1
|
Qiu Q, Fu F, Wu Y, Han C, Pu W, Wen L, Xia Q, Du D. Rhei Radix et Rhizoma and its anthraquinone derivatives: Potential candidates for pancreatitis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155708. [PMID: 38733906 DOI: 10.1016/j.phymed.2024.155708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pancreatitis is a common exocrine inflammatory disease of the pancreas and lacks specific medication currently. Rhei Radix et Rhizoma (RR) and its anthraquinone derivatives (AQs) have been successively reported for their pharmacological effects and molecular mechanisms in experimental and clinical pancreatitis. However, an overview of the anti-pancreatitis potential of RR and its AQs is limited. PURPOSE To summarize and analyze the pharmacological effects of RR and its AQs on pancreatitis and the underlying mechanisms, and discuss their drug-like properties and future perspectives. METHODS The articles related to RR and its AQs were collected from the Chinese National Knowledge Infrastructure, Wanfang data, PubMed, and the Web of Science using relevant keywords from the study's inception until April first, 2024. Studies involving RR or its AQs in cell or animal pancreatitis models as well as structure-activity relationship, pharmacokinetics, toxicology, and clinical trials were included. RESULTS Most experimental studies are based on severe acute pancreatitis rat models and a few on chronic pancreatitis. Several bioactive anthraquinone derivatives of Rhei Radix et Rhizoma (RRAQs) exert local protective effects on the pancreas by maintaining pancreatic acinar cell homeostasis, inhibiting inflammatory signaling, and anti-fibrosis, and they improve systemic organ function by alleviating intestinal and lung injury. Pharmacokinetic and toxicity studies have revealed the low bioavailability and wide distribution of RRAQs, as well as hepatotoxicity and nephrotoxicity. However, there is insufficient research on the clinical application of RRAQs in pancreatitis. Furthermore, we propose effective strategies for subsequent improvement in terms of balancing effectiveness and safety. CONCLUSION RRAQs can be developed as either candidate drugs or novel lead structures for pancreatitis treatment. The comprehensive review of RR and its AQs provides references for optimizing drugs, developing therapies, and conducting future studies on pancreatitis.
Collapse
Affiliation(s)
- Qi Qiu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100073, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China.
| |
Collapse
|
2
|
Wu X, He C, Liu C, Xu X, Chen C, Yang H, Shi H, Fei Y, Sun Y, Zhou S, Fang B. Mechanisms of JinHong Formula on treating sepsis explored by randomized controlled trial combined with network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116040. [PMID: 36539071 DOI: 10.1016/j.jep.2022.116040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE JinHong Formula (JHF) was derived from the famous Rhubarb and Moutan Decoction which was prescribed for appendicitis. It was originally recorded in the classic of "Jingui Yaolve" written by Zhang Zhongjing. It is a kind of traditional Chinese medicine, widely used in the treatment of inflammation. However, the clinical effect of JHF for sepsis and its comprehensive mechanism in sepsis remained largely unknown. RESEARCH PURPOSE The aim of our study was to evaluate the clinical effect of JHF in the treatment of sepsis, and to explore its mechanism from the perspective of network pharmacology. RESEARCH METHODS The single-center randomized clinical trial was conducted to assess the effect of JHF in the treatment of sepsis. Additionally, we used the Chinese herbal medicine pharmacology database and analysis platform to identify the active components and therapeutic target of JHF. Numerous well-known disease target databases have been used to screen therapeutic target proteins for sepsis. Furthermore, we have established a Protein-Protein Interaction (PPI) network and carried out Gene Onotology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analysis. In order to conclude which active compounds from JHF may be responsible for signaling pathway, we performed network analysis. RESEARCH RESULTS The study included 114 patients. By comparing participants with and without JHF, the results suggested that JHF significantly reduced all-cause mortality on 28 and 60 days after intervention, and improved Sequential Organ Failure Assessment (SOFA) on 7th day after intervention as well as. JHF had an effect of anti-inflammatories and antioxidants (SOD). By using network pharmacological analysis, we identified 72 active components and 426 target genes of JHF, and successfully constructed a "JHF-compound target-sepsis" network. 116 mentioned targets revealed by GO/KEGG enrichment analysis played a significant role in the inflammatory reaction and immunoregulation via interleukin-17 (IL-17) and tumor necrosis factor (TNF) signaling pathway. Moreover, the analysis of "pathway target-active component" revealed that Sennidin A, Rheidin A, Rheidin B, Rheidin C, (E)-4-Phenyl-3-Buten-2-One, Osmanthuside H, Esculetin, and Caffeicacid were responsible for IL-17, TNF signaling pathways. CONCLUSION JHF contains potential active substance of anti-inflammatory and antioxidant. These active compounds may come into play through IL-17 and TNF signaling pathways. For sepsis, JHF may be a promising and effective treatment strategy.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chenming He
