1
|
Doro L, Peana AT, Migheli R, Capobianco G, Criscione M, Montella A, Campesi I. Effect of (R)-(-)-Linalool on endothelial damage: Sex differences. Biochem Biophys Rep 2024; 40:101846. [PMID: 39483177 PMCID: PMC11525626 DOI: 10.1016/j.bbrep.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Oxidative stress and inflammation are responsible for endothelial damage displaying many sex differences. Lipopolysaccharide (LPS) is a pathogenic stimulus that can trigger inflammation, contributing to endothelial dysfunction. Given the scientific evidence on the effectiveness of herbal extracts in managing endothelial dysfunction, we considered the (R)-(-)-Linalool (LIN), an aromatic monoterpene alcohol, as a bioactive phytochemical compound that could prevent and improve endothelial injury. In this study, we evaluated the effect of the LIN on LPS-induced damage in female and male human umbilical vein endothelial cells (FHUVECs and MHUVECs), measuring cell viability, cytokines release (IL-6 and TNF-α), malondialdehyde (MDA), and nitrites. LPS significantly reduced viability both in MHUVECs and FHUVECs. Moreover, LPS increased the IL-6, TNF-α, and MDA level only in FHUVECs if compared to basal value; despite that, LPS reduced nitrites only in MHUVECs. LIN alone did not affect the parameters measured except for an increase in nitrites in FHUVECs. Nevertheless, LIN reduced damage and restored endothelium viability reduced by LPS without a clear sex difference. Under LPS, LIN inhibited IL-6 release and reduced MDA levels only in FHUVECs. The present data confirm the existence of sex differences in the behavior of HUVECs under LPS conditions. The administration of LIN seems to have a more evident effect on FHUVECs after damage induced by LPS. These LIN effects are important to conduct further well-designed studies on the sex-specific use of this compound on vascular endothelial injury.
Collapse
Affiliation(s)
- Laura Doro
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Alessandra T. Peana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Giampiero Capobianco
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
- Gynecologic and Obstetric Clinic, AOU, Viale San Pietro 12, 07100, Sassari, Italy
| | - Massimo Criscione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| |
Collapse
|
2
|
Li D, Li X, Zhang X, Chen J, Wang Z, Yu Z, Wu M, Liu L. Geniposide for treating atherosclerotic cardiovascular disease: a systematic review on its biological characteristics, pharmacology, pharmacokinetics, and toxicology. Chin Med 2024; 19:111. [PMID: 39164773 PMCID: PMC11334348 DOI: 10.1186/s13020-024-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, the prevalence and fatality rates of atherosclerotic cardiovascular disease have not only shown a consistent rise that cannot be ignored, but have also become a pressing social health problem that requires urgent attention. While interventional surgery and drug therapy offer significant therapeutic results, they often come with common side effects. Geniposide, an active component extracted from the Chinese medicine Gardenia jasminoides Ellis, shows promise in the management of cardiac conditions. This review comprehensively outlines the underlying pharmacological mechanisms by which geniposide exerts its effects on atherosclerosis. Geniposide exhibits a range of beneficial effects including alleviating inflammation, inhibiting the development of macrophage foam cells, improving lipid metabolism, and preventing platelet aggregation and thrombosis. It also demonstrates mitochondrial preservation, anti-apoptotic effects, and modulation of autophagy. Moreover, geniposide shows potential in improving oxidative stress and endoplasmic reticulum stress by maintaining the body's antioxidant and oxidative balance. Additionally, this review comprehensively details the biological properties of geniposide, including methods of extraction and purification, as well as its pharmacokinetics and toxicological characteristics. It further discusses the clinical applications of related biopharmaceuticals, emphasizing the potential of geniposide in the prevention and treatment of atherosclerotic cardiovascular diseases. Furthermore, it highlights the limitations of current research, aiming to provide insights for future studies.
Collapse
Affiliation(s)
- Dexiu Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zeping Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zongliang Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
3
|
Kim HJ, Park W. Alleviative Effect of Geniposide on Lipopolysaccharide-Stimulated Macrophages via Calcium Pathway. Int J Mol Sci 2024; 25:1728. [PMID: 38339007 PMCID: PMC10855527 DOI: 10.3390/ijms25031728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, we investigated how geniposide (a bioactive ingredient of gardenia fruit) acts on lipopolysaccharide (LPS)-stimulated macrophages. Griess reagent assay, Fluo-4 calcium assay, dihydrorhodamine 123 assay, multiplex cytokine assay, quantitative RT-PCR, and flow cytometry assay were used for this study. Data showed that geniposide at concentrations of 10, 25, and 50 μM reduced significantly the levels of nitric oxide, intracellular Ca2+, and hydrogen peroxide in LPS-activated RAW 264.7. Multiplex cytokine assay showed that geniposide at concentrations of 10, 25, and 50 μM meaningfully suppressed levels of IL-6, G-CSF, MCP-1, and MIP-1α in RAW 264.7 provoked by LPS; additionally, geniposide at concentrations of 25 and 50 μM meaningfully suppressed the levels of TNF-α, IP-10, GM-CSF, and MIP-1β. Flow cytometry assay showed that geniposide reduces significantly the level of activated P38 MAPK in RAW 264.7 provoked by LPS. Geniposide meaningfully suppressed LPS-induced transcription of inflammatory target genes, such as Chop, Jak2, Fas, c-Jun, c-Fos, Stat3, Nos2, Ptgs2, Gadd34, Asc, Xbp1, Nlrp3, and Par-2. Taken together, geniposide exerts alleviative effects in LPS-stimulated macrophages via the calcium pathway.
Collapse
Affiliation(s)
| | - Wansu Park
- Department of Pathology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
4
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
5
|
Chen JS, Wang MX, Wang MM, Zhang YK, Guo X, Chen YY, Zhang MQ, Sun JY, Liu YF, Liu C. Synthesis and biological evaluation of geniposide derivatives as inhibitors of hyperuricemia, inflammatory and fibrosis. Eur J Med Chem 2022; 237:114379. [DOI: 10.1016/j.ejmech.2022.114379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/16/2023]
|
6
|
Tian J, Qin S, Han J, Meng J, Liang A. A review of the ethnopharmacology, phytochemistry, pharmacology and toxicology of Fructus Gardeniae (Zhi-zi). JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:114984. [PMID: 35066066 DOI: 10.1016/j.jep.2022.114984] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Gardeniae (FG) is the dried fruit of Gardenia jasminoides Ellis (GjE), which belongs to the family Rubiaceae. FG has a long history of use as a herb, and was originally recorded in Sheng Nong's herbal classic. FG has also been widely used as both medicine and food. AIM OF STUDY This review aimed to provide a systematic and comprehensive analysis of the current research progress of FG in terms of ethnopharmacology, phytochemistry, pharmacology and toxicity, to provide new insights and extensive field of view for subsequent studies. METHODS Scientific databases, including CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures) were searched to gather data about FG and its main active ingredients such as geniposide and genipin (only regarding toxicity). RESULTS Many chemical constituents have been identified from the fruit of GjE, including iridoids, terpenoids, flavonoids, organic acids, volatile oils and others. The constituents of different parts of FG and processed FG are different from those of whole FG. FG extract and its main active constituents have been reported to have pharmacological properties such as hepatoprotective, choleretic, anti-inflammatory, antioxidant, neuroprotective, anti-diabetic, anti-apoptotic and antitumor activities. However, an increasing number of studies have shown that FG induces multiple organ injury, especially causing hepatotoxicity and nephrotoxicity, which could increase the risk during clinical use. The available literature shows that geniposide, a major active component of FG and a critical marker for its quality, is associated with the pharmacology and toxicity of FG. CONCLUSION Although a large number of studies examining FG have been published, issues remain. In the aspect of FG's pharmacology, the traditional efficacy and modern pharmacological effects of FG should be combined, which to broadens clinical application prospects. In addition, few studies have assessed the toxicity of FG. Toxicity assessment of FG should tackle various aspects, including compatibility, processing and the symptom-based prescription theory, in addition to over-dosage or long-term use, for a reasonable clinical use.
