1
|
Campo C, Gangemi S, Pioggia G, Allegra A. Beneficial Effect of Olive Oil and Its Derivates: Focus on Hematological Neoplasm. Life (Basel) 2024; 14:583. [PMID: 38792604 PMCID: PMC11122568 DOI: 10.3390/life14050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil (Olea europaea) is one of the major components of the Mediterranean diet and is composed of a greater percentage of monounsaturated fatty acids, such as oleic acid; polyunsaturated fatty acids, such as linoleic acid; and minor compounds, such as phenolic compounds, and particularly hydroxytyrosol. The latter, in fact, are of greater interest since they have found widespread use in popular medicine. In recent years, it has been documented that phenolic acids and in particular hydroxytyrosol have anti-inflammatory, antioxidant, and antiproliferative action and therefore interest in their possible use in clinical practice and in particular in neoplasms, both solid and hematological, has arisen. This work aims to summarize and analyze the studies present in the literature, both in vitro and in vivo, on the possible use of minor components of olive oil in some hematological neoplasms. In recent years, in fact, interest in nutraceutical science has expanded as a possible adjuvant in the treatment of neoplastic pathologies. Although it is worth underlining that, regarding the object of our study, there are still few preclinical and clinical studies, it is, however, possible to document a role of possible interest in clinical practice.
Collapse
Affiliation(s)
- Chiara Campo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98158 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| |
Collapse
|
2
|
Allegra A, Mirabile G, Caserta S, Stagno F, Russo S, Pioggia G, Gangemi S. Oxidative Stress and Chronic Myeloid Leukemia: A Balance between ROS-Mediated Pro- and Anti-Apoptotic Effects of Tyrosine Kinase Inhibitors. Antioxidants (Basel) 2024; 13:461. [PMID: 38671909 PMCID: PMC11047441 DOI: 10.3390/antiox13040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The balanced reciprocal translocation t (9; 22) (q34; q11) and the BCR-ABL fusion gene, which produce p210 bcr-abl protein production with high tyrosine kinase activity, are characteristics of chronic myeloid leukemia, a myeloproliferative neoplasm. This aberrant protein affects several signaling pathways connected to both apoptosis and cell proliferation. It has been demonstrated that tyrosine kinase inhibitor treatment in chronic myeloid leukemia acts by inducing oxidative stress and, depending on its level, can activate signaling pathways responsible for either apoptosis or survival in leukemic cells. Additionally, oxidative stress and reactive oxygen species generation also mediate apoptosis through genomic activation. Furthermore, it was shown that oxidative stress has a role in both BCR-ABL-independent and BCR-ABL-dependent resistance pathways to tyrosine kinases, while patients with chronic myeloid leukemia were found to have a significantly reduced antioxidant level. The ideal environment for tyrosine kinase inhibitor therapy is produced by a favorable oxidative status. We discuss the latest studies that aim to manipulate the redox system to alter the apoptosis of cancerous cells.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Fabio Stagno
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Sabina Russo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
3
|
Allegra A, Murdaca G, Mirabile G, Gangemi S. Protective Effects of High-Density Lipoprotein on Cancer Risk: Focus on Multiple Myeloma. Biomedicines 2024; 12:514. [PMID: 38540127 PMCID: PMC10967848 DOI: 10.3390/biomedicines12030514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 04/03/2025] Open
Abstract
Lipid metabolism is intrinsically linked to tumorigenesis. And one of the most important characteristics of cancer is the modification of lipid metabolism and its correlation with oncogenic signaling pathways within the tumors. Because lipids function as signaling molecules, membrane structures, and energy sources, lipids are essential to the development of cancer. Above all, the proper immune response of tumor cells depends on the control of lipid metabolism. Changes in metabolism can modify systems that regulate carcinogenesis, such as inflammation, oxidative stress, and angiogenesis. The dependence of various malignancies on lipid metabolism varies. This review delves into the modifications to lipid metabolism that take place in cancer, specifically focusing on multiple myeloma. The review illustrates how changes in different lipid pathways impact the growth, survival, and drug-responsiveness of multiple myeloma cells, in addition to their interactions with other cells within the tumor microenvironment. The phenotype of malignant plasma cells can be affected by lipid vulnerabilities, and these findings offer a new avenue for understanding this process. Additionally, they identify novel druggable pathways that have a major bearing on multiple myeloma care.
Collapse
Affiliation(s)
- Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (A.A.); (G.M.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Giuseppe Mirabile
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (A.A.); (G.M.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
4
|
Cancemi G, Cicero N, Allegra A, Gangemi S. Effect of Diet and Oxidative Stress in the Pathogenesis of Lymphoproliferative Disorders. Antioxidants (Basel) 2023; 12:1674. [PMID: 37759977 PMCID: PMC10525385 DOI: 10.3390/antiox12091674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lymphomas are a heterogeneous group of pathologies that result from clonal proliferation of lymphocytes. They are classified into Hodgkin lymphoma and non-Hodgkin lymphoma; the latter develops as a result of B, T, or NK cells undergoing malignant transformation. It is believed that diet can modulate cellular redox state and that oxidative stress is implicated in lymphomagenesis by acting on several biological mechanisms; in fact, oxidative stress can generate a state of chronic inflammation through the activation of various transcription factors, thereby increasing the production of proinflammatory cytokines and causing overstimulation of B lymphocytes in the production of antibodies and possible alterations in cellular DNA. The purpose of our work is to investigate the results of in vitro and in vivo studies on the possible interaction between lymphomas, oxidative stress, and diet. A variety of dietary regimens and substances introduced with the diet that may have antioxidant and antiproliferative effects were assessed. The possibility of using nutraceuticals as novel anticancer agents is discussed; although the use of natural substances in lymphoma therapy is an interesting field of study, further studies are needed to define the efficacy of different nutraceuticals before introducing them into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
5
|
Cui Y, Wang F, Fang B. Mitochondrial dysfunction and drug targets in multiple myeloma. J Cancer Res Clin Oncol 2023; 149:8007-8016. [PMID: 36928159 DOI: 10.1007/s00432-023-04672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological cancer that has no cure. Although currently there are several novel drugs, most MM patients experience drug resistance and disease relapse. The results of previous studies suggest that aberrant mitochondrial function may contribute to tumor progression and drug resistance. Mitochondrial DNA mutations and metabolic reprogramming have been reported in MM patients. Several preclinical and clinical studies have shown encouraging results of mitochondria-targeting therapy in MM patients. In this review, we have summarized our current understanding of mitochondrial biology in MM. More importantly, we have reviewed mitochondrial targeting strategies in MM treatment.
Collapse
Affiliation(s)
- Yushan Cui
- Department of Hematology, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 of Dongming Road, Zhengzhou, 450000, China
| | - Fujue Wang
- Department of Hematology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421000, China
| | - Baijun Fang
- Department of Hematology, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 of Dongming Road, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel) 2023; 12:1255. [PMID: 37371985 DOI: 10.3390/antiox12061255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic, developmental, biochemical, and environmental variables interact intricately to produce sex differences. The significance of sex differences in cancer susceptibility is being clarified by numerous studies. Epidemiological research and cancer registries have revealed over the past few years that there are definite sex variations in cancer incidence, progression, and survival. However, oxidative stress and mitochondrial dysfunction also have a significant impact on the response to treatment of neoplastic diseases. Young women may be more protected from cancer than men because most of the proteins implicated in the regulation of redox state and mitochondrial function are under the control of sexual hormones. In this review, we describe how sexual hormones control the activity of antioxidant enzymes and mitochondria, as well as how they affect several neoplastic diseases. The molecular pathways that underlie the gender-related discrepancies in cancer that have been identified may be better understood, which may lead to more effective precision medicine and vital information on treatment options for both males and females with neoplastic illnesses.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Sara Genovese
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
7
|
Geduk¹ A, Oztas B, Eryılmaz BH, Demirsoy ET, Menguc MU, Unal S, Mersin S, Polat MG, Aygun K, Yenihayat EM, Albayrak H, Erol HA, Balcı S, Mehtap¹ O, Tarkun¹ P, Hacihanefioglu¹ A. Effects of AGEs, sRAGE and HMGB1 on Clinical Outcomes in Multiple Myeloma. Indian J Hematol Blood Transfus 2023; 39:220-227. [PMID: 37006982 PMCID: PMC10064350 DOI: 10.1007/s12288-022-01574-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022] Open
Abstract
Purpose The receptor for advanced glycation end products (RAGE) upregulated during the onset and progression of cancer and bone-related pathologies. In this study, we aimed to investigate the role of serum advanced glycation end products (AGEs), soluble RAGE (sRAGE) and high mobility group box 1 (HMGB1), in multiple myeloma (MM). Methods AGEs, sRAGE and HMGB1 concentrations of 54 newly diagnosed MM patients and 30 healthy volunteers were measured by ELISA. The estimations were done only once at diagnosis. The medical records of the patients were evaluated. Results There was no significant difference between the AGEs and sRAGE levels between the patient and control groups (p = 0.273, p = 0.313). In ROC analysis, a HMGB1 cutoff value of > 9170 pg/ml accurately discriminated MM patients (AUC = 0.672, 95% CI 0.561-0.77, p = 0.0034). AGEs level was found to be significantly higher in early-stage disease and HMGB1 in advanced disease (p = 0.022, p = 0.026). High HMGB1 levels were detected in patients whose with better first-line treatment response (p = 0.019). At 36 months, 54% of patients with low AGE were alive, compared to 79% of patients with high AGE (p = 0.055). Patients with high HMGB1 levels tended to have a longer PFS (median 43 mo [95% CI; 20.68-65.31] ) compared to patients with low HMGB1 levels (median 25 mo [95% CI; 12.39-37.6], p = 0.054). Conclusion In this study, a significant elevation of serum HMGB1 level was found in MM patients. In addition, the positive effects of RAGE ligands on treatment response and prognosis were determined.