- Shaanxi University of Chinese Medicine, Xixian Avenue, Xixian New Area, Shaanxi Province, Shaanxi, China
| | - Changya Liu
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Xiangru Xu
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Caiyu Chen
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Hongqiang Yang
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Haimei Shi
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Yuerong Fei
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Yuting Sun
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China
| | - Shuang Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bangjiang Fang
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping South Road, Xuhui District, Shanghai, China; Emergency and Critical Care Institute of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Li Y, Guo R, Zhang M, Chen P, Li J, Sun Y. Protective effect of emodin on intestinal epithelial tight junction barrier integrity in rats with sepsis induced by cecal ligation and puncture. Exp Ther Med 2020; 19:3521-3530. [PMID: 32346413 PMCID: PMC7185184 DOI: 10.3892/etm.2020.8625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the protective effects of emodin on intestinal epithelial tight junction (TJ) barrier integrity in cecal ligation and puncture (CLP)-induced septic rats and its possible mechanisms of action. Healthy male Sprague-Dawley rats were randomly divided into three groups (n=20 per group): Sham group, CLP group and CLP + emodin group. Animals were sacrificed at 12 and 24 h after the model was established. Abdominal aortic blood and specimens of the ileum were harvested for analysis. The histopathological changes in intestinal mucosa and the ultrastructures of intestinal epithelial cells were investigated using light microscopy and transmission electron microscopy. The integrity of the intestinal barrier was assessed by examining plasma diamine oxidase (DAO) levels and the ratio of urine lactulose to mannitol (L/M). The levels of the intestinal TJ proteins claudin-3, zonula occludens (ZO)-1 and occludin were detected using immunohistochemistry, western blotting and reverse transcription-quantitative PCR. The results showed that the pathological damage to intestinal mucosa and the intestinal tissue injury score in the CLP + emodin group were significantly reduced compared to those of the CLP group, and the differences were more obvious at 24 h compared with 12 h. DAO activity and the L/M ratio in the emodin pre-treatment group decreased significantly at 24 h compared with the CLP groups. The protein and mRNA levels of the TJ proteins claudin-3, ZO-1 and occludin in the emodin pre-treatment groups at 12 and 24 h were increased, while occludin mRNA level was found to be decreased compared with the CLP groups. The present study suggested that emodin may significantly reduce the damage to the intestinal epithelial barrier in sepsis, inhibit intestinal barrier permeability and protect intestinal barrier integrity. Emodin may protect intestinal barrier integrity by elevating expression levels of the TJ proteins claudin-3, ZO-1 and occludin in CLP rats.
Collapse
Affiliation(s)
- Yanjun Li
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ruimin Guo
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Mengying Zhang
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Peng Chen
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jingxin Li
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yanni Sun
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China.,Department of Emergency, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai 200062, P.R. China
| |
Collapse
|
4
|
Zhang J, Zhang Q, Liu G, Zhang N. Therapeutic potentials and mechanisms of the Chinese traditional medicine Danshensu. Eur J Pharmacol 2019; 864:172710. [PMID: 31586468 DOI: 10.1016/j.ejphar.2019.172710] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Danshensu is a pure molecule derived from Danshen, which is the root of the herb Salvia miltiorrhiza. It has a clearly defined chemical structure and demonstrates therapeutic effects in cardiovascular diseases (e.g., myocardial ischemia and reperfusion, atherosclerosis, hypertension), cerebral lesions and disorders (e.g., ischemia, cognitive decline, and anxiety), and other health problems (e.g., thrombosis, tumorigenesis, pancreatitis). The mechanisms behind these effects include antioxidation, anti-apoptosis, vasodilation, inflammation regulation, lipidemia control, etc., through the PI3K/Akt-ERK1/2/Nrf2/HO-1, Bcl-2/Bax, eNOS and other molecular signaling pathways. Both Danshen and Danshensu might be more effective than classical cardiovascular drugs, and their combination yields improved therapeutic efficiency. Here, we provide an overview of these drugs for a better understanding of Danshensu as a promising Chinese traditional medicine.