Collapse
Affiliation(s)
- Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Shasha Qin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China.
| |
Collapse
|
7
|
Liu XH, Wu LM, Wang JL, Dong XH, Zhang SC, Li XH, Xu H, Liu DB, Li ZH, Liu ZM, Wu SG, Hu YW. Long non-coding RNA RP11-490M8.1 inhibits lipopolysaccharide-induced pyroptosis of human umbilical vein endothelial cells via the TLR4/NF-κB pathway. Immunobiology 2021; 226:152133. [PMID: 34469785 DOI: 10.1016/j.imbio.2021.152133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Pyroptosis is a relatively newly discovered form of programmed cell death that plays an important role in the development of atherosclerosis. Many studies have reported that lncRNAs participated in the regulation of atherosclerosis development. However, the regulatory mechanism of lncRNAs in pyroptosis must be studied further. METHODS In a previous study, microarray analysis was used to detect the lncRNA expression profile in three human advanced atherosclerotic plaques and three normal arterial intimae. In the present research, in vitro assays were performed to investigate the role of lncRNA RP11-490M8.1 on pyroptosis. The relative gene mRNA and lncRNA expression levels were tested by quantitative real-time PCR, and protein levels were evaluated by western blot analysis. The RNA hybrid structure was analyzed using the DINAMelt server. RESULTS The lncRNA RP11-490M8.1 was significantly downregulated in atherosclerotic plaques and serum. Lipopolysaccharide (LPS) markedly reduced the expression of lncRNA RP11-490M8.1 and induced pyroptosis by increasingthe mRNA and protein levels of NLRP3, caspase-1, ASC, IL-1β, and IL-18 in HUVECs. The promotion effects ofLPS on pyroptosis were markedly suppressed by overexpression of lncRNA RP11-490M8.1. In addition, LPS increased the mRNA and protein levels ofTLR4 and NF-κB, which was also markedly offsetby overexpression of lncRNA RP11-490M8.1. CONCLUSIONS These findings indicated that lncRNA RP11-490M8.1 inhibited LPS-induced pyroptosis via the TLR4/NF-κB pathway. Thus, lncRNA RP11-490M8.1 may provide a therapeutic target to ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Xue-Hui Liu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, China
| | - Li-Mei Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, China
| | - Jia-Li Wang
- Department of Blood Transfusion, Linyi People's Hospital of Shandong Province, Linyi, ShanDong 276000, China
| | - Xian-Hui Dong
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, China
| | - Shun-Chi Zhang
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, China
| | - Xue-Heng Li
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hui Xu
- Traditional Chinese Medical Hospital of Qingyuan, Qingyuan, Guangdong 511500, China
| | - Da-Bin Liu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, China
| | - Zhi-Hai Li
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, China
| | - Zhe-Ming Liu
- Stomatology Major, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, China.
| | - Yan-Wei Hu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, China.
| |
Collapse
|
8
|
Deng R, Bu Y, Li F, Wu H, Wang Y, Wei W. The interplay between fibroblast-like synovial and vascular endothelial cells leads to angiogenesis via the sphingosine-1-phosphate-induced RhoA-F-Actin and Ras-Erk1/2 pathways and the intervention of geniposide. Phytother Res 2021; 35:5305-5317. [PMID: 34327764 DOI: 10.1002/ptr.7211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
The changes of fibroblast-like synoviocytes (FLSs) and vascular endothelial cells (VECs) biological functions are closely related to angiogenesis in rheumatoid arthritis (RA). Nevertheless, how the crosstalk between FLSs and VECs interferes with RA is far from being clarified. Herein, we studied the effect of the reciprocal interactions between FLSs and VECs on angiogenesis and mechanism of geniposide (GE). After administration of GE, improvement of synovial hyperplasia in adjuvant arthritis rats was accompanied by downregulation of SphK1 and p-Erk1/2. The dynamic interaction between FLSs and VECs triggers the release of S1P by activating p-Erk1/2 and SphK1, then activating RhoA-F-actin and Ras-Erk1/2 pathways. When exposed to the inflammatory microenvironment mediated by FLSs-VECs crosstalk, proliferation, migration, and permeability of VECs were enhanced, the angiogenic factors were imbalanced. Meanwhile, the proliferation and secretory ability of FLSs increased. Interestingly, depletion of S1P or blocking of the activation of SphK1 by GE and PF-543 prevented the changes. In conclusion, S1P released during FLSs-VECs crosstalk changed their biological functions by activating RhoA-F-actin and Ras-Erk1/2 pathways. GE acted on p-Erk1/2 and SphK1, inhibited the secretion of S1P, and blocked the interplay between FLSs and VECs. These results provide new insights into the mechanism of angiogenesis in RA.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Wei
- Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Institute of Clinical Pharmacology, Antiinflammatory Immune Drugs Collaborative Innovation Center, Hefei, China
| |
Collapse
|
9
|
Chen W, Wang Y, Zhou T, Xu Y, Zhan J, Wu J. CXCL13 Is Involved in the Lipopolysaccharide-Induced Hyperpermeability of Umbilical Vein Endothelial Cells. Inflammation 2021; 43:1789-1796. [PMID: 32500306 PMCID: PMC7476967 DOI: 10.1007/s10753-020-01253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sepsis is a disease that is characterized by a severe systemic inflammatory response to microbial infection and lipopolysaccharide (LPS) and is a well-known inducer of sepsis, as well as endothelial cell hyperpermeability. In the present study, we confirm the elevation of CXC chemokine ligand 13 (CXCL13) in sepsis patients. We also show that LPS exposure increases the release of CXCL13, as well as the mRNA and protein expression of CXCL13 and its receptor, CXC chemokine receptor 5 (CXCR5) in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. We also examined the effects of CXCL13 knockdown on LPS-mediated endothelial hyperpermeability and tight junction (TJ) protein expression in HUVECs. Our results show that HUVECs exposed to LPS result in a significant decrease in transendothelial electrical resistance (TER) and TJ protein (Zonula occluden-1, occludin, and claudin-4) expression, and a notable increase in fluorescein isothiocyanate (FITC)-dextran flux and p38 phosphorylation, which was partially reversed by CXCL13 knockdown. Recombinant CXCL13 treatment had a similar effect as LPS exposure, which was attenuated by a p38 inhibitor, SB203580. Moreover, the CXCL13-neutralizing antibody significantly increased the survival rate of LPS-induced sepsis mice. Collectively, our results show that CXCL13 plays a key role in LPS-induced endothelium hyperpermeability via regulating p38 signaling and suggests that therapeutically targeting CXCL13 may be beneficial for the treatment of sepsis.