Collapse
Affiliation(s)
- Ayfer Geduk¹
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Berrin Oztas
- Department of Biochemistry, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Baldan Huri Eryılmaz
- Department of İnternal Medicine, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Esra Terzi Demirsoy
- Department of Hematology, Derince Training and Research Hospital, Health Sciences University, Kocaeli, Turkey
| | - Meral U. Menguc
- Department of Hematology, Medical Faculty, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Serkan Unal
- Department of Hematology, Kastamonu Training and Research Hospital, Kastamonu, Turkey
| | - Sinan Mersin
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Merve Gokcen Polat
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Kemal Aygun
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Emel Merve Yenihayat
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Hayrunnisa Albayrak
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Hasim Atakan Erol
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Sibel Balcı
- Department of Biostatistics and Medical Informatics, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Ozgur Mehtap¹
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Pinar Tarkun¹
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Abdullah Hacihanefioglu¹
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| |
Collapse
|
8
|
Allegra A, Cicero N, Mirabile G, Giorgianni CM, Gangemi S. Novel Biomarkers for Diagnosis and Monitoring of Immune Thrombocytopenia. Int J Mol Sci 2023; 24:ijms24054438. [PMID: 36901864 PMCID: PMC10003036 DOI: 10.3390/ijms24054438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Lower-than-normal platelet counts are a hallmark of the acquired autoimmune illness known as immune thrombocytopenia, which can affect both adults and children. Immune thrombocytopenia patients' care has evolved significantly in recent years, but the disease's diagnosis has not, and it is still only clinically achievable with the elimination of other causes of thrombocytopenia. The lack of a valid biomarker or gold-standard diagnostic test, despite ongoing efforts to find one, adds to the high rate of disease misdiagnosis. However, in recent years, several studies have helped to elucidate a number of features of the disease's etiology, highlighting how the platelet loss is not only caused by an increase in peripheral platelet destruction but also involves a number of humoral and cellular immune system effectors. This made it possible to identify the role of immune-activating substances such cytokines and chemokines, complement, non-coding genetic material, the microbiome, and gene mutations. Furthermore, platelet and megakaryocyte immaturity indices have been emphasized as new disease markers, and prognostic signs and responses to particular types of therapy have been suggested. Our review's goal was to compile information from the literature on novel immune thrombocytopenia biomarkers, markers that will help us improve the management of these patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
| | - Concetto Mario Giorgianni
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
9
|
Cicero N, Gangemi S, Allegra A. Natural products and oxidative stress: potential agents against multiple myeloma. Nat Prod Res 2023; 37:687-690. [PMID: 35502884 DOI: 10.1080/14786419.2022.2067852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
10
|
Vagal Nerve Activity Predicts Prognosis in Diffused Large B-Cell Lymphoma and Multiple Myeloma. J Clin Med 2023; 12:jcm12030908. [PMID: 36769556 PMCID: PMC9917757 DOI: 10.3390/jcm12030908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
This study examined the prognostic role of vagal nerve activity in patients with relapsed/refractory diffused large B-cell lymphoma (R/R-DLBCL) treated with chimeric antigen receptor cell therapy (CAR-T) and in patients with multiple myeloma (MM) undergoing an autologous hematopoietic cell transplantation (AutoHCT). Participants included 29 patients with R/R-DLBCL and 37 patients with MM. Inclusion criteria were: (1) age over 18; (2) diagnosed with DLBCL or MM; (3) being treated with CAR-T or AutoHCT; and (4) having an ECG prior to cell transfusion. The predictor was vagal nerve activity indexed by heart rate variability (HRV) and obtained retroactively from 10 s ECGs. The main endpoint for R/R-DLBCL was overall survival (OS), and for MM the endpoint was progression-free survival (PFS). Data of 122 patients were obtained, 66 of whom were included in the study. In DLBCL, HRV significantly predicted OS independently of confounders (e.g., performance status, disease status at cell therapy), hazard ratio (HR), and 95% confidence interval (HR = 0.20; 95%CI: 0.06-0.69). The prognostic role of disease severity was moderated by HRV: among severely disease patients, 100% died with low HRV, while only 37.5% died with high HRV. In MM, HRV significantly predicted PFS (HR = 0.19; 95%CI: 0.04-0.90) independently of confounders. Vagal nerve activity independently predicts prognosis in patients with R/R-DLBCL and with MM undergoing cell therapy. High vagal activity overrides the prognostic role of disease severity. Testing the effects of vagal nerve activation on prognosis in blood cancers is recommended.
Collapse
|
11
|
Critical Role of Aquaporins in Cancer: Focus on Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14174182. [PMID: 36077720 PMCID: PMC9455074 DOI: 10.3390/cancers14174182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Aquaporins are proteins able to regulate the transfer of water and other small substances such as ions, glycerol, urea, and hydrogen peroxide across cellular membranes. AQPs provide for a huge variety of physiological phenomena; their alteration provokes several types of pathologies including cancer and hematological malignancies. Our review presents data revealing the possibility of employing aquaporins as biomarkers in patients with hematological malignancies and evaluates the possibility that interfering with the expression of aquaporins could represent an effective treatment for hematological malignancies. Abstract Aquaporins are transmembrane molecules regulating the transfer of water and other compounds such as ions, glycerol, urea, and hydrogen peroxide. Their alteration has been reported in several conditions such as cancer. Tumor progression might be enhanced by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell–matrix adhesions, actin cytoskeleton, epithelial–mesenchymal transitions, and acting on several signaling pathways facilitating cancer progression. Close connections have also been identified between the aquaporins and hematological malignancies. However, it is difficult to identify a unique action exerted by aquaporins in different hemopathies, and each aquaporin has specific effects that vary according to the class of aquaporin examined and to the different neoplastic cells. However, the expression of aquaporins is altered in cell cultures and in patients with acute and chronic myeloid leukemia, in lymphoproliferative diseases and in multiple myeloma, and the different expression of aquaporins seems to be able to influence the efficacy of treatment and could have a prognostic significance, as greater expression of aquaporins is correlated to improved overall survival in leukemia patients. Finally, we assessed the possibility that modifying the aquaporin expression using aquaporin-targeting regulators, specific monoclonal antibodies, and even aquaporin gene transfer could represent an effective therapy of hematological malignancies.