Collapse
Affiliation(s)
- Jinli Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China
| | - Qianqian Zhang
- Department of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Guang Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China
| | - Ning Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
5
|
Cen ME, Wang F, Su Y, Zhang WJ, Sun B, Wang G. Gastrointestinal microecology: a crucial and potential target in acute pancreatitis. Apoptosis 2019; 23:377-387. [PMID: 29926313 DOI: 10.1007/s10495-018-1464-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the early stage of acute pancreatitis (AP), abundant cytokines induced by local pancreatic inflammation enter the bloodstream, further cause systemic inflammatory response syndrome (SIRS) by "trigger effect", which eventually leads to multiple organ dysfunction syndrome (MODS). During SIRS and MODS, the intestinal barrier function was seriously damaged accompanied by the occurrence of gut-derived infection which forms a "second hit summit" by inflammatory overabundance. Gastrointestinal microecology, namely the biologic barrier, could be transformed into a pathogenic state, which is called microflora dysbiosis when interfered by the inflammatory stress during AP. More and more evidences indicate that gastrointestinal microflora dysbiosis plays a key role in "the second hit" induced by AP gut-derived infection. Therefore, the maintenance of gastrointestinal microecology balance is likely to provide an effective method in modulating systemic infection of AP. This article reviewed the progress of gastrointestinal microecology in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Meng-Er Cen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.,Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Nephropathy, Hangzhou, Zhejiang, China
| | - Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Su
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
6
|
Duan PY, Ma Y, Li XN, Qu FZ, Ji L, Guo XY, Zhang WJ, Xiao F, Li L, Hu JS, Sun B, Wang G. Inhibition of RIPK1-dependent regulated acinar cell necrosis provides protection against acute pancreatitis via the RIPK1/NF-κB/AQP8 pathway. Exp Mol Med 2019; 51:1-17. [PMID: 31375658 PMCID: PMC6802613 DOI: 10.1038/s12276-019-0278-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Currently, preliminary results have confirmed the existence of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL)-dependent necroptosis of pancreatic acinar cells during early acute pancreatitis (AP), which might be a potential target for the effective regulation of necroinflammatory injury. However, the exact effect of receptor-interacting protein kinase 1 (RIPK1)-dependent regulated acinar cell necrosis on AP is still uncertain. In our study, we first explored the changes in the degree of local and systemic inflammation in AP rats when the activation of acinar cell RIPK1 was inhibited. The RIPK1 inhibitor Nec-1 was used to treat rats, and the levels of related inflammatory markers, necrosis indicators and apoptotic indicators were measured. Changes in pancreatic nuclear factor κB (NF-κB) and aquaporin 8 (AQP8) expression were noted. Next, the expression of AQP8 in AR42J cells was inhibited, and the degree of cell necrosis and inflammatory damage was found to be significantly reduced. Most importantly, we demonstrated that the RIPK1/NF-ĸB/AQP8 axis might be a potential regulatory pathway mediating RIPK1-dependent regulated acinar cell necrosis in early AP. Finally, we used the NF-κB inhibitor PDTC and Nec-1 to treat rats in different groups and measured the degree of pathological pancreatic injury, the activation of RIPK1, and the expression of NF-κB and AQP8. In summary, we hypothesized that there might be a RIPK1/NF-ĸB/AQP8 pathway controlling RIPK1-dependent regulated necrosis of acinar cells in AP, which might be a promising therapeutic target against AP-related injury.
Collapse
Affiliation(s)
- Peng-Yu Duan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuan Ma
- Department of Medical Administration, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xi-Na Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feng-Zhi Qu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liang Ji
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiao-Yu Guo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fan Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ji-Sheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
7
|
He BB, Guo YM, Zhu HH, Yang X, Bai YY. Severe acute pancreatitis-related renal injury in rats at different altitudes. Shijie Huaren Xiaohua Zazhi 2017; 25:2702-2707. [DOI: 10.11569/wcjd.v25.i30.2702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To compare severe acute pancreatitis (SAP)-induced renal injury in rats at different altitudes.
METHODS SAP was induced in rats by injecting 4.5% sodium taurocholate into the pancreas at different time points. Control rats underwent a sham operation (touching the pancreas only after opening the abdominal cavity). Blood samples were collected from the abdominal aorta at different time points to determine serum levels of amylase (AMY), creatinine (Cr), and blood urea nitrogen (BUN). Pancreas tissues were collected and stained with HE to perform histopathological analysis.
RESULTS The levels of serum AMY, Cr, and BUN were significantly higher in the SAP group than in the control group (P < 0.05). The levels of serum AMY, Cr, and BUN in the SAP group differed significantly at the same time point at different altitudes (P < 0.05) or at different time points at the same altitude (P < 0.05). There was a significant difference in pancreatic histopathological score between the two groups (P < 0.05). The histopathological score in the SAP group differed significantly at the same time point at different altitudes (P < 0.05) or at different time points at the same altitude (P < 0.05).
CONCLUSION The development and progression of renal injury are aggravated at high altitudes.
