PMC7290763 DOI: 10.3390/cells9051250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is an inability to attain or maintain adequate penile erection for successful vaginal intercourse, leading to sexual and relationship dissatisfaction. To combat ED, various surgical and non-surgical approaches have been developed in the past to restore erectile functions. These therapeutic interventions exhibit significant impact in providing relief to patients; however, due to their associated adverse effects and lack of long-term efficacy, newer modalities such as regenerative therapeutics have gained attention due to their safe and prolonged efficacy. Stem cells and platelet-derived biomaterials contained in platelet-rich plasma (PRP) are thriving as some of the major therapeutic regenerative agents. In recent years, various preclinical and clinical studies have evaluated the individual, as well as combined of stem cells and PRP to restore erectile function. Being rich in growth factors, chemokines, and angiogenic factors, both stem cells and PRP play a crucial role in regenerating nerve cells, myelination of axons, homing and migration of progenitor cells, and anti-fibrosis and anti-apoptosis of damaged cavernous nerve in corporal tissues. Further, platelet-derived biomaterials have been proven to be a biological supplement for enhancing the proliferative and differentiation potential of stem cells towards neurogenic fate. Therefore, this article comprehensively analyzes the progresses of these regenerative therapies for ED.
Collapse
Affiliation(s)
- Ming-Che Liu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (M.-C.L.); (C.-C.W.)
- Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, school of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Meng-Lin Chang
- Department of Urology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ya-Chun Wang
- TCM Biotech International Corp., New Taipei City 22175, Taiwan; (Y.-C.W.); (W.-H.C.)
| | - Wei-Hung Chen
- TCM Biotech International Corp., New Taipei City 22175, Taiwan; (Y.-C.W.); (W.-H.C.)
| | - Chien-Chih Wu
- Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (M.-C.L.); (C.-C.W.)
- Department of Education and Humanities in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shauh-Der Yeh
- Department of Urology and Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RFB. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst 2020; 145:2070-2105. [DOI: 10.1039/c9an01811e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This comprehensive review article discusses current and future perspectives of Raman spectroscopy-based analyses of cell therapy processes and products.
Collapse
Affiliation(s)
- Shreyas Rangan
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - H. Georg Schulze
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Martha Z. Vardaki
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Michael W. Blades
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - James M. Piret
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - Robin F. B. Turner
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| |
Collapse
|
14
|
Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation. Stem Cells Int 2019; 2019:1569740. [PMID: 31428157 PMCID: PMC6681599 DOI: 10.1155/2019/1569740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022] Open
Abstract
Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs.
Collapse
|
15
|
Chen J, Chen X, Yao J, Li M, Yang X. The combination of Decitabine and EPZ-6438 effectively facilitate adipogenic differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Biochem Biophys Res Commun 2019; 516:307-312. [PMID: 31256938 DOI: 10.1016/j.bbrc.2019.06.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/16/2019] [Indexed: 12/16/2022]
Abstract
As a novel type of mesenchymal stem cell, induced pluripotent stem cell-derived mesenchymal stem cells (iPMSCs) have huge potential for cell therapy. iPMSCs exhibited the typical characteristics of MSCs, whereas the tri-lineage differentiation potential is limited, especially the adipogenic propensity. Here, to reveal the molecular mechanism we carried out the epigenetic comparisons between the iPMSCs and the bone marrow-derived mesenchymal stem cells (BMSCs) and embryonic stem cell-derived mesenchymal stem cells (EMSCs). We found that the iPMSCs was significantly higher than the BMSCs in terms of genome-wide DNA methylation. Meanwhile, the adipogenic gene PPARγ promoter region existed hypermethylation. In addition, compared with EMSCs and BMSCs, iPMSCs had significant differences in the histones epigenetic modification of methylation and acetylation, especially high levels of histone 27 lysine trimethylation (H3K27me3). Furthermore, the epigenetic modifiers Decitabine and EPZ6438 effectively upregulated the gene expression of PPARγ and promoted the adipogenic differentiation of iPMSCs via chromatin remodeling. Taken together, our findings set new metrics to the applications for improving the efficiency and the therapeutic potential of iPMSCs.