Collapse
|
12
|
Targeting Redox Regulation as a Therapeutic Opportunity against Acute Leukemia: Pro-Oxidant Strategy or Antioxidant Approach? Antioxidants (Basel) 2022; 11:antiox11091696. [PMID: 36139768 PMCID: PMC9495346 DOI: 10.3390/antiox11091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Redox adaptation is essential for human health, as the physiological quantities of non-radical reactive oxygen species operate as the main second messengers to regulate normal redox reactions by controlling several sensors. An abnormal increase reactive oxygen species, called oxidative stress, induces biological injury. For this reason, variations in oxidative stress continue to receive consideration as a possible approach to treat leukemic diseases. However, the intricacy of redox reactions and their effects might be a relevant obstacle; consequently, and alongside approaches aimed at increasing oxidative stress in neoplastic cells, antioxidant strategies have also been suggested for the same purpose. The present review focuses on the molecular processes of anomalous oxidative stress in acute myeloid and acute lymphoblastic leukemias as well as on the oxidative stress-determined pathways implicated in leukemogenic development. Furthermore, we review the effect of chemotherapies on oxidative stress and the possibility that their pharmacological effects might be increased by modifying the intracellular redox equilibrium through a pro-oxidant approach or an antioxidant strategy. Finally, we evaluated the prospect of varying oxidative stress as an efficacious modality to destroy chemoresistant cells using new methodologies. Altering redox conditions may be advantageous for inhibiting genomic variability and the eradication of leukemic clones will promote the treatment of leukemic disease.
Collapse
|
13
|
Gangemi S, Petrarca C, Tonacci A, Di Gioacchino M, Musolino C, Allegra A. Cold Atmospheric Plasma Targeting Hematological Malignancies: Potentials and Problems of Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11081592. [PMID: 36009311 PMCID: PMC9405440 DOI: 10.3390/antiox11081592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cold atmospheric plasma is an ionized gas produced near room temperature; it generates reactive oxygen species and nitrogen species and induces physical changes, including ultraviolet, radiation, thermal, and electromagnetic effects. Several studies showed that cold atmospheric plasma could effectively provoke death in a huge amount of cell types, including neoplastic cells, via the induction of apoptosis, necrosis, and autophagy. This technique seems able to destroy tumor cells by disturbing their more susceptible redox equilibrium with respect to normal cells, but it is also able to cause immunogenic cell death by enhancing the immune response, to decrease angiogenesis, and to provoke genetic and epigenetics mutations. Solutions activated by cold gas plasma represent a new modality for treatment of less easily reached tumors, or hematological malignancies. Our review reports on accepted knowledge of cold atmospheric plasma’s effect on hematological malignancies, such as acute and chronic myeloid leukemia and multiple myeloma. Although relevant progress was made toward understanding the underlying mechanisms concerning the efficacy of cold atmospheric plasma in hematological tumors, there is a need to determine both guidelines and safety limits that guarantee an absence of long-term side effects.
Collapse
Affiliation(s)
- Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Claudia Petrarca
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy
- Correspondence:
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Mario Di Gioacchino
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| |
Collapse
|
14
|
Calorimetric Markers for Detection and Monitoring of Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14163884. [PMID: 36010876 PMCID: PMC9405568 DOI: 10.3390/cancers14163884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This review highlights the potential of differential scanning calorimetry for multiple myeloma diagnosis and monitoring of the treatment outcome. The thermodynamic signatures of blood sera from patients with multiple myeloma are strongly dependent on the concentration and isotype of the secreted monoclonal immunoglobulins. Mathematical methods developed to analyze the biocalorimetry data and distinguish “diseased” from “healthy” thermogram to stratify plasma calorimetric profiles and determine specific interrelations between calorimetric and biochemical/clinical data are discussed. Abstract This review summarizes data obtained thus far on the application of differential scanning calorimetry (DSC) for the analysis of blood sera from patients diagnosed with multiple myeloma (MM) with the secretion of the most common isotypes of monoclonal proteins (M-proteins), free light chains (FLC) and non-secretory MM, as well as Waldenström macroglobulinemia and the premalignant state monoclonal gammopathy of undetermined significance. The heterogeneous nature of MM is reflected in the thermal stability profiles of the blood serum proteome of MM patients found to depend on both the level and the isotype of the secreted M-proteins or FLC. Common calorimetric markers feature the vast majority of the different myeloma types, i.e., stabilization of the major serum proteins and decrease in the albumin/globulin heat capacity ratio. A unique calorimetric fingerprint of FLC molecules forming amorphous aggregates is the low-temperature transition centered at 57 °C for a calorimetric set of FLC MM and at 46–47 °C for a single FLC MM case for which larger aggregates were formed. The calorimetric assay proved particularly advantageous for non-secretory MM and is thus a suitable tool for monitoring such patients during treatment courses. Thus, DSC provides a promising blood-based approach as a complementary tool for MM detection and monitoring.
Collapse
|
15
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Modulation of Cellular Redox Parameters for Improving Therapeutic Responses in Multiple Myeloma. Antioxidants (Basel) 2022; 11:antiox11030455. [PMID: 35326105 PMCID: PMC8944660 DOI: 10.3390/antiox11030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Raised oxidative stress and abnormal redox status are typical features of multiple myeloma cells, and the identification of the intimate mechanisms that regulate the relationships between neoplastic cells and redox homeostasis may reveal possible new anti-myeloma therapeutic targets to increase the effectiveness of anti-myeloma drugs synergistically or to eradicate drug-resistant clones while reducing toxicity toward normal cells. An alteration of the oxidative state is not only responsible for the onset of multiple myeloma and its progression, but it also appears essential for the therapeutic response and for developing any chemoresistance. Our review aimed to evaluate the literature’s current data on the effects of oxidative stress on the response to drugs generally employed in the therapy of multiple myeloma, such as proteasome inhibitors, immunomodulators, and autologous transplantation. In the second part of the review, we analyzed the possibility of using other substances, often of natural origin, to modulate the oxidative stress to interfere with the progression of myelomatous disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
16
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
17
|
Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection. Cancers (Basel) 2022; 14:cancers14030606. [PMID: 35158874 PMCID: PMC8833500 DOI: 10.3390/cancers14030606] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is essential that we reconsider our methods for diagnosing and monitoring multiple myeloma disease. This fact needs the integration of serology, histology, radiology, and genetic data; therefore, multiple myeloma study has generated massive quantities of granular high-dimensional data exceeding human understanding. With improved computational techniques, artificial intelligence tools for data processing and analysis are becoming more and more relevant. Artificial intelligence represents a wide set of algorithms for which machine learning and deep learning are presently among the most impactful. This review focuses on artificial intelligence applications in multiple myeloma research, first illustrating machine learning and deep learning procedures and workflow, followed by how these algorithms are used for multiple myeloma diagnosis, prognosis, bone lesions identification, and evaluation of response to the treatment. Abstract Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
Collapse
|
18
|
Allegra A, Rizzo V, Innao V, Alibrandi A, Mazzeo A, Leanza R, Terranova C, Gentile L, Girlanda P, Allegra AG, Alonci A, Musolino C. Diagnostic utility of Sudoscan for detecting bortezomib-induced painful neuropathy: a study on 18 patients with multiple myeloma. Arch Med Sci 2022; 18:696-703. [PMID: 35591819 PMCID: PMC9102521 DOI: 10.5114/aoms/114269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION In the past few years, treatment of multiple myeloma has undergone a deep change for the employment of novel treatment comprising proteasome inhibitors. Bortezomib is a first-line drug in therapy of multiple myeloma. The onset of peripheral neuropathy is a dose-limiting collateral effect of the drug. This neuropathy is a distal symmetric neuropathy that affects both large and small fibers. Nerve conduction study (NCS) can be used for the diagnosis of bortezomib neuropathy, but this technique demonstrates alterations of the large nerve fibers. Sudoscan is a novel technique utilized to offer an evaluation of sudomotor function. The main objective of this study was to compare the sensitivity and diagnostic specificity of Sudoscan with respect to the nerve conduction study after bortezomib treatment. MATERIAL AND METHODS A total of 18 multiple myeloma patients were studied, 10 (55.5%) men and 8 (44.5%) women. Patients were analyzed at baseline and after 6 months of treatment with bortezomib. Subjects were submitted to nerve conduction study and electrochemical skin conductance evaluation with the Sudoscan device. Patients were also submitted to a clinical measure of pain and neuropathy. RESULTS At baseline NCS showed that only the mean sural SAP amplitude was below the 2SD lower limit of normal in 3 (16.7%) patients, while at same time we found an alteration of Sudoscan profiles in 2 (11.1%) patients. After 6 months of treatment, the NCS profiles were altered in 13 (72.2%) patients, and the Sudoscan profiles were modified in 11 (61.1%) subjects. CONCLUSIONS Our results suggest that Sudoscan can be considered for the diagnosis of bortezomib-induced neuropathy. It is objective, reproducible, and surely easier than the traditional nerve conduction study. Sudoscan may be a useful help to manage the therapeutic interventions in multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Anna Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rossana Leanza
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luca Gentile
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Andrea Alonci
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
20
|
Allegra A, Innao V, Polito F, Oteri R, Alibrandi A, Allegra AG, Oteri G, Di Giorgio RM, Musolino C, Aguennouz M. SIRT2 and SIRT3 expression correlates with redox imbalance and advanced clinical stage in patients with multiple myeloma. Clin Biochem 2021; 93:42-49. [PMID: 33861984 DOI: 10.1016/j.clinbiochem.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Sirtuins comprise seven family elements (SIRT1-7) involved in various cell signalling pathways comprising cancer inhibition and tumorigenesis. The present study aims to evaluate SIRT2 and SIRT3 gene expression and potential redox reactions in patients with multiple myeloma (MM) at onset and its correlation with disease status, extent and presence of organ damage secondary to myeloma. DESIGN & METHODS Total RNA was extracted from 17 MM patients and 10 controls to assess gene expression using real-time PCR. The NAD+/NADH ratio as well as the levels of glutathione peroxidase (GPx) and hydrogen peroxide (HP) in peripheral blood mononuclear cells (PBMCs) were determined using established biochemical assays. RESULTS SIRT2 and SIRT3 expression is reduced in MM patients compared to healthy controls. Correlational analysis demonstrated that SIRT2 reduction is associated with advanced clinical stage and with more advanced bone lesions than in the remaining patients. SIRT3 expression is correlated with lytic bone lesions. Biochemical analysis indicated an imbalance of oxidative stress biomarkers with low concentrations of the antioxidant enzyme GPx, low amounts of NAD + and higher concentrations of pro-oxidant enzyme HP in PBMCs of MM patients compared to controls. Moreover, MM patients with bone lesions had lower concentrations of NAD + and GPx in PBMCs than patients without signs of bone disease. In addition, MM patients had higher quantities of intracellular HP than controls. CONCLUSIONS Our results demonstrate that SIRT2 and SIRT3 are downregulated in MM and that lower concentrations correlate with an advanced stage of disease and redox imbalance. We conclude that SIRT2 and SIRT3 together with oxidative stress biomarkers, may be useful for improved risk stratification of MM patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy.