Collapse
Affiliation(s)
- Wen Chen
- Department of General Practice, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Wang
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Zhou
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuansheng Xu
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianwei Zhan
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinhong Wu
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Lu Y, Chen J, He X, Xu S, Chen YE, Gao J, Hou S. Combined Administration of Vitamin D 3 and Geniposide Is Less Effective than Single Use of Vitamin D 3 or Geniposide in the Treatment of Ulcerative Colitis. Front Pharmacol 2021; 12:714065. [PMID: 34650431 PMCID: PMC8505666 DOI: 10.3389/fphar.2021.714065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
With the increasing incidence of ulcerative colitis (UC) in China, Chinese medicinal herbs or relatively active compounds are widely applied in treating UC. These medicines may be combined with other therapeutic agents such as vitamin D3. Nevertheless, the efficacy of these combinations for UC is unclear. Geniposide is an active component in many Chinese herbal medicines. It could ameliorate dextran sulfate sodium (DSS)-induced colitis in mice. This study was designed to determine the efficacy and mechanism of the single use and combination of geniposide and vitamin D3 on a mouse model of acute colitis. Data showed that a single administration of geniposide (2 mg/kg) or vitamin D3 (4 IU/day) could significantly improve the symptoms of UC and relieve colon damage. Geniposide and vitamin D could significantly decrease the levels of TNF-α and IL-6 in serum and colon, and increase the level of IL-10 in the colon. However, the combined treatment of geniposide (2 mg/kg) and vitamin D3 (4 IU/day) exerted less beneficial effects on UC in mice, indicating by less improvement of UC symptoms, colon damage, and inflammatory infiltration. The combination only downregulated the level of TNF-α in serum and IL-6 in the colon. Our data further demonstrated that geniposide could inhibit the activation of p38 MAPK and then restrict the vitamin D receptor signaling stimulated by vitamin D3. These results implied that the combination of geniposide and vitamin D3 might not be an ideal combined treatment for acute colitis, and the combination of vitamin D supplementary and geniposide (or herbal medicines rich in geniposide) need more evaluation before being applied to treat UC in clinic.
Collapse
Affiliation(s)
- Yingyu Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianqiang Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xueling He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuoxi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong-er Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jie Gao, ; Shaozhen Hou,
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jie Gao, ; Shaozhen Hou,
| |
Collapse
|
11
|
Zhang X, Gao T, Wang Y. Geniposide alleviates lipopolysaccharide (LPS)-induced inflammation by downregulation of miR-27a in rat pancreatic acinar cell AR42J. Biol Chem 2019; 400:1059-1068. [PMID: 30897061 DOI: 10.1515/hsz-2018-0422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/15/2019] [Indexed: 01/17/2023]
Abstract
Pancreatitis is a disease caused by inflammation of pancreatic acinar cells. Geniposide (GEN) possesses anti-inflammation activities. Hence, we investigated the effects of GEN on lipopolysaccharide (LPS)-stimulated AR42J cells. AR42J cells were stimulated by LPS and then treated with GEN and/or transfected with miR-27a mimic or negative control. Cell viability and cell apoptosis were detected using the Cell Counting Kit-8 and flow cytometry, respectively. All related proteins were measured by Western blot. The expression of miR-27a was detected by quantitative real time-polymerase chain reaction (qRT-PCR). Moreover, the expression of inflammatory cytokines interleukin-6 (IL-6) and monocyte chemoattractant protein (MCP)-1 was analyzed by qRT-PCR and Western blot. LPS significantly decreased cell viability, and enhanced cell apoptosis and IL-6, MCP-1 expression. Then GEN administration alleviated inflammatory injury by increasing cell viability, while reducing apoptosis, and IL-6 and MCP-1 expression. GEN downregulated miR-27a expression which was induced by LPS. Transfection with miR-27a mimic partially eliminated the protective effects of GEN. The phosphorylation of JNK and c-Jun was downregulated by GEN while upregulated by miR-27a overexpression. GEN alleviates LPS-induced AR42J cell injury as evidenced by promoting cell growth, and upregulation of IL-6 and MCP-1. This process might be modulated by down-regulating miR-27a and inactivation of JNK pathway.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272000, China
- Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Taishan Gao
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272000, China
| | - Yanhua Wang
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Jining 272000, China
| |
Collapse
|
12
|
Wang X, Zhao Z, Zhu K, Bao R, Meng Y, Bian J, Wan X, Yang T. Effects of CXCL4/CXCR3 on the lipopolysaccharide‐induced injury in human umbilical vein endothelial cells. J Cell Physiol 2019; 234:22378-22385. [PMID: 31073998 DOI: 10.1002/jcp.28803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/24/2019] [Accepted: 04/24/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaolin Wang
- Faculty of Anesthesiology Changhai Hospital, Naval Medical University Shanghai China
| | - Zhenzhen Zhao
- Faculty of Anesthesiology Changhai Hospital, Naval Medical University Shanghai China
| | - Kaimin Zhu
- Faculty of Anesthesiology Changhai Hospital, Naval Medical University Shanghai China
- Department of Intensive Care Unit Shanghai General Hospital of Chinese Armed Police Force China
| | - Rui Bao
- Faculty of Anesthesiology Changhai Hospital, Naval Medical University Shanghai China
| | - Yan Meng
- Faculty of Anesthesiology Changhai Hospital, Naval Medical University Shanghai China
| | - Jinjun Bian
- Faculty of Anesthesiology Changhai Hospital, Naval Medical University Shanghai China
| | - Xiaojian Wan
- Faculty of Anesthesiology Changhai Hospital, Naval Medical University Shanghai China
| | - Tao Yang
- Faculty of Anesthesiology Changhai Hospital, Naval Medical University Shanghai China
| |
Collapse
|
13
|
Diverse Pharmacological Activities and Potential Medicinal Benefits of Geniposide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4925682. [PMID: 31118959 PMCID: PMC6500620 DOI: 10.1155/2019/4925682] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Geniposide is a well-known iridoid glycoside compound and is an essential component of a wide variety of traditional phytomedicines, for example, Gardenia jasminoides Elli (Zhizi in Chinese), Eucommia ulmoides Oliv. (Duzhong in Chinese), Rehmannia glutinosa Libosch. (Dihuang in Chinese), and Achyranthes bidentata Bl. (Niuxi in Chinese). It is also the main bioactive component of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides Ellis. Increasing pharmacological evidence supports multiple medicinal properties of geniposide including neuroprotective, antidiabetic, hepatoprotective, anti-inflammatory, analgesic, antidepressant-like, cardioprotective, antioxidant, immune-regulatory, antithrombotic, and antitumoral effects. It has been proposed that geniposide may be a drug or lead compound for the prophylaxis and treatment of several diseases, such as Alzheimer's disease, Parkinson's disease, diabetes and diabetic complications, ischemia and reperfusion injury, and hepatic disorders. The aim of the present review is to give a comprehensive summary and analysis of the pharmacological properties of geniposide, supporting its use as a medicinal agent.
Collapse
|
14
|
Antioxidative Property and Molecular Mechanisms Underlying Geniposide-Mediated Therapeutic Effects in Diabetes Mellitus and Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7480512. [PMID: 31089416 PMCID: PMC6476013 DOI: 10.1155/2019/7480512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Geniposide, an iridoid glucoside, is a major component in the fruit of Gardenia jasminoides Ellis (Gardenia fruits). Geniposide has been experimentally proved to possess multiple pharmacological actions involving antioxidative stress, anti-inflammatory, antiapoptosis, antiangiogenesis, antiendoplasmic reticulum stress (ERS), etc. In vitro and in vivo studies have further identified the value of geniposide in a spectrum of preclinical models of diabetes mellitus (DM) and cardiovascular disorders. The antioxidative property of geniposide should be attributed to the result of either the inhibition of numerous pathological processes or the activation of various proteins associated with cell survival or a combination of both. In this review, we will summarize the available knowledge on the antioxidative property and protective effects of geniposide in DM and cardiovascular disease in the literature and discuss antioxidant mechanisms as well as its potential applications in clinic.