Collapse
Affiliation(s)
- Juan Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, PR China
| | - Xuan Chen
- Fujian Institute of Traditional Chinese Medicine, Fuzhou, 350001, PR China
| | - Jianfeng Yao
- Quanzhou Maternity & Child Healthcare Hospital, Quanzhou, 362000, PR China
| | - Ming Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, PR China
| | - Xiaoyu Yang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, PR China; Fuzhou Maternity & Child Healthcare Hospital, Fuzhou, 350005, PR China.
| |
Collapse
|
16
|
Rota C, Morigi M, Imberti B. Stem Cell Therapies in Kidney Diseases: Progress and Challenges. Int J Mol Sci 2019; 20:ijms20112790. [PMID: 31181604 PMCID: PMC6600599 DOI: 10.3390/ijms20112790] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of renal diseases is emerging as a public health problem. Despite major progress in supportive therapy, mortality rates among patients remain high. In an attempt to find innovative treatments to stimulate kidney regeneration, stem cell-based technology has been proposed as a potentially promising strategy. Here, we summarise the renoprotective potential of pluripotent and adult stem cell therapy in experimental models of acute and chronic kidney injury and we explore the different mechanisms at the basis of stem cell-induced kidney regeneration. Specifically, cell engraftment, incorporation into renal structures, or paracrine activities of embryonic or induced pluripotent stem cells as well as mesenchymal stem cells and renal precursors are analysed. We also discuss the relevance of stem cell secretome-derived bioproducts, including soluble factors and extracellular vesicles, and the option of using them as cell-free therapy to induce reparative processes. The translation of the experimental results into clinical trials is also addressed, highlighting the safety and feasibility of stem cell treatments in patients with kidney injury.
Collapse
Affiliation(s)
- Cinzia Rota
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| |
Collapse
|
17
|
Effects of the Extracts from Fruit and Stem of Camellia japonica on Induced Pluripotency and Wound Healing. J Clin Med 2018; 7:jcm7110449. [PMID: 30463279 PMCID: PMC6262430 DOI: 10.3390/jcm7110449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Small molecules that improve reprogramming, stem cell properties, and regeneration can be widely applied in regenerative medicine. Natural plant extracts represent an abundant and valuable source of bioactive small molecules for drug discovery. Natural products themselves or direct derivatives of them have continued to provide small molecules that have entered clinical trials, such as anticancer and antimicrobial drugs. Here, we tested 3695 extracts from native plants to examine whether they can improve induced pluripotent stem cell (iPSC) generation using genetically homogeneous secondary mouse embryonic fibroblasts (MEFs) harboring doxycycline (dox)-inducible reprograming transgenes. Among the tested extracts, extracts from the fruit and stem of Camellia japonica (CJ) enhanced mouse and human iPSC generation and promoted efficient wound healing in an in vivo mouse wound model. CJ is one of the best-known species of the genus Camellia that belongs to the Theaceae family. Our findings identified the natural plant extracts from the fruit and stem of CJ as novel regulators capable of enhancing cellular reprogramming and wound healing, providing a useful supplement in the development of a more efficient and safer method to produce clinical-grade iPSCs and therapeutics.