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - Francesca Polito
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - Giacomo Oteri
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Italy
| | - Rosa Maria Di Giorgio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - M'hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
21
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
22
|
Antiproliferative Effects of St. John's Wort, Its Derivatives, and Other Hypericum Species in Hematologic Malignancies. Int J Mol Sci 2020; 22:ijms22010146. [PMID: 33375664 PMCID: PMC7795730 DOI: 10.3390/ijms22010146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Hypericum is a widely present plant, and extracts of its leaves, flowers, and aerial elements have been employed for many years as therapeutic cures for depression, skin wounds, and respiratory and inflammatory disorders. Hypericum also displays an ample variety of other biological actions, such as hypotensive, analgesic, anti-infective, anti-oxidant, and spasmolytic abilities. However, recent investigations highlighted that this species could be advantageous for the cure of other pathological situations, such as trigeminal neuralgia, as well as in the treatment of cancer. This review focuses on the in vitro and in vivo antitumor effects of St. John’s Wort (Hypericum perforatum), its derivatives, and other Hypericum species in hematologic malignancies. Hypericum induces apoptosis in both myeloid and lymphoid cells. Other Hypericum targets include matrix metalloproteinase-2, vascular endothelial growth factor, and matrix metalloproteinase-9, which are mediators of cell migration and angiogenesis. Hypericum also downregulates the expression of proteins that are involved in the resistance of leukemia cells to chemotherapeutic agents. Finally, Hypericum and its derivatives appear to have photodynamic effects and are candidates for applications in tumor photodynamic therapy. Although the in vitro studies appear promising, controlled in vivo studies are necessary before we can hypothesize the introduction of Hypericum and its derivatives into clinical practice for the treatment of hematologic malignancies.
Collapse
|
23
|
Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. ACTA ACUST UNITED AC 2020; 28:159-183. [PMID: 33704184 PMCID: PMC7816176 DOI: 10.3390/curroncol28010019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The use of viruses for tumour treatment has been imagined more than one hundred years ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously, it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate, proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses operate via a multiplicity of systems, including mutation of tumour milieu and a composite change of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential to recognize the most efficient virus or treatment combinations for specific haematological diseases, and the combinations able to induce the strongest immune response.
Collapse
|
24
|
Rodríguez-García A, García-Vicente R, Morales ML, Ortiz-Ruiz A, Martínez-López J, Linares M. Protein Carbonylation and Lipid Peroxidation in Hematological Malignancies. Antioxidants (Basel) 2020; 9:E1212. [PMID: 33271863 PMCID: PMC7761105 DOI: 10.3390/antiox9121212] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Among the different mechanisms involved in oxidative stress, protein carbonylation and lipid peroxidation are both important modifications associated with the pathogenesis of several diseases, including cancer. Hematopoietic cells are particularly vulnerable to oxidative damage, as the excessive production of reactive oxygen species and associated lipid peroxidation suppress self-renewal and induce DNA damage and genomic instability, which can trigger malignancy. A richer understanding of the clinical effects of oxidative stress might improve the prognosis of these diseases and inform therapeutic strategies. The most common protein carbonylation and lipid peroxidation compounds, including hydroxynonenal, malondialdehyde, and advanced oxidation protein products, have been investigated for their potential effect on hematopoietic cells in several studies. In this review, we focus on the most important protein carbonylation and lipid peroxidation biomarkers in hematological malignancies, their role in disease development, and potential treatment implications.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Alejandra Ortiz-Ruiz
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| |
Collapse
|
25
|
Allegra AG, Mannino F, Innao V, Musolino C, Allegra A. Radioprotective Agents and Enhancers Factors. Preventive and Therapeutic Strategies for Oxidative Induced Radiotherapy Damages in Hematological Malignancies. Antioxidants (Basel) 2020; 9:antiox9111116. [PMID: 33198328 PMCID: PMC7696711 DOI: 10.3390/antiox9111116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy plays a critical role in the management of a wide range of hematologic malignancies. It is well known that the post-irradiation damages both in the bone marrow and in other organs are the main causes of post-irradiation morbidity and mortality. Tumor control without producing extensive damage to the surrounding normal cells, through the use of radioprotectors, is of special clinical relevance in radiotherapy. An increasing amount of data is helping to clarify the role of oxidative stress in toxicity and therapy response. Radioprotective agents are substances that moderate the oxidative effects of radiation on healthy normal tissues while preserving the sensitivity to radiation damage in tumor cells. As well as the substances capable of carrying out a protective action against the oxidative damage caused by radiotherapy, other substances have been identified as possible enhancers of the radiotherapy and cytotoxic activity via an oxidative effect. The purpose of this review was to examine the data in the literature on the possible use of old and new substances to increase the efficacy of radiation treatment in hematological diseases and to reduce the harmful effects of the treatment.
Collapse
Affiliation(s)
- Andrea Gaetano Allegra
- Radiation Oncology Unit, Department of Biomedical, Experimental, and Clinical Sciences “Mario Serio”, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50100 Florence, Italy;
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98125 Messina, Italy;
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Haematology, University of Messina, 98125 Messina, Italy; (V.I.); (C.M.)