Collapse
|
15
|
Cheng S, Zhou F, Xu Y, Liu X, Zhang Y, Gu M, Su Z, Zhao D, Zhang L, Jia Y. Geniposide regulates the miR-101/MKP-1/p38 pathway and alleviates atherosclerosis inflammatory injury in ApoE -/- mice. Immunobiology 2018; 224:296-306. [PMID: 30630636 DOI: 10.1016/j.imbio.2018.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
Abstract
Atherosclerosis (AS) is the common pathological basis of chronic cardiovascular diseases and is associated with inflammation and lipid metabolism dysfunction. Geniposide, the main active ingredient of Gardenia jasminoides Ellis fruit, exhibits a variety of anti-inflammatory and anti-oxidative functions; however, its role in AS remains unclear. The aim of this study was to investigate the mechanisms of geniposide in alleviating inflammation and thereby attenuating the development of AS. ApoE-/- mice were fed a high fat diet to induce AS and were treated with geniposide (50 mg/kg) for 12 weeks. Blood glucose and lipid levels were measured by biochemical analysis. H&E, Masson and Oil red O staining were performed to observe morphological changes and lipid deposition in the aorta and liver. Serum inflammatory cytokines were detected by ELISA. Dual-luciferase reporter gene assay was used to verify the target relationship between microRNA-101 (miR-101) and mitogen-activated protein kinase phosphatase-1 (MKP-1). The levels of miR-101, p-p38, and MKP-1 in the aorta were detected by qPCR and western blotting. The anti-inflammatory effect of geniposide in vitro was investigated in the RAW264.7 macrophage cell line. A miR-101 mimic and an inhibitor were used to study the effect of miR-101 on regulating the expression of the target MKP-1 and the downstream inflammatory cytokines. Geniposide treatment reduced lipid levels and plaque size in the mouse model of AS. Geniposide downregulated miR-101 to upregulate MKP-1 and suppress the production of inflammatory factors in vitro and in vivo. Geniposide suppressed the levels of inflammatory factors in the presence of the miR-101 mimic, whereas no obvious effect was observed in the miR-101 inhibitor group. We concluded that geniposide reduced the plaque size and alleviated inflammatory injury in ApoE-/- mice and RAW264.7 cells. The specific anti-inflammatory mechanism was related to the miR-101/ MKP-1/p38 signaling pathway.
Collapse
Affiliation(s)
- Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Laboratory of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuling Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Laboratory of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaoyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Laboratory of Molecular Biology, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Minhua Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhijie Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Dandan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Lv S, Ding Y, Zhao H, Liu S, Zhang J, Wang J. Therapeutic Potential and Effective Components of the Chinese Herb Gardeniae Fructus in the Treatment of Senile Disease. Aging Dis 2018; 9:1153-1164. [PMID: 30574425 PMCID: PMC6284761 DOI: 10.14336/ad.2018.0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gardeniae fructus (GF), an evergreen Rubiaceae shrub, is one of the most commonly used Chinese herbs in traditional Chinese medicine (TCM) and has been used for over a thousand years. It is usually prescribed for the treatment of brain aging, vascular aging, bone and joint aging, and other age-related diseases. It has been demonstrated that several effective compounds of GF, such as geniposide, genipin and crocin, have neuroprotective or related activities which are involved in senile disease treatment. These bioactivities include the mitochondrion dysfunction, antioxidative activity, apoptosis regulation and an anti-inflammatory activity, which related to multiple signaling pathways such as the nuclear factor-κB pathway, AMP-activated protein kinase signaling pathway, and the mitogen-activated protein kinase pathway. To lay the ground for fully elucidating the potential mechanisms of GF in treating age-related pathologies, we summarized the available research conducted in the last fifteen years about GF and its effective components, which have been studied in vivo and in vitro
Collapse
Affiliation(s)
- Shichao Lv
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Ding
- 3Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Haiping Zhao
- 4Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shihao Liu
- 5Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA
| | - Junping Zhang
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Wang
- 1Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Chen L, Cao Y, Zhang H, Lv D, Zhao Y, Liu Y, Ye G, Chai Y. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:359-368. [PMID: 29366769 DOI: 10.1016/j.jep.2017.12.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yangxinshi tablet (YXST) is an effective treatment for heart failure and myocardial infarction; it consists of 13 herbal medicines formulated according to traditional Chinese Medicine (TCM) practices. It has been used for the treatment of cardiovascular disease for many years in China. MATERIALS AND METHODS In this study, a network pharmacology-based strategy was used to elucidate the mechanism of action of YXST for the treatment of heart failure. Cardiovascular disease-related protein target and compound databases were constructed for YXST. A molecular docking platform was used to predict the protein targets of YXST. The affinity between proteins and ingredients was determined using surface plasmon resonance (SPR) assays. The action modes between targets and representative ingredients were calculated using Glide docking, and the related pathways were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS A protein target database containing 924 proteins was constructed; 179 compounds in YXST were identified, and 48 compounds with high relevance to the proteins were defined as representative ingredients. Thirty-four protein targets of the 48 representative ingredients were analyzed and classified into two categories: immune and cardiovascular systems. The SPR assay and molecular docking partly validated the interplay between protein targets and representative ingredients. Moreover, 28 pathways related to heart failure were identified, which provided directions for further research on YXST. CONCLUSIONS This study demonstrated that the cardiovascular protective effect of YXST mainly involved the immune and cardiovascular systems. Through the research strategy based on network pharmacology, we analysis the complex system of YXST and found 48 representative compounds, 34 proteins and 28 related pathways of YXST, which could help us understand the underlying mechanism of YSXT's anti-heart failure effect. The network-based investigation could help researchers simplify the complex system of YXSY. It may also offer a feasible approach to decipher the chemical and pharmacological bases of other TCM formulas.
Collapse
Affiliation(s)
- Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yahong Zhao
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Yanjun Liu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
18
|
Shanmugam MK, Shen H, Tang FR, Arfuso F, Rajesh M, Wang L, Kumar AP, Bian J, Goh BC, Bishayee A, Sethi G. Potential role of genipin in cancer therapy. Pharmacol Res 2018; 133:195-200. [PMID: 29758279 DOI: 10.1016/j.phrs.2018.05.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
Genipin, an aglycone derived from the iridoid glycoside, geniposide, is isolated and characterized from the extract of Gardenia jasminoides Ellis fruit (family Rubiaceae). It has long been used in traditional oriental medicine for the prevention and treatment of several inflammation driven diseases, including cancer. Genipin has been shown to have hepatoprotective activity acting as a potent antioxidant and inhibitor of mitochondrial uncoupling protein 2 (UCP2), and also reported to exert significant anticancer effects. It is an excellent crosslinking agent that helps to make novel sustained or delayed release nanoparticle formulations. In this review, we present the latest developments of genipin as an anticancer agent and briefly describe its diverse mechanism(s) of action. Several lines of evidence suggest that genipin is a potent inhibitor of UCP2, which functions as a tumor promoter in a variety of cancers, attenuates generation of reactive oxygen species and the expression of matrix metalloproteinase 2, as well as induces caspase-dependent apoptosis in vitro and in in vivo models. These finding suggests that genipin can serve as both a prominent anticancer agent as well as a potent crosslinking drug that may find useful application in several novel pharmaceutical formulations.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138602, Singapore
| | - Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, 138602, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, WA, Australia
| | - Mohanraj Rajesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, 17666, United Arab Emirates
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, WA, Australia; Department of Haematology-Oncology, National University Health System, Singapore, 119228, Singapore
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
19
|
Protective Effects of Li-Fei-Xiao-Yan Prescription on Lipopolysaccharide-Induced Acute Lung Injury via Inhibition of Oxidative Stress and the TLR4/NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1791789. [PMID: 28424738 PMCID: PMC5382312 DOI: 10.1155/2017/1791789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022]
Abstract
Li-Fei-Xiao-Yan prescription (LFXY) has been clinically used in China to treat inflammatory and infectious diseases including inflammatory lung diseases. The present study was aimed at evaluating the potential therapeutic effects and potential mechanisms of LFXY in a murine model of lipopolysaccharide- (LPS-) induced acute lung injury (ALI). In this study, the mice were orally pretreated with LFXY or dexamethasone (positive drug) before the intratracheal instillation of LPS. Our data indicated that pretreatment with LFXY enhanced the survival rate of ALI mice, reversed pulmonary edema and permeability, improved LPS-induced lung histopathology impairment, suppressed the excessive inflammatory responses via decreasing the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokine (MIP-2) and inhibiting inflammatory cells migration, and repressed oxidative stress through the inhibition of MPO and MDA contents and the upregulation of antioxidants (SOD and GSH) activities. Mechanistically, treatment with LFXY significantly prevented LPS-induced TLR4 expression and NF-κB (p65) phosphorylation. Overall, the present study suggests that LFXY protected mice from acute lung injury induced by LPS via inhibition of TLR4/NF-κB p65 activation and upregulation of antioxidative enzymes and it may be a potential preventive and therapeutic agent for ALI in the clinical setting.