Collapse
|
18
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
19
|
Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl Med 2017; 6:1940-1948. [PMID: 28836738 PMCID: PMC6430045 DOI: 10.1002/sctm.17-0148] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
Bioprinting is a quickly progressing technology, which holds the potential to generate replacement tissues and organs. Stem cells offer several advantages over differentiated cells for use as starting materials, including the potential for autologous tissue and differentiation into multiple cell lines. The three most commonly used stem cells are embryonic, induced pluripotent, and adult stem cells. Cells are combined with various natural and synthetic materials to form bioinks, which are used to fabricate scaffold‐based or scaffold‐free constructs. Computer aided design technology is combined with various bioprinting modalities including droplet‐, extrusion‐, or laser‐based bioprinting to create tissue constructs. Each bioink and modality has its own advantages and disadvantages. Various materials and techniques are combined to maximize the benefits. Researchers have been successful in bioprinting cartilage, bone, cardiac, nervous, liver, and vascular tissues. However, a major limitation to clinical translation is building large‐scale vascularized constructs. Many challenges must be overcome before this technology is used routinely in a clinical setting. Stem Cells Translational Medicine2017;6:1940–1948
Collapse
Affiliation(s)
| | | | - Aman Dhawan
- Department of Orthopedic Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ibrahim T Ozbolat
- Department of Engineering Science and Mechanics, Pennsylvania, USA.,Department of Biomedical Engineering, Pennsylvania, USA.,Huck Institutes of the Life Sciences, Pennsylvania, USA.,Materials Research Institute, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
20
|
Kugler J, Huhse B, Tralau T, Luch A. Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opin Drug Metab Toxicol 2017; 13:833-841. [PMID: 28675072 DOI: 10.1080/17425255.2017.1351548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The advent of stem cell technology has seen the establishment of embryonic stem cells (ESCs) as molecular model systems and screening tools. Although ESCs are nowadays widely used in research, regulatory implementation for developmental toxicity testing is pending. Areas Covered: This review evaluates the performance of current ESC, including human (h)ESC testing systems, trying to elucidate their potential for developmental toxicity testing. It shall discuss defining parameters and mechanisms, their relevance and contemplate what can realistically be expected. Crucially this includes the question of how to ascertain the quality of currently employed cell lines and tests based thereon. Finally, the use of hESCs will raise ethical concerns which should be addressed early on. Expert Opinion: While the suitability of (h)ESCs as tools for research and development goes undisputed, any routine use for developmental toxicity testing currently still seems premature. The reasons for this comprise inherent biological deficiencies as well as cell line quality and system validation. Overcoming these issues will require collaboration of scientists, test developers and regulators. Also, validation needs to be made worthwhile for academia. Finally we have to continuously rethink existing strategies, making room for improved testing and innovative approaches.
Collapse
Affiliation(s)
- Josephine Kugler
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Bettina Huhse
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Tewes Tralau
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Andreas Luch
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
|
21
|
Zhang N, Lyu Y, Pan X, Xu L, Xuan A, He X, Huang W, Long D. miR‑146b‑5p promotes the neural conversion of pluripotent stem cells by targeting Smad4. Int J Mol Med 2017; 40:814-824. [PMID: 28713933 PMCID: PMC5548013 DOI: 10.3892/ijmm.2017.3064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/30/2017] [Indexed: 01/06/2023] Open
Abstract
Pluripotent stem cells (PSCs) are regarded as potential sources that provide specific neural cells for cell therapy in some nervous system diseases. However, the mechanisms underlying the neural differentiation of PSCs remain largely unknown. MicroRNAs (miRNAs or miRs) are a class of small non-protein-coding RNAs that act as critical regulatory molecules in many cellular processes. In this study, we found that miR-146b-5p expression was markedly increased following the neural induction of mouse embryonic stem cells (ESCs) or induced PSCs (iPSCs). In this study, to further identify the role of miR-146b-5p, we generated stable miR-146b-5p- overexpressing ESC and iPSC cell lines, and induced the differentiation of these cells by the adherent monolayer culture method. In the miR-146b-5p-overexpressing ESC- or iPSC- derived cultures, RT-qPCR analysis revealed that the mRNA expression levels of neuroectoderm markers, such as Sox1, Nestin and Pax6, were markedly increased, and flow cytometric analysis verified that the number of Nestin-positive cells was higher in the miR-146b-5p-overexpressing compared with the control cells. Mechanistically, the miR-146b-5p-overexpressing ESCs or iPSCs exhibited a significant reduction in Oct4 expression, which may be an explanation for these cells having a tendency to differentiate towards the neural lineage. Moreover, we confirmed that miR-146b-5p directly targeted Smad4 and negatively regulated the transforming growth factor (TGF)-β signaling pathway, which contributed to the neural commitment of PSCs. Collectively, our findings uncover the essential role of miR-146b-5p in the neural conversion of PSCs.
Collapse
Affiliation(s)
- Nianping Zhang
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ying Lyu
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xuebing Pan
- Department of Human Anatomy, College of Health Sciences of Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Liping Xu
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Aiguo Xuan
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaosong He
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Wandan Huang
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Dahong Long
- Department of Human Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
22
|
|