- Correspondence: ; Tel.: +39-090-221-2364
| |
Collapse
|
26
|
Tierney C, Bazou D, Lê G, Dowling P, O'Gorman P. Saliva-omics in plasma cell disorders- Proof of concept and potential as a non-invasive tool for monitoring disease burden. J Proteomics 2020; 231:104015. [PMID: 33068749 DOI: 10.1016/j.jprot.2020.104015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Multiple Myeloma (MM), the second most common lymphoid cancer worldwide, is characterised by the uninhibited proliferation of terminally differentiated B-lymphocytes. Leading to The diagnosis typically requires the presence of a monoclonal protein (M protein) and the demonstration of CRAB features (hypercalcemia, renal impairment, anaemia and bone lesions). MM is considered incurable as, due to serial clonal evolution, the vast majority of patients succumb to treatment-refractory disease. MGUS (Monoclonal Gammopathy of Unknown Uncertain Significance) is the pre-malignant form of MM and, although 93% of MM patients exhibit M protein production associated with MGUS before diagnosis, little is known about the switch from pre-malignant to malignant disease. To explore this disease transition further, LC-MS/MS analysis was carried out to identify potential salivary biomarkers to monitor disease burden. FABP5 was detected in saliva as having a significant increase in abundance when MGUS was compared to symptomatic MM. The levels of FABP5 decreased after treatment indicating correlation with tumour burden. This finding was validated using western blot analysis and ELISA analysis. SIGNIFICANCE: The field of biomarker discovery has focused largely on serum as a biofluid. Saliva is a readily available biofluid that, as a biomarker resource, has been relatively un-explored. The identification of changes in saliva indicating disease progression underlines the utility of saliva as a non-invasive source of informative biomarkers reflecting disease burden and progression.
Collapse
Affiliation(s)
- Ciara Tierney
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Despina Bazou
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Giao Lê
- National Institute for Cellular Biotechnology, DCU, Dublin, Ireland
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Peter O'Gorman
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
27
|
Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. Int J Mol Sci 2020; 21:ijms21186723. [PMID: 32937821 PMCID: PMC7555756 DOI: 10.3390/ijms21186723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
Osteolytic bone lesions are one of the central features of multiple myeloma (MM) and lead to bone pain, fractures, decreased quality of life, and decreased survival. Dysfunction of the osteoclast (OC)/osteoblast (OB) axis plays a key role in the development of myeloma-associated osteolytic lesions. Many signaling pathways and factors are associated with myeloma bone diseases (MBDs), including the RANKL/OPG and NF-κB pathways. NRF2, a master regulator of inflammatory signaling, might play a role in the regulation of bone metabolism via anti-inflammatory signaling and decreased reactive oxygen species (ROS) levels. The loss of NRF2 expression in OCs reduced bone mass via the RANK/RANKL pathway and other downstream signaling pathways that affect osteoclastogenesis. The NRF2 level in OBs could interfere with interleukin (IL)-6 expression, which is associated with bone metabolism and myeloma cells. In addition to direct impact on OCs and OBs, the activity of NRF2 on myeloma cells and mesenchymal stromal cells influences the inflammatory stress/ROS level in these cells, which has an impact on OCs, OBs, and osteocytes. The interaction between these cells and OCs affects the osteoclastogenesis of myeloma bone lesions associated with NRF2. Therefore, we have reviewed the effects of NRF2 on OCs and OBs in MBDs.
Collapse
|
28
|
Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments. Antioxidants (Basel) 2020; 9:antiox9050448. [PMID: 32455998 PMCID: PMC7278813 DOI: 10.3390/antiox9050448] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet radiation is one of the most pervasive environmental interactions with humans. Chronic ultraviolet irradiation increases the danger of skin carcinogenesis. Probably, oxidative stress is the most important mechanism by which ultraviolet radiation implements its damaging effects on normal cells. However, notwithstanding the data referring to the negative effects exerted by light radiation and oxidative stress on carcinogenesis, both factors are used in the treatment of skin cancer. Photodynamic therapy (PDT) consists of the administration of a photosensitiser, which undergoes excitation after suitable irradiation emitted from a light source and generates reactive oxygen species. Oxidative stress causes a condition in which cellular components, including DNA, proteins, and lipids, are oxidised and injured. Antitumor effects result from the combination of direct tumour cell photodamage, the destruction of tumour vasculature and the activation of an immune response. In this review, we report the data present in literature dealing with the main signalling molecular pathways modified by oxidative stress after photodynamic therapy to target skin cancer cells. Moreover, we describe the progress made in the design of anti-skin cancer photosensitisers, and the new possibilities of increasing the efficacy of PDT via the use of molecules capable of developing a synergistic antineoplastic action.
Collapse
|
29
|
Manni S, Fregnani A, Barilà G, Zambello R, Semenzato G, Piazza F. Actionable Strategies to Target Multiple Myeloma Plasma Cell Resistance/Resilience to Stress: Insights From "Omics" Research. Front Oncol 2020; 10:802. [PMID: 32500036 PMCID: PMC7243738 DOI: 10.3389/fonc.2020.00802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
While the modern therapeutic armamentarium to treat multiple myeloma (MM) patients allows a longer control of the disease, this second-most-frequent hematologic cancer is still uncurable in the vast majority of cases. Since MM plasma cells are subjected to various types of chronic cellular stress and the integrity of specific stress-coping pathways is essential to ensure MM cell survival, not surprisingly the most efficacious anti-MM therapy are those that make use of proteasome inhibitors and/or immunomodulatory drugs, which target the biochemical mechanisms of stress management. Based on this notion, the recently realized discoveries on MM pathobiology through high-throughput techniques (genomic, transcriptomic, and other "omics"), in order for them to be clinically useful, should be elaborated to identify novel vulnerabilities in this disease. This groundwork of information will likely allow the design of novel therapies against targetable molecules/pathways, in an unprecedented opportunity to change the management of MM according to the principle of "precision medicine." In this review, we will discuss some examples of therapeutically actionable molecules and pathways related to the regulation of cellular fitness and stress resistance in MM.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Anna Fregnani
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| |
Collapse
|
30
|
Yağmur AR, Çetin MA, Karakurt SE, Turhan T, Dere HH. The levels of advanced oxidation protein products in patients with obstructive sleep apnea syndrome. Ir J Med Sci 2020; 189:1403-1409. [PMID: 32279237 DOI: 10.1007/s11845-020-02225-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSAS) is characterized by repeated episodes of complete or partial obstructions of the upper airway during sleep, frequently followed by transient hypoxemia. Advanced oxidation protein products (AOPP) are a family of oxidized protein products, and oxidative stress has a substantial role in the morbidity of OSAS. AIMS The aim of this study was to investigate the serum levels of advanced oxidation protein products (AOPP) as a marker of oxidative stress, and their correlation with polysomnographic parameters in patients with obstructive sleep apnea syndrome (OSAS). Additionally, we investigated the effect of positive airway pressure (PAP) treatment on serum AOPP values and compared the levels before and after the treatment. METHODS The study enrolled a total of 125 subjects including 59 patients with severe OSAS, 34 patients with moderate OSAS, 32 patients with mild OSAS, and 40 healthy controls. Mean AOPP values were compared between OSAS groups and control groups. Correlations between AOPP and polysomnographic parameters were investigated. Mean AOPP values before and after 6-month PAP therapy were compared. RESULTS Significantly elevated AOPP levels were found in severe and moderate OSAS groups in comparison with mild OSAS and control groups. AOPP was directly correlated with apnea-hypopnea index, percentage of total time spent with oxygen saturation below 90%, oxygen desaturation index, maximum obstructive apnea duration, arousal index, and number of obstructive apneas accompanying bradycardia but inversely correlated with average SPO2 (%), minimum SPO2, and percentage of non-REM stage 3 sleep. There was no statistically significant difference between AOPP values before and after PAP therapy. CONCLUSIONS AOPP, which is an oxidative stress marker, was found to be high in OSAS patients. Especially, high levels in moderate and severe OSAS patients may be an indicator of increased morbidity. After 6 months of PAP treatment, there was no statistically significant change in these levels.