Collapse
|
20
|
Walker J, Ley JP, Schwerzler J, Lieder B, Beltran L, Ziemba PM, Hatt H, Hans J, Widder S, Krammer GE, Somoza V. Nonivamide, a capsaicin analogue, exhibits anti-inflammatory properties in peripheral blood mononuclear cells and U-937 macrophages. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Walker
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna; Austria
| | | | - Johanna Schwerzler
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna; Austria
| | - Barbara Lieder
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna; Austria
| | - Leopoldo Beltran
- Department of Cell Physiology; Ruhr-University Bochum; Bochum Germany
| | - Paul M. Ziemba
- Department of Cell Physiology; Ruhr-University Bochum; Bochum Germany
| | - Hanns Hatt
- Department of Cell Physiology; Ruhr-University Bochum; Bochum Germany
| | | | | | | | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna; Austria
| |
Collapse
|
21
|
Hao Y, Liu C, Yin F, Zhang Y, Liu J. 5′-AMP-activated protein kinase plays an essential role in geniposide-regulated glucose-stimulated insulin secretion in rat pancreatic INS-1 β cells. J Nat Med 2016; 71:123-130. [DOI: 10.1007/s11418-016-1038-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
|
22
|
Zhang Y, Ding Y, Zhong X, Guo Q, Wang H, Gao J, Bai T, Ren L, Guo Y, Jiao X, Liu Y. Geniposide acutely stimulates insulin secretion in pancreatic β-cells by regulating GLP-1 receptor/cAMP signaling and ion channels. Mol Cell Endocrinol 2016; 430:89-96. [PMID: 27126219 DOI: 10.1016/j.mce.2016.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 12/11/2022]
Abstract
Geniposide, an iridoid glycoside, has antidiabetic effects. The present study aimed to evaluate whether geniposide has direct effects on insulin secretion from rat pancreatic islets. The results demonstrated that geniposide potentiated insulin secretion via activating the glucagon-like-1 receptor (GLP-1R) as well as the adenylyl cyclase (AC)/cAMP signaling pathway. Inhibition of protein kinase A (PKA) suppressed the insulinotropic effect of geniposide. Geniposide also inhibited voltage-dependent potassium (Kv) channels, and this effect could be attenuated by inhibition of GLP-1R or PKA. Current-clamp recording showed that geniposide prolonged action potential duration. These results collectively imply that inhibition of Kv channels is linked to geniposide-potentiated insulin secretion by acting downstream of the GLP-1R/cAMP/PKA signaling pathway. Moreover, activation of Ca(2+) channels by geniposide was observed, indicating that the Ca(2+) channel is also an important player in the geniposide effects. Together, these findings provide new insight into the mechanism underlying geniposide-regulated insulin secretion.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Qing Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Hui Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Jingying Gao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tao Bai
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yangyan Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Wang R, MoYung KC, Zhao YJ, Poon K. A Mechanism for the Temporal Potentiation of Genipin to the Cytotoxicity of Cisplatin in Colon Cancer Cells. Int J Med Sci 2016; 13:507-16. [PMID: 27429587 PMCID: PMC4946121 DOI: 10.7150/ijms.15449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the potentiation effect of Genipin to Cisplatin induced cell senescence in HCT-116 colon cancer cells in vitro. METHODS Cell viability was estimated by Propidium iodide and Hoechst 3342, reactive oxygen species (ROS) with DHE, mitochondrial membrane potential (MMP) with JC-1 MMP assay Kit and electron current production with microbial fuel cells (MFC). RESULTS Genipin inhibited the UCP2 mediated anti-oxidative proton leak significantly promoted the Cisplatin induced ROS and subsequent cell death, which was similar to that of UCP2-siRNA. Cells treated with Cisplatin alone or combined with Genipin, ROS negatively, while MMP positively correlated with cell viability. Cisplatin induced ROS was significantly decreased by detouring electrons to MFC, or increased by Genipin combined treatment. Compensatory effects of UCP2 up-regulation with time against Genipin treatment were suggested. Shorter the Genipin treatment before Cisplatin better promoted the Cisplatin induced ROS and subsequent cell death. CONCLUSION The interaction of leaked electron with Cisplatin was important during ROS generation. Inhibition of UCP2-mediated proton leak with Genipin potentiated the cytotoxicity of Cisplatin. Owing to the compensatory effects against Genipin, shorter Genipin treatment before Cisplatin was recommended in order to achieve better potentiation effect.
Collapse
Affiliation(s)
- Ruihua Wang
- 1. Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong,China 518100
| | - K C MoYung
- 2. Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China 519085
| | - Y J Zhao
- 2. Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China 519085
| | - Karen Poon
- 2. Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China 519085
| |
Collapse
|
24
|
Song X, Zhang W, Wang T, Jiang H, Zhang Z, Fu Y, Yang Z, Cao Y, Zhang N. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice. Inflammation 2015; 37:1588-98. [PMID: 24771071 DOI: 10.1007/s10753-014-9885-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy.
Collapse
Affiliation(s)
- Xiaojing Song
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Determination of geniposide in adjuvant arthritis rat plasma by ultra-high performance liquid chromatography tandem mass spectrometry method and its application to oral bioavailability and plasma protein binding ability studies. J Pharm Biomed Anal 2015; 108:122-8. [PMID: 25771205 DOI: 10.1016/j.jpba.2015.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/13/2022]
Abstract
A specific, sensitive and high throughput ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometric method (UHPLC-ESI-MS/MS) was established and validated to assay geniposide (GE), a promising anti-inflammatory drug, in adjuvant arthritis rat plasma: application to pharmacokinetic and oral bioavailability studies and plasma protein binding ability. Plasma samples were processed by de-proteinised with ice-cold methanol and separated on an ACQUITY UPLC™ HSS C18 column (100 mm × 2.1mm i.d., 1.8 μm particle size) at a gradient flow rate of 0.2 mL/min using acetonitrile-0.1% formic acid in water as mobile phase, and the total run time was 9 min. Mass detection was performed in selected reaction monitoring (SRM) mode with negative electro-spray ionization includes the addition of paeoniflorin (Pae) as an internal standard (IS). The mass transition ion-pair was followed as m/z 387.4 → 122.4 for GE and m/z 479.4 → 449.0 for IS. The calibration curves were linear over the concentration range of 2-50,000 ng/mL with lower limit of quantification of 2 ng/mL. The intra-day and inter-day precisions (RSD, %) of the assay were less than 8.4%, and the accuracy was within ± 6.4% in terms of relative error (RE). Extraction recovery, matrix effect and stability were satisfactory in adjuvant arthritis rat plasma. The UHPLC-ESI-MS/MS method was successfully applied to a pharmacokinetic study of GE after oral administration of depurated GE at 33, 66, 132 mg/kg and intravenous injection at 33, 66, 132 mg/kg in adjuvant arthritis (AA) rats. In addition, it was found that GE has rapid absorption and elimination, low absolute bioavailability, high plasma protein binding ability in AA rats after oral administration within the tested dosage range. It suggested that GE showed slow distribution into the intra- and extracellular space, and the binding rate was not proportionally dependent on plasma concentration of GE when the concentration of GE was below 5.0 μg/mL.