Collapse
Affiliation(s)
- Bei-Bei He
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| | - Ya-Min Guo
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| | - Hai-Hong Zhu
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| | - Xiao Yang
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| | - Yun-Yan Bai
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| |
Collapse
|
8
|
Ning JW, Zhang Y, Yu MS, Gu ML, Xu J, Usman A, Ji F. Emodin alleviates intestinal mucosal injury in rats with severe acute pancreatitis via the caspase-1 inhibition. Hepatobiliary Pancreat Dis Int 2017; 16:431-436. [PMID: 28823375 DOI: 10.1016/s1499-3872(17)60041-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/28/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Emodin, a traditional Chinese medicine, has a therapeutic effect on severe acute pancreatitis (SAP), whereas the underlying mechanism is still unclear. Studies showed that the intestinal mucosa impairment, and subsequent release of endotoxin and proinflammatory cytokines such as IL-1β, which further leads to the dysfunction of multiple organs, is the potentially lethal mechanism of SAP. Caspase-1, an IL-1β-converting enzyme, plays an important role in this cytokine cascade process. Investigation of the effect of emodin on regulating the caspase-1 expression and the release proinflammatory cytokines will help to reveal mechanism of emodin in treating SAP. METHODS Eighty Sprague-Dawley rats were randomly divided into four groups (n=20 each group): SAP, sham-operated (SO), emodin-treated (EM) and caspase-1 inhibitor-treated (ICE-I) groups. SAP was induced by retrograde infusion of 3.5% sodium taurocholate into the pancreatic duct. Emodin and caspase-1 inhibitor were given 30 minutes before and 12 hours after SAP induction. Serum levels of IL-1β, IL-18 and endotoxin, histopathological alteration of pancreas tissues, intestinal mucosa, and the intestinal caspase-1 mRNA and protein expressions were assessed 24 hours after SAP induction. RESULTS Rats in the SAP group had higher serum levels of IL-1β and IL-18 (P<0.05), pancreatic and gut pathological scores (P<0.05), and caspase-1 mRNA and protein expressions (P<0.05) compared with the SO group. Compared with the SAP group, rats in the EM and ICE-I groups had lower IL-1β and IL-18 levels (P<0.05), lower pancreatic and gut pathological scores (P<0.05), and decreased expression of intestine caspase-1 mRNA (P<0.05). Ultrastructural analysis by transmission electron microscopy found that rats in the SAP group had vaguer epithelial junctions, more disappeared intercellular joints, and more damaged intracellular organelles compared with those in the SO group or the EM and ICE-I groups. CONCLUSIONS Emodin alleviated pancreatic and intestinal mucosa injury in experimental SAP. Its mechanism may partly be mediated by the inhibition of caspase-1 and its downstream inflammatory cytokines, including IL-1β and IL-18. Our animal data may be applicable in clinical practice.
Collapse
Affiliation(s)
| | - Yan Zhang
- First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Division of Gastroenterology, Yixing People's Hospital, Yixing 214200, China
| | - Mo-Sang Yu
- Division of Gastroenterology, Hangzhou, China
| | - Meng-Li Gu
- Division of Gastroenterology, Hangzhou, China
| | - Jia Xu
- Division of Emergency, Hangzhou, China
| | - Ali Usman
- Division of Gastroenterology, Hangzhou, China
| | - Feng Ji
- Division of Gastroenterology, Hangzhou, China.
| |
Collapse
|
9
|
Anchi P, Khurana A, Bale S, Godugu C. The Role of Plant-derived Products in Pancreatitis: Experimental and Clinical Evidence. Phytother Res 2017; 31:591-623. [DOI: 10.1002/ptr.5792] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Pratibha Anchi
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Amit Khurana
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Swarna Bale
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology; National Institute of Pharmaceutical Education and Research (NIPER), Balanagar; Hyderabad Telangana India
| |
Collapse
|
10
|
Li N, Wang JB, Zhao YL, Zhang L, Ma XB, Li XF, Song J, Yang X, Xiao XH, Tian J, Kang TG. Liver Protective and Reactive Oxygen Species Scavenging
Effects of Emodin in Lipopolysaccharide/Bacillus Calmette
Guerin-injured Mice by Optical Molecular Imaging. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.175.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Kang S, Zhao X, Yue L, Liu L. Main anthraquinone components in Aloe vera
and their inhibitory effects on the formation of advanced glycation end-products. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shimo Kang
- The College of Food Science; Shenyang Agricultural University; Shenyang Liaoning 110866 China
| | - Xin Zhao
- The College of Food Science; Shenyang Agricultural University; Shenyang Liaoning 110866 China
| | - Lu Yue
- The College of Food Science; Shenyang Agricultural University; Shenyang Liaoning 110866 China
| | - Ling Liu
- The College of Food Science; Shenyang Agricultural University; Shenyang Liaoning 110866 China
| |
Collapse
|
12
|
Abstract
BACKGROUND Severe acute pancreatitis (SAP) remains a clinical challenge with considerable morbidity and mortality. An early identification of infected pancreatic necrosis (IPN), a life-threatening evolution secondary to SAP, is obliged for a more preferable prognosis. Thus, the present study was conducted to identify the risk factors of IPN secondary to SAP. METHODS The clinical data of patients with SAP were retrospectively analyzed. Univariate and multivariate logistic regression analyses were sequentially performed to assess the associations between the variables and the development of IPN secondary to SAP. A receiver operating characteristic (ROC) curve was created for each of the qualified independent risk factors. RESULTS Of the 115 eligible patients, 39 (33.9%) progressed to IPN, and the overall in-hospital mortality was 11.3% (13/115). The early enteral nutrition (EEN) (P=0.0092, OR=0.264), maximum intra-abdominal pressure (IAP) (P=0.0398, OR=1.131) and maximum D-dimer level (P=0.0001, OR=1.006) in the first three consecutive days were independent risk factors associated with IPN secondary to SAP. The area under ROC curve (AUC) was 0.774 for the maximum D-dimer level in the first three consecutive days and the sensitivity was 90% and the specificity was 58% at a cut-off value of 933.5 μg/L; the AUC was 0.831 for the maximum IAP in the first three consecutive days and the sensitivity was 95% and specificity was 58% at a cut-off value of 13.5 mmHg. CONCLUSIONS The present study suggested that the maximum D-dimer level and/or maximum IAP in the first three consecutive days after admission were risk factors of IPN secondary to SAP; an EEN might be helpful to prevent the progression of IPN secondary to SAP.