Collapse
Affiliation(s)
- Ali Rıza Yağmur
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara City Hospital, Ankara, Turkey. .,, Ankara, Turkey.
| | - Mehmet Ali Çetin
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara City Hospital, Ankara, Turkey
| | - Süleyman Emre Karakurt
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara City Hospital, Ankara, Turkey
| | - Turan Turhan
- Department of Biochemistry, Ankara City Hospital, Ankara, Turkey
| | - Hacı Hüseyin Dere
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
31
|
Allegra A, Innao V, Basile G, Pugliese M, Allegra AG, Pulvirenti N, Musolino C. Post-chemotherapy cognitive impairment in hematological patients: current understanding of chemobrain in hematology. Expert Rev Hematol 2020; 13:393-404. [PMID: 32129131 DOI: 10.1080/17474086.2020.1738213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cognitive impairment caused by chemotherapies, a condition known as chemobrain, is a possible side effect that affects alertness, learning, memory, and concentration.Areas covered: Chemobrain has been principally investigated as a possible side-effect among cancer patients. However, numerous drugs used to treat hematological malignancies can determine the appearance of chemobrain. In this review, we have examined some commonly used drugs for the treatment of hematological malignancies which are known to have a deleterious action on cognitive functions.Numerous mechanisms have been suggested, comprising the direct neurotoxicity of chemotherapeutic drugs, oxidative stress, genetic predisposition, cytokine-provoked damage, histone modifications, immune alteration, and the action of chemotherapeutic on trophic factors and structural proteins of brain cells.Expert commentary: Cognitive dysfunction provoked by the treatment of hematological diseases is an actual challenge in clinical practice. Actually, there are no totally efficient and innocuous treatments for this syndrome. It is important that further investigations specify the existence of predictors and gravity factors to pre- and post-therapy cognitive change and identify the influence of tumor treatments on the cognitive alterations in long-term, cancer survivors. Moreover, future studies are needed to analyze the interactions between genetic risk, amyloid accumulation, intrinsic brain networks, and chemotherapy.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 90100, Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 90100, Messina, Italy
| | - Giorgio Basile
- Unit and School of Geriatrics, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marta Pugliese
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 90100, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 90100, Messina, Italy
| | - Nicolina Pulvirenti
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 90100, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 90100, Messina, Italy
| |
Collapse
|
32
|
Ronca R, Ghedini GC, Maccarinelli F, Sacco A, Locatelli SL, Foglio E, Taranto S, Grillo E, Matarazzo S, Castelli R, Paganini G, Desantis V, Cattane N, Cattaneo A, Mor M, Carlo-Stella C, Belotti A, Roccaro AM, Presta M, Giacomini A. FGF Trapping Inhibits Multiple Myeloma Growth through c-Myc Degradation-Induced Mitochondrial Oxidative Stress. Cancer Res 2020; 80:2340-2354. [PMID: 32094301 DOI: 10.1158/0008-5472.can-19-2714] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Abstract
Multiple myeloma, the second most common hematologic malignancy, frequently relapses because of chemotherapeutic resistance. Fibroblast growth factors (FGF) act as proangiogenic and mitogenic cytokines in multiple myeloma. Here, we demonstrate that the autocrine FGF/FGFR axis is essential for multiple myeloma cell survival and progression by protecting multiple myeloma cells from oxidative stress-induced apoptosis. In keeping with the hypothesis that the intracellular redox status can be a target for cancer therapy, FGF/FGFR blockade by FGF trapping or tyrosine kinase inhibitor impaired the growth and dissemination of multiple myeloma cells by inducing mitochondrial oxidative stress, DNA damage, and apoptotic cell death that were prevented by the antioxidant vitamin E or mitochondrial catalase overexpression. In addition, mitochondrial oxidative stress occurred as a consequence of proteasomal degradation of the c-Myc oncoprotein that led to glutathione depletion. Accordingly, expression of a proteasome-nondegradable c-Myc protein mutant was sufficient to avoid glutathione depletion and rescue the proapoptotic effects due to FGF blockade. These findings were confirmed on bortezomib-resistant multiple myeloma cells as well as on bone marrow-derived primary multiple myeloma cells from newly diagnosed and relapsed/refractory patients, including plasma cells bearing the t(4;14) translocation obtained from patients with high-risk multiple myeloma. Altogether, these findings dissect the mechanism by which the FGF/FGFR system plays a nonredundant role in multiple myeloma cell survival and disease progression, and indicate that FGF targeting may represent a therapeutic approach for patients with multiple myeloma with poor prognosis and advanced disease stage. SIGNIFICANCE: This study provides new insights into the mechanisms by which FGF antagonists promote multiple myeloma cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/11/2340/F1.large.jpg.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia C Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Silvia L Locatelli
- Department of Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS and Humanitas University, Milan, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Taranto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Matarazzo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giuseppe Paganini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Azienda Ospedaliera Consorziale Universitaria Policlinico di Bari, Bari, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS and Humanitas University, Milan, Italy
| | - Angelo Belotti
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
33
|
Oxidative stress markers in neonatal respiratory distress syndrome: advanced oxidation protein products and 8-hydroxy-2-deoxyguanosine in relation to disease severity. Pediatr Res 2020; 87:74-80. [PMID: 31216566 PMCID: PMC7223063 DOI: 10.1038/s41390-019-0464-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We assessed oxidant-antioxidant status and evaluated the role of lipid peroxidation, oxidative DNA damage, and protein oxidation in the development and severity of neonatal respiratory distress syndrome (RDS). METHODS Forty preterm neonates with RDS were compared with another 40 preterm neonates without RDS enrolled as controls. Total antioxidant capacity (TAC), malondialdehyde (MDA), advanced oxidation protein products (AOPPs), 8-hydroxy-2-deoxyguanosine (8-OHdG), and trace elements (copper and zinc) were measured in cord blood (day 0) for all neonates and repeated on day 3 for the RDS group. RESULTS Day 0 serum levels of MDA, AOPPs, and 8-OHdG were significantly higher in neonates with RDS than controls with a further increase on day 3. Days 0 and 3 levels of TAC, copper, and zinc were significantly lower in the RDS group compared with controls. Elevated serum levels of 8-OHdG and AOPPs were associated with severe RDS, invasive mechanical ventilation, and high mortality rate. 8-OHdG and AOPPs were positively correlated with MDA, oxygenation index, duration of ventilation, and duration of hospitalization. CONCLUSIONS Increased lipid, protein, and DNA oxidation is accompanied by alterations in the antioxidant defense status, which may play a role in the pathogenesis and severity of RDS.
Collapse
|
34
|
Mitochondria-Targeted Antioxidant SkQ1 for Gammopathy-Related Corneal Damage. Am J Ther 2019; 27:e309-e310. [PMID: 31356345 DOI: 10.1097/mjt.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Allegra A, Musolino C, Pace E, Innao V, Di Salvo E, Ferraro M, Casciaro M, Spatari G, Tartarisco G, Allegra AG, Gangemi S. Evaluation of the AGE/sRAGE Axis in Patients with Multiple Myeloma. Antioxidants (Basel) 2019; 8:antiox8030055. [PMID: 30836666 PMCID: PMC6466542 DOI: 10.3390/antiox8030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023] Open
Abstract
Glycative stress influences tumor progression. The aim of the present study was to evaluate the advanced glycation end products/soluble receptor of advanced glycation end products (AGE/sRAGE) axis in patients with multiple myeloma (MM). Blood samples were taken from 19 patients affected by MM and from 16 sex-matched and age-matched healthy subjects. AGE and sRAGE axis were dosed in patients with MM and matched with controls. AGEs were measured by spectrofluorimetric methods. Blood samples for the determination of sRAGE were analyzed by ELISA. AGE levels were significantly reduced in patients with respect to controls. Instead, sRAGE was significantly elevated in patients affected by MM compared to healthy subjects. Moreover, we showed that there was a statistically significant difference in sRAGE according to the heavy and light chain. IgA lambda had significantly higher sRAGE values than IgA kappa, IgG kappa, and IgG Lambda MM patients. From our data emerges the role of the sRAGE/AGE axis in MM. Since AGE is a positive regulator of the activity of RAGE, circulating sRAGE concentrations may reflect RAGE expression and may be raised in parallel with serum AGE concentrations as a counter-system against AGE-caused tissue damage. Serum concentrations of AGE and sRAGE could therefore become potential therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Elisabetta Pace
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council (CNR), 90146 Palermo, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Eleonora Di Salvo
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Maria Ferraro
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council (CNR), 90146 Palermo, Italy.