Collapse
|
26
|
Stark R, Choi H, Koch S, Lamb F, Sherwood E. Monophosphoryl lipid A inhibits the cytokine response of endothelial cells challenged with LPS. Innate Immun 2014; 21:565-74. [PMID: 25540284 DOI: 10.1177/1753425914564172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/15/2014] [Indexed: 01/06/2023] Open
Abstract
Monophosphoryl lipid A (MPLA) is a TLR4 agonist that is used as an immunomodulator in human vaccines; additionally, it has been shown to be protective in models of sepsis. As endothelial cells regulate inflammation, we hypothesized that MPLA would decrease activation of human umbilical vein endothelial cells (HUVECs) to LPS. We studied HUVECs challenged with LPS (100 ng/ml), MPLA (0.001-100 µg/ml) or a combination. Secretion of IL-6, RANTES (CCL5) and IP-10 (CXCL10) were assessed by ELISA. Activation of MAPK phosphorylation and cytokine transcription were assessed by Western blot analysis and PCR, respectively. MPLA alone was a weak stimulator of myeloid differentiation primary response protein 88-dependent IL-6 and did not induce TIR-domain-containing adapter-inducing IFN-β (TRIF)-dependent chemokine responses. MPLA significantly reduced LPS-mediated IL-6 production. This inhibitory effect was also conferred for the TRIF-dependent chemokines RANTES and IP-10. Inhibition of LPS-mediated activation by MPLA was associated with reduced p38 phosphorylation and mRNAs encoding inflammatory cytokines. MPLA inhibition of LPS signaling appeared to be at the level of the TLR4 receptor, acting as a receptor antagonist with weak agonistic properties. This study provides evidence of a novel mechanism for the inhibitory effect of MPLA on LPS-induced endothelial activation.
Collapse
Affiliation(s)
- Ryan Stark
- Department of Pediatric Critical Care, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hyehun Choi
- Department of Pediatric Critical Care, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen Koch
- Department of Pediatric Critical Care, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Fred Lamb
- Department of Pediatric Critical Care, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Edward Sherwood
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
27
|
KIM INSIK, YANG EUNJU, SHIN DONGHA, SON KWANGHEE, PARK HOYONG, LEE JISOOK. Effect of arazyme on the lipopolysaccharide-induced inflammatory response in human endothelial cells. Mol Med Rep 2014; 10:1025-9. [DOI: 10.3892/mmr.2014.2231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 01/17/2014] [Indexed: 11/06/2022] Open
|
28
|
Shi Q, Cao J, Fang L, Zhao H, Liu Z, Ran J, Zheng X, Li X, Zhou Y, Ge D, Zhang H, Wang L, Ran Y, Fu J. Geniposide suppresses LPS-induced nitric oxide, PGE2 and inflammatory cytokine by downregulating NF-κB, MAPK and AP-1 signaling pathways in macrophages. Int Immunopharmacol 2014; 20:298-306. [PMID: 24735815 DOI: 10.1016/j.intimp.2014.04.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 11/29/2022]
Abstract
Inflammatory responses are important to host immune reactions, but uncontrolled inflammatory mediators may aid in the pathogenesis of other inflammatory diseases. Geniposide, an iridoid glycoside found in the herb gardenia, is believed to have broad-spectrum anti-inflammatory effects in murine models but its mechanism of action is unclear. We investigated the action of this compound in murine macrophages stimulated by lipopolysaccharide (LPS), as the stimulation of macrophages by LPS is known to induce inflammatory reactions. We determined the effect of geniposide on LPS-induced production of the inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), the mRNA and protein expression of the NO and PGE2 synthases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, and the mRNA and protein expression of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) and activator protein (AP)-1 activity were assayed. To understand the action of geniposide on the NF-κB and MAPK pathways, we studied the effect of NF-κB and MAPK inhibitors on the LPS-induced production of NO, PGE2 and TNF-α. Our findings clearly showed that geniposide mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-κB, MAPK and AP-1 signaling pathways in macrophages, which subsequently reduces overexpression of the inducible enzymes iNOS and COX-2 and suppresses the expression and release of the inflammatory factors, TNF-α, IL-6, NO and PGE2. Thus, geniposide shows promise as a therapeutic agent in inflammatory diseases.
Collapse
Affiliation(s)
- Qinghai Shi
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China.
| | - Jinjun Cao
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Li Fang
- Second Section, Lintong Sanatorium of Lanzhou Military Region, Xi'an 710600, Shaanxi, China
| | - Hongyan Zhao
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Zhengxiang Liu
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Jihua Ran
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Xinchuan Zheng
- Medical Research Center, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaoling Li
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Yu Zhou
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Di Ge
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Hongming Zhang
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Li Wang
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Ying Ran
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China
| | - Jianfeng Fu
- Clinical Laboratory Diagnostic Center, Urumqi General Hospital of Lanzhou Military Region, Urumqi 830000, Xinjiang, China.
| |
Collapse
|
29
|
Wang Q, Shao X, Xu W, Qi C, Gu L, Ni Z, Mou S. Astragalosides IV inhibits high glucose-induced cell apoptosis through HGF activation in cultured human tubular epithelial cells. Ren Fail 2014; 36:400-6. [PMID: 24392874 DOI: 10.3109/0886022x.2013.867798] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Astragaloside IV (ASI) in Radix Astragali is believed to be the active component. The study aims to investigate whether ASI inhibits tubular epithelial cells apoptosis induced by high glucose and its mechanisms. Tubular epithelial cells in this paper were isolated from human kidney. The cells apoptosis was detected by TUNEL and caspase 3 assay. The protein levels of HGF and TGF-β1 were measured by ELISA. The phospho-p38 production, ERK and JNK were determined by Western blot. ASI could inhibit cells apoptosis induced by high glucose (25 mmol/L) in dose-dependent and time-dependent manners. ASI also inhibited high glucose-induced expression of TGF-β1 and activation of p38 MAPK pathway at the protein level. Furthermore, ASI increased HGF production in human tubular epithelial cells. The ASI inhibition of tubular epithelial cells apoptosis and reduction of TGF-β1 expression induced by high glucose may represent a new treatment for diabetic kidney injury. The mechanism underlying this inhibitory effect may be related to the inhibition of p38 MAPK signaling pathway activation and HGF overproduction.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University , Shanghai , PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang P, Wang Q, Luo C, Tan C, Yuan X. Iridoid glycosides extracted from Zhizi (Fructus Gardeniae) decrease collagen-induced platelet aggregation and reduce carotid artery thrombosis in an in vivo rat model. J TRADIT CHIN MED 2013; 33:531-4. [DOI: 10.1016/s0254-6272(13)60160-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Liang Q, Yu F, Cui X, Duan J, Wu Q, Nagarkatti P, Fan D. Sparstolonin B suppresses lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells. Arch Pharm Res 2013; 36:890-6. [PMID: 23604718 DOI: 10.1007/s12272-013-0120-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/15/2012] [Accepted: 10/10/2012] [Indexed: 01/08/2023]
Abstract
Sparstolonin B (SsnB) is an isocoumarin compound isolated from the tubers of both Sparganium stoloniferum and Scirpus yagara. We previously demonstrated that SsnB blocked the Toll-like receptor (TLR) 2- and TLR4-triggered inflammatory signaling in macrophages by inhibiting the recruitment of MyD88 to the TIR domains of TLR2 and TLR4. The present study was designed to examine the effects of SsnB on vascular inflammatory responses in human umbilical vein endothelial cells (HUVECs) challenged by lipopolysaccharide (LPS, a TLR4 ligand). We found that SsnB dose-dependently attenuated the LPS-induced expression of interleukin (IL)-1β and monocyte chemoattractant protein 1 both at the transcription and translation levels in HUVEC. LPS-induced endothelial cell adhesion molecules, intercellular adhesion molecular-1 and vascular cell adhesion molecule-1 expressions were also reduced by treatment with SsnB. In addition, co-incubation with SsnB attenuated THP-1 monocyte adhesion to LPS-activated HUVECs. Furthermore, SsnB efficiently suppressed LPS-induced phosphorylation of extracellular -signal-regulated kinase (Erk1/2) and Akt in HUVECs. These findings show that SsnB can suppress endothelial cell inflammation, suggesting that SsnB might be suitable for development as a therapeutic agent for inflammatory cardiovascular disease.