Collapse
|
13
|
Ji L, Li L, Qu F, Zhang G, Wang Y, Bai X, Pan S, Xue D, Wang G, Sun B. Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagy via AMPK/mTOR pathway. J Cell Mol Med 2016; 20:2349-2361. [PMID: 27419805 PMCID: PMC5134374 DOI: 10.1111/jcmm.12928] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/12/2016] [Indexed: 01/14/2023] Open
Abstract
Previously, we have shown that hydrogen sulphide (H2 S) might be pro-inflammatory during acute pancreatitis (AP) through inhibiting apoptosis and subsequently favouring a predominance of necrosis over apoptosis. In this study, we sought to investigate the detrimental effects of H2 S during AP specifically with regard to its regulation on the impaired autophagy. The incubated levels of H2 S were artificially intervened by an administration of sodium hydrosulphide (NaHS) or DL-propargylglycine (PAG) after AP induction. Accumulation of autophagic vacuoles and pre-mature activation of trypsinogen within acini, which indicate the impairment of autophagy during AP, were both exacerbated by treatment with NaHS but attenuated by treatment with PAG. The regulation that H2 S exerted on the impaired autophagy during AP was further attributed to over-activation of autophagy rather than hampered autophagosome-lysosome fusion. To elucidate the molecular mechanism that underlies H2 S-mediated over-activation of autophagy during AP, we evaluated phosphorylations of AMP-activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR). Furthermore, Compound C (CC) was introduced to determine the involvement of mTOR signalling by evaluating phosphorylations of downstream effecters including p70 S6 kinase (P70S6k) and UNC-51-Like kinase 1 (ULK1). Our findings suggested that H2 S exacerbated taurocholate-induced AP by over-activating autophagy via activation of AMPK and subsequently, inhibition of mTOR. Thus, an active suppression of H2 S to restore over-activated autophagy might be a promising therapeutic approach against AP-related injuries.
Collapse
Affiliation(s)
- Liang Ji
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fengzhi Qu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuewei Bai
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
|
15
|
Sun FL, Teng YS, Shang D. Mechanisms of action of emodin and resveratrol in severe acute pancreatitis: A comparison. Shijie Huaren Xiaohua Zazhi 2015; 23:4376-4383. [DOI: 10.11569/wcjd.v23.i27.4376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a common acute abdominal disease, and 20% of AP cases progress to severe acute pancreatitis (SAP). Current studies have found that pancreatic microcirculation disturbance, leukocyte over-activation, inflammatory mediator overexpression, cell apoptosis disorders in damaged tissue, and calcium overload play important roles in SAP progression. Numerous studies have shown that traditional Chinese medicine (TCM) has a protective effect on SAP. In recent ten years, emodin and resveratrol are hot spot in the field of research on the treatment of SAP animal models with TCM. This review attempts to illuminate and compare the potential mechanisms of action of emodin and resveratrol in SAP from the perspective of traditional Chinese pharmacology and modern pharmacology.
Collapse
|
16
|
Inflammatory profiling of early experimental necrotizing pancreatitis. Life Sci 2015; 126:76-80. [PMID: 25711429 DOI: 10.1016/j.lfs.2015.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 01/26/2023]
Abstract
AIMS Inflammatory mediators play a pivotal role in severe necrotizing pancreatitis (SNP). Therapeutic approaches aim at the early inflammatory liberation of cytokines to avoid systemic complications. The present study evaluates the kinetics of inflammatory mediator release in SNP. MAIN METHODS Experimental SNP was induced in male Wistar rats using the GDOC model. The animals were allocated into seven groups (n = 6/group). In group 1, sample harvesting was performed after sham operation while in groups 2-7 this was performed 1 h, 2 h, 4 h, 6 h, 9 h, and 12 h after initiation of SNP, respectively. Inflammatory mediator release,morphologic injury, and tissue MPO concentrations were evaluated between 1 and 12 h after induction. KEY FINDINGS Pancreatic injury showed a continuous increase over the observation period (p b 0.05, respectively). MPO levels in the pancreas and lungs increased until 12 h after induction (p b 0.05, respectively). Antiinflammatory IL-10 showed an early peak and the pro-inflammatory mediators TNFα and IL-1β peaked after 6 and 9 h, respectively (p b 0.05, respectively). HMGB1 levels constantly increased over time (p b 0.05, respectively). SIGNIFICANCE The present study shows the release of relevant pro- and anti-inflammatory mediators in SNP for the first time in one single experimental setup. Inflammatory mediators peak within the first few hours after SNP induction. Consequently, the effect of therapeutic approaches on early changes in cytokine release should be evaluated later than 2 h after initiation.