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Giovanna Spatari
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, 98125 Messina, Italy.
| | - Gennaro Tartarisco
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
36
|
Del Giacco SR, Firinu D, Minciullo PL, Barca MP, Manconi PE, Tartarisco G, Cristani M, Saija A, Gangemi S. Oxidative stress markers in patients with hereditary angioedema. Arch Med Sci 2019; 15:92-98. [PMID: 30697258 PMCID: PMC6348350 DOI: 10.5114/aoms.2017.66160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Hereditary angioedema due to C1-INH deficiency (C1-INH-HAE) or with normal C1-INH is characterized by recurrent swellings due to uncontrolled production of vasoactive mediators, among which bradykinin (BK) is crucial. Through the binding and activation of the two human BK-receptors, kinins may have dual beneficial and deleterious effects in vascular and inflammation physiopathology by inducing oxidative stress. We aimed to assess the serum concentrations of advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs) in patients affected by HAE. MATERIAL AND METHODS Blood samples were collected to measure the serum concentrations of AGEs and AOPPs by spectrofluorimetric and spectrophotometric methods in patients affected by C1-INH-HAE and FXII-HAE during the remission state. RESULTS We showed that the circulating levels of AOPPs observed on control group (0.94 (0.36) nmol/mg) were significantly lower than those observed on the C1-INH-HAE group (1.68 (0.47) nmol/mg; p = 0.002) and FXII-HAE (1.50 (0.27) nmol/mg; p = 0.001). Moreover, the circulating levels of AGEs were significantly higher in C1-INH-HAE group (211.58 (151.05) AU/g; p = 0.02) than the FXII group (141.48 (89.59) AU/g), thus demonstrating a state of heightened oxidative stress. CONCLUSIONS Our observations show additional underlying events involved in HAE and are of central importance for further investigations of differences in bradykinin receptors signaling among the two disease subgroups.
Collapse
Affiliation(s)
| | - Davide Firinu
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Paola Lucia Minciullo
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Pina Barca
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Paolo Emilio Manconi
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Gennaro Tartarisco
- National Research Council of Italy (CNR) – Institute of Applied Science and Intelligent System (ISASI), Messina Unit, Messina, Italy
| | - Mariateresa Cristani
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
37
|
Berlier JL, Rethnam M, Banu Binte Abdul Majeed A, Suda T. Modification of the bone marrow MSC population in a xenograft model of early multiple myeloma. Biochem Biophys Res Commun 2019; 508:1175-1181. [DOI: 10.1016/j.bbrc.2018.11.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
|
38
|
Khadem-Ansari MH, Asoudeh M, Gheshlaghi HFK, Nozari S, Zarringol M, Maroufi NF, Faridvand Y. Copper and zinc in stage I multiple myeloma: relation with ceruloplasmin, lipid peroxidation, and superoxide dismutase activity. Horm Mol Biol Clin Investig 2018; 37:/j/hmbci.ahead-of-print/hmbci-2018-0055/hmbci-2018-0055.xml. [PMID: 30367794 DOI: 10.1515/hmbci-2018-0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 11/15/2022]
Abstract
Background The main aim of this study was to assess the serum levels of copper (Cu), zinc (Zn) with lipid peroxidation, Cu/Zn superoxide dismutase (Cu/Zn SOD) activity, and ceruloplasmin (Cp) in multiple myeloma (MM) patients. Materials and methods The study was conducted in 34 MM patients at stage I. Serum Cu and Zn levels were measured by atomic absorption spectrometry. Also, spectrophotometric assays of malondialdehyde (MDA) levels in addition to Cp and Cu/Zn SOD were quantitated. Results The results showed a significant decrease in the serum Zn levels in patients with MM (p < 0.0001). Also, serum Cu levels were significantly higher (p < 0.0001). However, the serum Cu/Zn ratio was significantly higher in the cancer patients (p < 0.0001). A significant difference was observed in the patients group compared with the control group according to the Cu/Zn SOD activity (p < 0.0001). Moreover, serum levels of Cp and MDA were significantly increased in patients (p < 0.0001, both). Conclusions The elevated levels of serum Cu and MDA with a decrease in Zn and Cu/Zn SOD might explain the increased oxidative stress in MM disease. As the high Cu level was observed in MM patients, therefore, Cu levels should be concentrated in the pathogenesis and progression of MM disease.
Collapse
Affiliation(s)
| | - Mojtaba Asoudeh
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Samira Nozari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Zarringol
- Department of biochemistry, Islamic Azad University, Science and Research Branch, Tehran (Fars), Iran
| | - Nazila Fathi Maroufi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, Phone: +984432770698, Fax: +984432770698
| |
Collapse
|
39
|
Allegra A, Innao V, Gerace D, Allegra AG, Vaddinelli D, Bianco O, Musolino C. The adipose organ and multiple myeloma: Impact of adipokines on tumor growth and potential sites for therapeutic intervention. Eur J Intern Med 2018; 53:12-20. [PMID: 29859797 DOI: 10.1016/j.ejim.2018.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles. Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory. This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Demetrio Gerace
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Doriana Vaddinelli
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Oriana Bianco
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| |
Collapse
|
40
|
Katz J, Moreb J, Baitinger C, Singer C, Caudle RM. Advanced glycation endproducts (AGEs) in saliva of patients with multiple myeloma - a pilot study. Leuk Lymphoma 2017; 58:2934-2938. [PMID: 28679295 DOI: 10.1080/10428194.2017.1344845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is a hematological cancer with underlying causes associated with increased oxidative stress. Through signaling of their receptor RAGE, advanced glycation endproducts (AGEs) are known to increase oxidative stress associated with malignant transformation. In the present study, we have demonstrated that the levels of these compounds are increased in the saliva of myeloma patients with bone lesions. This data may provide a potential marker for bone lesions in MM and a potential target for the treatment of myeloma by blocking the AGEs or their receptor.
Collapse
Affiliation(s)
- Joseph Katz
- a Department of Oral Diagnostic Sciences, College of Dentistry , University of Florida , Gainesville , FL , USA
| | - Jan Moreb
- b Department of Medicine, College of Medicine , University of Florida , Gainesville , FL , USA
| | - Catherine Baitinger
- a Department of Oral Diagnostic Sciences, College of Dentistry , University of Florida , Gainesville , FL , USA
| | - Christine Singer
- a Department of Oral Diagnostic Sciences, College of Dentistry , University of Florida , Gainesville , FL , USA
| | - Robert M Caudle
- c Department of Oral Surgery, College of Dentistry , University of Florida , Gainesville , FL , USA
| |
Collapse
|
41
|
Elevated Serum 8-Hydroxy-2’-Deoxyguanosine, Nitrite, and Nitrate in Patients with Stage I Multiple Myeloma. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Faridvand Y, Oskuyi AE, Khadem-Ansari MH. Serum 8-isoprostane levels and paraoxonase 1 activity in patients with stage I multiple myeloma. Redox Rep 2016; 21:204-8. [PMID: 26218756 PMCID: PMC6837499 DOI: 10.1179/1351000215y.0000000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Multiple myeloma (MM) is a plasma cell malignancy comprising 15% of hematological malignancies. Many studies have assessed the relationship between free radicals and tumor progression or cancer risk. We aimed to evaluate the antioxidant activity of paraoxonase 1 (PON1), arylesterase (ARE), and 8-isoprostane in patients with stage I MM. MATERIALS AND METHODS Spectrophotometric assays of serum PON1 and ARE activities in addition to serum 8-isoprostane level were performed in 34 patients newly diagnosed with stage I MM as compared to 35 age- and sex-matched individuals who comprised the healthy control group. RESULTS A significant reduction was found in the activities of PON1 and ARE (for both, P < 0.001) in the patient group. The ratio of PON1/high-density lipoprotein was significantly lower in the MM patient group than in the control group (P < 0.001), while 8-isoprostane levels compared with the control group were significantly higher (P < 0.001), observations that may indicate an increase in oxidative stress in stage I MM patients. CONCLUSION A decrease in PON1 activity and increase in 8-isoprostane serum activities in patients may indicate the importance of lipid peroxidation in MM disease. Oxidative stress and especially lipid peroxidation could reduce the antioxidant activity of PON1 and ARE in MM patients and could be considered as factors in the pathogenesis of MM disease.