Collapse
Affiliation(s)
- Qiaoli Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang HY, Liu H, Yang M, Wei SF. Antithrombotic activities of aqueous extract from Gardenia jasminoides and its main constituent. PHARMACEUTICAL BIOLOGY 2013; 51:221-225. [PMID: 23116215 DOI: 10.3109/13880209.2012.717088] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Gardenia jasminoides J. Ellis (Rubiaceae) is a shrub tree species distributed all over the world. Now its pharmacological activities such as anti-atherosclerosis have been extensively studied. OBJECTIVE To offer pharmacological proof for its further clinical application in cardiovascular diseases, the antithrombotic activities of the aqueous extract of G. jasminoides (GJ-ext) were studied in mouse and rat models. MATERIALS AND METHODS GJ-ext was administrated orally to detect the effects on the models of carrageenan-induced tail thrombosis and arteriovenous shunt thrombosis. The effects of GJ-ext and geniposide (p.o.) on antiplatelet aggregation were examined. Geniposide and genipin were studied on venous thrombosis by oral administration. RESULTS GJ-ext (67, 133 and 266 mg/kg) and aspirin (50 mg/kg), respectively, decreased the length of tail thrombus with average thrombus inhibition rate of 21.9, 55.7, 65.8 and 57.6% at 48 h and 19.0, 54.5, 69.3 and 56.9% at 72 h after carrageenan injection and, meanwhile, improved thrombosis induced by arteriovenous shunt (silk thread) with 36.3, 45.5, 86.4 and 63.7% inhibition rate of thrombus respectively, and the ED(50) of GJ-ext was 160.8 mg/kg. Furthermore, GJ-ext (67 mg/kg) and geniposide (20 mg/kg) significantly inhibited platelet aggregation induced by thrombin/collagen with 45.1%/19.3% and 52.8%/26.2% aggregation rate. Geniposide (10-40 mg/kg) and genipin (5-20 mg/kg) inhibited venous thrombosis induced by tight ligation of the inferior vena cava, their ED(50) values were 18.4 and 8.6 mg/kg, respectively. DISCUSSION AND CONCLUSION This study indicated that GJ-ext and geniposide demonstrated remarkable antithrombotic activities and supported their therapeutic uses for thrombotic diseases.
Collapse
Affiliation(s)
- Hai-yan Zhang
- Key Lab of Advanced Technology of Materials (Chinese Education Ministry), Southwest Jiaotong University, Cheng du, Sichuan, China
| | | | | | | |
Collapse
|
33
|
Song J, Bi H, Xie X, Guo J, Wang X, Liu D. Natural borneol enhances geniposide ophthalmic absorption in rabbits. Int J Pharm 2013; 445:163-70. [PMID: 23376228 DOI: 10.1016/j.ijpharm.2013.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/19/2012] [Accepted: 01/24/2013] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to investigate the effects of natural borneol (NB) on the pharmacokinetics and bioavailability of ophthalmic administered geniposide (Ge) in rabbits. In vitro permeability characteristics of Ge in excised rabbit corneas were evaluated using Franz-type cells. The effect of NB on Ge pharmacokinetic profiles in vivo was studied with microdialysis. Concentrations of Ge were determined with reversed-phase high performance liquid chromatography (HPLC) following ophthalmic administration of Ge alone or with NB (0.01%, 0.02%, and 0.04%) or 0.5% ethylendiaminetetraacetic acid (EDTA). Ocular irritation was evaluated using the Draize method and histological examination. Ge solution alone (control solution) had limited corneal permeability. The ratio of the apparent permeability coefficient (Papp) with respect to the control solution significantly increased by approximately 1.6-, 2.0-, and 2.4-fold at NB concentrations of 0.01, 0.02, and 0.04%, respectively. The Papp for Ge with 0.5% EDTA (positive control) was approximately 1.7-fold higher than that for control solution. Compared to control solution, Ge exhibited a 1.46-, 2.16-, and 2.47-fold greater AUC0-6h, and 2.0-, 3.5-, and 4.4-fold greater Cmax, with 0.01, 0.02, and 0.04% NB, respectively, while Tmax remained unchanged. In conclusion, the ocular bioavailability of Ge significantly increased in the presence of NB.