Collapse
|
17
|
Lv JC, Wang G, Pan SH, Bai XW, Sun B. Lycopene protects pancreatic acinar cells against severe acute pancreatitis by abating the oxidative stress through JNK pathway. Free Radic Res 2014; 49:151-63. [PMID: 25410533 DOI: 10.3109/10715762.2014.988150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study investigated the anti-oxidative and anti-inflammatory effects of lycopene on severe acute pancreatitis (SAP) in both in vivo and in vitro models. Utilizing a rat model, we found that lycopene administration protected against SAP, as indicated by the decreased levels of serum amylase and C-reactive protein. Pathological changes were alleviated by pretreatment with lycopene. The serum levels of tumor necrosis factor-α, interleukin-6, macrophage inflammatory protein-1α, and monocyte chemotactic protein-1 were decreased by lycopene. The decreased reactive oxygen species (ROS) content in the pancreatic tissues of the lycopene-treated group were indirectly evaluated by measuring the levels of myeloperoxidase, lipid peroxidase, and superoxide dismutase. Lycopene protected acinar cells against necrosis and apoptosis by relieving the mitochondrial and endoplasmic stress caused by ROS which was shown in electron microscopy and immunohistochemistry staining of active nuclear factor-κB p65. The protective effect was also observed in a simulated SAP model in a rat acinar cell line. ROS and apoptotic staining were compared between groups. Lycopene exerts protective effects against SAP in rats that may be related to its anti-inflammatory property through inhibiting the expression of damage-associated molecular patterns, and anti-oxidative property which can thus maintain cellular homeostasis and prevent the phosphorylation of JNK pathway.
Collapse
Affiliation(s)
- J C Lv
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University , Harbin, Heilongjiang , P. R. China
| | | | | | | | | |
Collapse
|
18
|
Zhu X, Zeng K, Qiu Y, Yan F, Lin C. Therapeutic effect of emodin on collagen-induced arthritis in mice. Inflammation 2014; 36:1253-9. [PMID: 23729279 DOI: 10.1007/s10753-013-9663-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Emodin, an anthraquinone isolated from the Chinese herb Radix et Rhizoma Rhei, has been reported to have anti-inflammatory, antibacterial, and antitumor activities. However, the effect of emodin on collagen-induced arthritis (CIA) has not yet been investigated. The purpose of this study was to investigate whether emodin has a protective effect against collagen-induced arthritis in mice and its possible mechanisms. CIA was induced in mice by immunization with bovine type II collagen. The mice were treated with emodin (5, 10, and 20 mg/kg/day, i.g.) from days 21 to 42 after immunization. The clinical scores and hind paw swelling were evaluated. The expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) in synovial tissues was determined. The levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in the plasma were measured by enzyme-linked immunosorbent assay. The results showed that emodin treatment significantly alleviated the severity of the disease, based on the reduced hind paw swelling and clinical scores, compared with untreated CIA mice. Comparing with untreated CIA mice, emodin treatment inhibited the levels of TNF-α and IL-6 in the plasma, PGE2 production, and COX-2 protein expression in synovial tissues in a dose manner. In conclusion, our results suggest that anti-inflammatory effects of emodin against collagen-induced arthritis in mice may be due to its ability to inhibit pro-inflammatory mediators. Emodin may be a promising potential therapeutic reagent for arthritis treatment.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | | | | | | | | |
Collapse
|
19
|
Catalpol ameliorates sodium taurocholate-induced acute pancreatitis in rats via inhibiting activation of nuclear factor kappa B. Int J Mol Sci 2014; 15:11957-72. [PMID: 25000266 PMCID: PMC4139823 DOI: 10.3390/ijms150711957] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/03/2014] [Accepted: 06/20/2014] [Indexed: 01/09/2023] Open
Abstract
Catalpol, an iridoid glucoside extracted from the traditional Chinese herbal medicine, Rehmannia glutinosa, is reported to exert neuroprotective, anti-inflammatory, anti-tumor and anti-apoptotic effects. The main aim of the present study was to investigate whether catalpol ameliorates experimental acute pancreatitis (AP) induced by sodium taurocholate (STC). AP was induced in rats via retrograde injection of 4% STC (0.1 mL/100 g) into the biliopancreatic duct. Rats were pre-treated with saline or catalpol (50 mg/kg) 2 h before STC injection. At 12, 24 and 48 h after injection, the severity of AP was evaluated using biochemical and morphological analyses. Pretreatment with catalpol led to a significant reduction in serum amylase and lipase activities, pancreatic histological damage, myeloperoxidase (MPO) activity, interleukin (IL)-1β, IL-6 and TNF-α levels, and activation of nuclear factor kappa B (NF-κB). Moreover, administration of catalpol increased the viability of pancreatic acinar cells and inhibited NF-κB expression in vitro. Our results collectively support the potential of catalpol as a highly effective therapeutic agent for treatment of AP.