Collapse
Affiliation(s)
- Jike Song
- Shandong University of Traditional Chinese Medicine, 16369#, Jingshi Road, Jinan 250014, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Liu H, Chen YF, Li F, Zhang HY. Fructus Gardenia (Gardenia jasminoides J. Ellis) phytochemistry, pharmacology of cardiovascular, and safety with the perspective of new drugs development. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2012; 15:94-110. [PMID: 23211013 DOI: 10.1080/10286020.2012.723203] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The phytochemistry, cardiovascular pharmacology, toxicology, side effect, and further development prospects of Gardenia jasminoides J. Ellis (GJE) and its main constituents crocins and iridoid glycosides were studied. Numerous studies have confirmed that crocins and iridoid glycosides had effects of antioxidation, anti-inflammatory, anti-atherosclerosis, anti-ischemic brain injuries, anti-platelet aggregation, anti-hyperglycemia, anti-hyperlipidemia, anti-hypertension, and so on. Some of them might be related to several attractive pharmacodynamic actions of GJE such as promoting endothelium growth, protecting neurons, and inducing their differentiation. Both of them make it possible for GJE to prevent and cure thromboembolism and cardiovascular diseases well. From our own basic pharmacological research of GJE extract on several rat models, it has been known that GJE extract markedly prolonged bleeding time and inhibited platelet aggregation and thrombosis. It has significant proliferation effect on both endothelial cells and endothelial progenitor cells as well. As the mechanisms of GJE on those diseases were discussed and summarized, questions about its genetoxicity and hepatotoxicity were also discussed during its safety study to make the foundation for long-term medication and clinical research in the near future.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | | | | | | |
Collapse
|
35
|
Chula S, Hang L, Yinying B, Jianning S, Shi R. The effects of notoginsenoside R₁ on the intestinal absorption of geniposide by the everted rat gut sac model. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:136-143. [PMID: 22561891 DOI: 10.1016/j.jep.2012.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide is derived from Gardenia jasminoides Ellis (Rubiaceae). Its anti-inflammatory, antithrombotic effects as well as its preventive effect against ischemic stroke have been reported. Radix notoginseng (Chinese name tienchi or sanqi) is the dried root of Panax notoginseng (Burk.) F.H. Chen, an herb noted for its promotion of blood circulation, blood stasis removal and pain alleviation, and has been widely utilized for the prevention and treatment of microcirculatory disturbances in China and other Asian countries for many years. Notoginsenoside R₁ is an effective and structurally representative bioactive constituent of R. notoginseng. In our preliminary study, notoginsenoside R₁ was able significantly to improve the bioavailability of geniposide in beagle dogs, but the underlying mechanisms remain unknown. MATERIALS AND METHODS The present study aimed to investigate the intestinal kinetic absorptive characteristics of geniposide as well as the absorptive behavior influenced by the co-administration of notoginsenoside R₁ using an in vitro everted rat gut sac model. RESULTS The results showed good linear correlation between the geniposide absorption in sac contents and the incubation time from 0 to 120 min. The concentration dependence showed a non-linear correlation between the geniposide absorption and the concentrations 0.356-1.424 mg/mL, the absorption was saturated about 1.424 mg/mL. Notoginsenoside R₁ at 0.1 and 0.2mg/mL concentrations was able significantly to enhance the absorption of geniposide (1.424 mg/mL) by 1.7- and 1.4-fold. Moreover, verapamil, a well-known P-glycoprotein inhibitor, was able significantly to elevate the absorption of geniposide 2.4-fold. Notoginsenoside R₁ influenced geniposide's absorption in a way similar to that of a P-glycoprotein inhibitor. CONCLUSIONS In conclusion, notoginsenoside R₁ significantly enhances the intestinal absorption of geniposide. As for the mechanism underlying the improvement of geniposide's bioavailability, it is proposed that notoginsenoside R₁ was able to decrease the efflux transport of geniposide by P-glycoproteins.
Collapse
Affiliation(s)
- Sa Chula
- School of Chinese Medicine, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan South Road, Chaoyang District, Beijing 100102, PR China
| | | | | | | | | |
Collapse
|
36
|
Viljoen A, Mncwangi N, Vermaak I. Anti-inflammatory iridoids of botanical origin. Curr Med Chem 2012; 19:2104-27. [PMID: 22414102 PMCID: PMC3873812 DOI: 10.2174/092986712800229005] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/07/2012] [Accepted: 01/08/2012] [Indexed: 11/22/2022]
Abstract
Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo.
Collapse
Affiliation(s)
- A Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa.
| | | | | |
Collapse
|
37
|
Han H, Yang L, Xu Y, Ding Y, Bligh SWA, Zhang T, Wang Z. Identification of metabolites of geniposide in rat urine using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3339-3350. [PMID: 22006398 DOI: 10.1002/rcm.5216] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Geniposide, an iridoid glycoside, is an important and characteristic compound in the fruits of Gardenia jasminoides Ellis, a commonly used medicinal herb in Chinese traditional and folk medicine for the treatment of inflammation and jaundice. However, few studies have been carried out on the metabolism of geniposide. In this study, we have established a rapid and sensitive method using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC/ESI-QTOF-MS) for analysis of the metabolic profile of geniposide in rat urine after oral administration. A total of ten metabolites were detected and identified by comparing their fragmentation patterns with that of geniposide using Metabolynx™ and MassFragment™ software tools. The results revealed that the principal metabolism pathways of geniposide in rat occurred after deglycosylation of the irdoid glycoside take place and this is followed by glucuronidation and the pyran-ring cleavages. The major metabolite, the glucuronic acid conjugate of genipin as observed in vivo, was further confirmed by the in vitro enzymatic study. The results of this work have demonstrated the feasibility of the UPLC/ESI-QTOF-MS approach for rapid and reliable characterization of metabolites from iridoid compounds.
Collapse
Affiliation(s)
- Han Han
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Kim H, Kim JY, Song HS, Park KU, Mun KC, Ha E. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 383:555-62. [DOI: 10.1007/s00210-011-0633-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
|
39
|
Kojima K, Shimada T, Nagareda Y, Watanabe M, Ishizaki J, Sai Y, Miyamoto KI, Aburada M. Preventive Effect of Geniposide on Metabolic Disease Status in Spontaneously Obese Type 2 Diabetic Mice and Free Fatty Acid-Treated HepG2 Cells. Biol Pharm Bull 2011; 34:1613-8. [DOI: 10.1248/bpb.34.1613] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazuko Kojima
- Graduate School of Natural Science and Technology, Kanazawa University
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Tsutomu Shimada
- Research Institute of Pharmaceutical Sciences, Musashino University
| | | | - Michiru Watanabe
- Graduate School of Natural Science and Technology, Kanazawa University
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Junko Ishizaki
- Graduate School of Natural Science and Technology, Kanazawa University
| | - Yoshimichi Sai
- Graduate School of Natural Science and Technology, Kanazawa University
| | - Ken-ichi Miyamoto
- Graduate School of Natural Science and Technology, Kanazawa University
| | - Masaki Aburada
- Research Institute of Pharmaceutical Sciences, Musashino University
| |
Collapse
|
40
|
Zheng X, Yang D, Liu X, Wang N, Li B, Cao H, Lu Y, Wei G, Zhou H, Zheng J. Identification of a new anti-LPS agent, geniposide, from Gardenia jasminoides Ellis, and its ability of direct binding and neutralization of lipopolysaccharide in vitro and in vivo. Int Immunopharmacol 2010; 10:1209-19. [DOI: 10.1016/j.intimp.2010.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/03/2010] [Indexed: 10/19/2022]
|
41
|
Geniposide inhibits high glucose-induced cell adhesion through the NF-kappaB signaling pathway in human umbilical vein endothelial cells. Acta Pharmacol Sin 2010; 31:953-62. [PMID: 20686520 DOI: 10.1038/aps.2010.83] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM To investigate whether geniposide, an iridoid glucoside extracted from gardenia jasminoides ellis fruits, inhibits cell adhesion to human umbilical vein endothelial cells (HUVECs) induced by high glucose and its underlying mechanisms. METHODS HUVECs were isolated from human umbilical cords and cultured. The adhesion of monocytes to HUVECs was determined using fluorescence-labeled monocytes. The mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and endothelial selectin (E-selectin) were measured using real-time RT-PCR and ELISA. Reactive oxygen species (ROS) production was measured using a fluorescent probe. The amounts of nuclear factor-kappa B (NF-kappaB) and inhibitory factor of NF-kappaB (IkappaB) were determined using Western blot analysis. The translocation of NF-kappaB from the cytoplasm to the nucleus was determined using immunofluorescence. RESULTS Geniposide (10-20 mumol/L) inhibited high glucose (33 mmol/L)-induced adhesion of monocytes to HUVECs in a dose-dependent manner. This compound (5-40 mumol/L) also inhibited high glucose-induced expression of VCAM-1 and E-selectin at the gene and protein levels. Furthermore, geniposide (5-20 micromol/L) decreased ROS production and prevented IkappaB degradation in the cytoplasm and NF-kappaB translocation from the cytoplasm to the nucleus in HUVECs. CONCLUSION Geniposide inhibits the adhesion of monocytes to HUVECs and the expression of CAMs induced by high glucose, suggesting that the compound may represent a new treatment for diabetic vascular injury. The mechanism underlying this inhibitory effect may be related to the inhibition of ROS overproduction and NF-kappaB signaling pathway activation by geniposide.
Collapse
|