Collapse
|
20
|
From nitric oxide to hyperbaric oxygen: invisible and subtle but nonnegligible gaseous signaling molecules in acute pancreatitis. Pancreas 2014; 43:511-7. [PMID: 24713669 DOI: 10.1097/mpa.0000000000000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric oxide (NO), carbon monoxide, and hydrogen sulfide in addition to hydrogen are well established as gaseous signal molecules throughout the body. Although the role of gasotransmitters in acute pancreatitis (AP) has been explored for many years, many details remain to be elucidated. The physiologic effect of NO in AP mainly relies on induced NO synthase, which stimulates the production of cytokines in the blood. Carbon monoxide inhibits nuclear factor-κB activation, which leads to amelioration of the inflammatory response. Hydrogen sulfide displays a dual role in the mechanism of AP according to its concentration in the system. Hydrogen is a newly discovered gaseous signaling molecule, and currently, there is little evidence that it has any function in alleviating inflammation. We discovered that hyperbaric oxygen is a novel gasotransmitter that has potential use in the treatment of AP. The correlation among hyperbaric oxygen, hypoxia inducible factor 1α, and other signaling pathways should be further studied. We also discuss some prospects and issues that remain to be resolved in this review. In summary, the discovery of gaseous signal molecules has established a new platform for deep investigation of the mechanism of AP, and our knowledge of the role of gasotransmitters in AP will increase with further research.
Collapse
|
21
|
Abstract
OBJECTIVES The endogenous immune response is influenced by the stimulation of the vagal nerve. Stimulation or ablation has a direct impact on the release of pro- and anti-inflammatory mediators. In the progression of acute pancreatitis from local to systemic disease, these mediators play a pivotal role. This study evaluates the effect of pharmacologic stimulation of the cholinergic system on pancreatic damage in experimental necrotizing pancreatitis. METHODS Experimental severe necrotizing pancreatitis was induced in male Wistar rats using the glycodeoxycholic acid model. Animals with acute pancreatitis (n = 6) were compared with animals with acute pancreatitis and prophylactic or therapeutic pharmacologic activation of the cholinergic system using nicotine, physostigmine, or neostigmine (n = 36). Twelve hours after the induction of acute pancreatitis, morphological damage as well as the myeloperoxidase levels of the pancreas and the serum levels of high-mobility group box 1 protein were evaluated. RESULTS Prophylactic and delayed therapeutic application of nicotine, physostigmine, or neostigmine significantly attenuated the severity of acute pancreatitis 12 hours after the induction of severe necrotizing pancreatitis compared with untreated controls as evaluated with histological scores, myeloperoxidase, and high-mobility group box 1 levels (P < 0.05). CONCLUSIONS Stimulation of the cholinergic system is useful to attenuate damage in experimental acute pancreatitis. Not only prophylactic but also delayed application was effective in the present study.
Collapse
|
22
|
Inhibition of hydrogen sulfide synthesis provides protection for severe acute pancreatitis rats via apoptosis pathway. Apoptosis 2013; 18:28-42. [PMID: 23054084 DOI: 10.1007/s10495-012-0770-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We aimed to investigate the relationship between the synthesis of hydrogen sulfide (H(2)S) and the pancreatic acinar cell apoptosis in severe acute pancreatitis (SAP) rats, as well as analyse the potential apoptotic pathway involved in this process. Sixty rats had been equally divided into four groups: sham, SAP, SAP + sodium hydrosulfide (NaHS) and SAP + DL-propargylglycine (PAG). 24 h after SAP induction, all surviving animals of each group were sacrificed to collect blood and tissue samples for the following measurements: the level of serum H(2)S as well as the levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), H(2)S synthesizing activity, CSE mRNA and protein expression, maleic dialdehyde (MDA) and myeloperoxidase (MPO) activity, the expression of Bax, Bcl-2, caspase-3, -8 and -9, the release of cytochrome c and the activation of nuclear factor-kappa B (NF-κB), ERK1/2, JNK1/2 and p38 in pancreas. Furthermore, in situ detection of cell apoptosis was examined and the severity of pancreatic damage was analyzed by pathological grading and scoring. Results Significant differences in every index except IL-10 had been found between the SAP, NaHS and PAG groups (P < 0.05). Treatment with PAG obviously induced the pancreatic acinar cell apoptosis as well as improved all the pathological changes and inflammatory parameters. In contrast, administration of NaHS significantly attenuated apoptosis in the pancreas and aggravated the severity of pancreatic damage. Moreover, the expressions of caspase-3, -8, -9 and the release of cytochrome c were all increased in the apoptotic cells, and the activity of NF-κB as well as the phosphorylation of ERK1/2, JNK1/2 and p38 decreased accompanying with the reduction of the serum H(2)S level. H(2)S plays a pivotal role in the regulation of pancreatic acinar cell apoptosis in SAP rats. The present results showed that inhibition of H(2)S synthesis provided protection for SAP rats via inducing acinar cell apoptosis. This process acted through both extrinsic and intrinsic apoptotic pathways, and may be regulated by reducing the activity of NF-κB.
Collapse
|
23
|
Li D, Zhang N, Cao Y, Zhang W, Su G, Sun Y, Liu Z, Li F, Liang D, Liu B, Guo M, Fu Y, Zhang X, Yang Z. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-κB and MAPKs signal pathways. Eur J Pharmacol 2013; 705:79-85. [PMID: 23499696 DOI: 10.1016/j.ejphar.2013.02.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 12/20/2022]
Abstract
Emodin is an anthraquinone derivative from the Chinese herb Radix et Rhizoma Rhei. It has been reported that emodin possesses a number of biological properties, such as anti-inflammatory, anti-virus, anti-bacteria, anti-tumor, and immunosuppressive properties. However, the effect of emodin on mastitis is not yet known. The aim of this study was to investigate whether emodin has protective effect against lipopolysaccharide (LPS)-induced mastitis in a mouse model. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Emodin was administered intraperitoneally with the dose of 1, 2, and 4 mg/kg respectively 1h before and 12h after induction of LPS. Emodin significantly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), concentration of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), mRNA expression levels of TNF-α, IL-1β and IL-6, which were increased in LPS-induced mouse mastitis. In addition, emodin influenced nuclear factor kappa-B signal transduction pathway by inhibiting activation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κB α (IκBα), and emodin also influenced mitogen activated protein kinases signal transduction pathway by depression activation of p38, extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). In conclusion, these results indicated that emodin could exert beneficial effects on experimental mastitis induced by LPS and may represent a novel treatment strategy for mastitis.
Collapse
Affiliation(s)
- Depeng Li
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang GX, Chen HL, Ji J, Wu YY, Shang D, Zhang L. Emodin protects from deoxycholic acid-induced AR42J cell damage. Shijie Huaren Xiaohua Zazhi 2012; 20:771-775. [DOI: 10.11569/wcjd.v20.i9.771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether emodin exerts a protect effect against deoxycholic acid (DCA)-induced cell damage in rat pancreatic acinar cell line AR42J.
METHODS: AR42J cells were divided into five groups: normal control cells, cells treated with 0.4 or 0.8 mmol/L DCA, and those treated with 0.4 or 0.8 mmol/L DCA plus emodin (20 mg/L). The rates of apoptosis and necrosis were detected by flow cytometry and AV/PI double staining. The activity of amylase in the medium and cytoplasm was determined.
RESULTS: DCA at a dose of 0.4 mmol/L mainly induced the apoptosis of AR42J cells, while 0.8 mmol/L of DCA induced the necrosis of AR42J cells. Emodin significantly reduced DCA-induced late apoptosis (27.9% vs 34.1%) and necrosis (38.1% vs 45.4%), but did not significantly change the activity of amylase in the medium and cytoplasm of AR42J cells.
CONCLUSION: Emodin has some protective effects against DCA-induced AR42J cell damage, but does not influence amylase synthesis and secretion by acinar cells.
Collapse
|
25
|
Decreased expression of hepatic signaling phosphoproteins after laparoscopic and hand-assisted surgery in a porcine model. J Surg Res 2011; 176:608-13. [PMID: 22099598 DOI: 10.1016/j.jss.2011.09.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/16/2011] [Accepted: 09/27/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Minimally-invasive surgery (MIS) is associated with a decreased activation of both systemic and peritoneal immunity compared with the open technique. However, hepatic response to laparoscopic (LAP) and hand-assisted laparoscopic (HAL) surgery has not been defined well. We postulated that both LAP and HAL approaches are associated with a diminished activation of hepatic inflammatory signaling pathways compared with the traditional open surgery. MATERIALS AND METHODS Eighteen pigs underwent a transabdominal nephrectomy via Open, HAL, or LAP approach. Liver samples were obtained 24 h postoperatively and spot frozen. Frozen tissue samples were then homogenized and the nuclear pellets were separated and stored. Nuclear extracts were analyzed for activation of three nuclear signaling phosphoproteins: nuclear factor-kappaB (NFκB)-p65, heat-shock protein 27 (HSP27), and p38 mitogen-activated protein kinases (p38MAPK) using a standard Bioplex technique. Statistical comparison was performed using ANOVA and Student's t-test. RESULTS The average expression of HSP27 was significantly higher in the Open versus either the LAP or the HAL groups (P = 0.028 and P = 0.039). The average expression of NFκB-p65 was significantly higher in the Open versus either the LAP or the HAL groups (P = 0.032 and P = 0.049). The average expression of p38MAPK was significantly higher in the Open versus either the LAP or the HAL groups (P = 0.007 and P = 0.036). There was no significant difference in the expressions of HSP27 and NFκB-p65 between LAP and HAL groups (P = 0.38 and P = 0.20), however, detection of p38MAPK generated statistical difference between these two groups (P = 0.018). CONCLUSION Hand-assisted laparoscopic surgery has been widely accepted as an effective alternative to traditional laparoscopic procedures. We demonstrated that both laparoscopic and hand-assisted approaches resulted in blunted hepatic stress manifested by diminished expression of hepatic HSP27, NFκB, and p38-MAPK. In addition, the hand-assisted approach was equal to the laparoscopic approach in two of the three phosphoproteins studied. It appears that the use of hand-assisted techniques did not abrogate immunologic benefits of pure laparoscopy. Overall, in addition to the clinical benefits of minimal access, both hand-assisted and pure laparoscopic techniques may also confer an immunologic advantage over laparotomy.
Collapse
|
26
|
Ren R, Wang T, Jiang N, Liu T, Du Y, Li C, Zhang L, Fu F. Protective effects of Danshensu on liver injury induced by omethoate in rats. Toxicol Mech Methods 2010; 20:510-4. [DOI: 10.3109/15376516.2010.514963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|