Collapse
Affiliation(s)
- Yousef Faridvand
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Iran
| | - Ali Eishi Oskuyi
- Department of Oncology, Faculty of Medicine, Urmia University of Medical Sciences, Iran
| | | |
Collapse
|
43
|
Guney T, Kanat İF, Alkan A, Alisik M, Akinci S, Silay K, Neselioglu S, Dilek I, Erel O. Assessment of serum thiol/disulfide homeostasis in multiple myeloma patients by a new method. Redox Rep 2016; 22:246-251. [PMID: 27198712 DOI: 10.1080/13510002.2016.1180100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The etiology of multiple myeloma (MM) is not exactly known. This study investigated the role of thiol/disulfide homeostasis in the etiopathogenesis of MM. METHODS Some 50 patients with MM (aged 39-84 years) and 50 sex-matched healthy volunteer controls (aged 50-91 years) participated in this study. Venous blood samples were collected, and levels of native thiols, total thiols, and disulfide were measured. RESULTS Native and total thiol levels in the control group were determined to be higher than in the study and patient groups (P<0.001). Disulfide levels were found to be higher in the control group than in the study group and higher in newly diagnosed patients than in outpatients who were undergoing treatment (P=0.002). The ratios of thiol levels were found to be similar in both the study and control groups (P>0.05). DISCUSSION The results of the study show that although there was a decrease in the levels of disulfide, native thiol, and total thiol, the balance of thiol/disulfide was maintained. This is the first study to research the homeostasis of dynamic thiol/disulfide from the perspective of the new method that was used. We hope that this study will encourage and facilitate further studies in this area.
Collapse
Affiliation(s)
- Tekin Guney
- a Department of Hematology , Turkiye Yuksek Ihtisas Training and Research Hospital , Ankara , Turkey
| | - İlyas Ferit Kanat
- b Department of Internal Medicine , Ataturk Training and Research Hospital , Ankara , Turkey
| | - Afra Alkan
- c Department of Biostatistics and Medical Informatics , Ankara Yildirim Beyazit University
| | - Murat Alisik
- d Department of Medical Biochemistry , Ataturk Training and Research Hospital , Ankara , Turkey
| | - Sema Akinci
- e Department of Hematology , Ataturk Training and Research Hospital , Ankara , Turkey
| | - Kamile Silay
- f Department of Geriatrics , Yildirim Beyazıt University , Ankara , Turkey
| | - Salim Neselioglu
- g Department of Medical Biochemistry , Yildirim Beyazıt University , Ankara , Turkey
| | - Imdat Dilek
- h Department of Hematology , Yildirim Beyazıt University , Ankara , Turkey
| | - Ozcan Erel
- g Department of Medical Biochemistry , Yildirim Beyazıt University , Ankara , Turkey
| |
Collapse
|
44
|
Lipchick BC, Fink EE, Nikiforov MA. Oxidative stress and proteasome inhibitors in multiple myeloma. Pharmacol Res 2016; 105:210-5. [PMID: 26827824 PMCID: PMC5044866 DOI: 10.1016/j.phrs.2016.01.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 11/23/2022]
Abstract
Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents.
Collapse
Affiliation(s)
- Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
45
|
Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. Oncotarget 2016; 6:6431-47. [PMID: 25669983 PMCID: PMC4467447 DOI: 10.18632/oncotarget.3237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 01/22/2023] Open
Abstract
Resistance to chemotherapy is a major limitation of cancer treatments with several molecular mechanisms involved, in particular altered local drug metabolism and detoxification process. The role of drug metabolism and clearance system has not been satisfactorily investigated in Multiple Myeloma (MM), a malignant plasma cell cancer for which a majority of patients escapes treatment. The expression of 350 genes encoding for uptake carriers, xenobiotic receptors, phase I and II Drug Metabolizing Enzymes (DMEs) and efflux transporters was interrogated in MM cells (MMCs) of newly-diagnosed patients in relation to their event free survival. MMCs of patients with a favourable outcome have an increased expression of genes coding for xenobiotic receptors (RXRα, LXR, CAR and FXR) and accordingly of their gene targets, influx transporters and phase I/II DMEs. On the contrary, MMCs of patients with unfavourable outcome displayed a global down regulation of genes coding for xenobiotic receptors and the downstream detoxification genes but had a high expression of genes coding for ARNT and Nrf2 pathways and ABC transporters. Altogether, these data suggests ARNT and Nrf2 pathways could be involved in MM primary resistance and that targeting RXRα, PXR, LXR and FXR through agonists could open new perspectives to alleviate or reverse MM drug resistance.
Collapse
|
46
|
Interrelationship between angiogenesis, inflammation and oxidative stress in Indian patients with multiple myeloma. Clin Transl Oncol 2015; 18:132-7. [PMID: 26169214 DOI: 10.1007/s12094-015-1344-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal population of plasma cells in the bone marrow (BM). A variety of angiogenic factors, proteases, reactive oxygen species and inflammatory cytokines induce the formation of an extensive and suitable BM microenvironment. Previous studies have established the importance of angiogenic factors, inflammatory molecules and oxidative stress in MM but their interplay and effect on each other are not being taken together. METHODS Circulatory levels of VEGF, angiopoietin-2 (Ang-2), IL-6 and TNF-α along with the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were investigated in 112 subjects including 62 MM patients and 50 healthy controls. Inter-stage analysis was done to evaluate the association of these molecules with the severity of disease. Pearson correlation was determined to find interrelationship, if any, between these molecules. RESULTS We have observed elevated levels of VEGF, Ang-2, IL-6, TNF-α and decreased activity of SOD, GPx in MM patients in comparison to controls. All these molecules also showed a trend with the severity of disease. We have found strong association between these factors upon their correlation and regression analysis. CONCLUSION This study is a step toward understanding the indepth contribution of angiogenesis, inflammation and oxidative stress together in making BM microenvironment suitable for growth, survival and proliferation of malignant plasma cells in MM.
Collapse
|
47
|
Gangemi S, Minciullo PL, Magliacane D, Saitta S, Loffredo S, Saija A, Cristani M, Marone G, Triggiani M. Oxidative stress markers are increased in patients with mastocytosis. Allergy 2015; 70:436-42. [PMID: 25630934 DOI: 10.1111/all.12571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mastocytosis is characterized by clonal proliferation of mast cells limited to the skin (cutaneous mastocytosis: CM and mastocytosis in the skin: MIS) and/or involving internal organs (systemic mastocytosis: SM). Oxidative stress occurring in various inflammatory and neoplastic disorders causes molecular damage with the production of advanced oxidation protein products (AOPPs) and advanced glycation end products (AGEs). We evaluated these markers of oxidative stress in patients with CM/MIS and SM and correlated their levels with the presence of symptoms related to mast cell activation. METHODS Serum levels of AOPPs and AGEs in 34 patients with mastocytosis (23 CM/MIS and 11 SM) and 27 healthy controls were measured by spectrofluorimetric and spectrophotometric methods. Serum tryptase levels were measured by immunofluorescence. RESULTS Serum AOPPs, but not AGEs, were significantly higher in patients with mastocytosis as compared to healthy controls. While serum tryptase levels were higher in patients with SM as compared to those with CM/MIS, there was no difference in AOPP and AGE concentrations between these two groups of patients. Patients with recurrent mediator-related symptoms had lower AOPPs and AGEs as compared to patients without symptoms. AOPPs and AGEs were inversely correlated with the severity of symptoms, and in patients with symptoms, AOPPs correlated with tryptase levels. DISCUSSION Our data show that mastocytosis is associated with a state of increased oxidative stress that, in patients with mediator-related symptoms, correlates with mast cell burden as assessed by tryptase. Patients with symptoms presumably have an adaptive response resulting in lower blood levels of AOPPs and AGEs.
Collapse
Affiliation(s)
- S. Gangemi
- Operative Unit of Allergy and Clinical Immunology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
- Institute of Clinical Physiology; IFC CNR; Messina Unit; Messina Italy
| | - P. L. Minciullo
- Operative Unit of Allergy and Clinical Immunology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - D. Magliacane
- Division of Immunopathology and Respiratory Disease; Battipaglia Hospital; Salerno Italy
| | - S. Saitta
- Operative Unit of Allergy and Clinical Immunology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - S. Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - A. Saija
- Department of Drug Sciences and Health Products; University of Messina; Messina Italy
| | - M. Cristani
- Department of Drug Sciences and Health Products; University of Messina; Messina Italy
| | - G. Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - M. Triggiani
- Division of Allergy and Clinical Immunology; University of Salerno; Salerno Italy
| |
Collapse
|
48
|
Salem K, McCormick ML, Wendlandt E, Zhan F, Goel A. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Redox Biol 2014; 4:23-33. [PMID: 25485927 PMCID: PMC4309843 DOI: 10.1016/j.redox.2014.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper–zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity. Multiple myeloma (MM) displays intrinsic/adaptive resistance to bortezomib (BTZ). An up-regulation of antioxidant levels is observed in BTZ-resistant MM cell lines. Inhibition of CuZnSOD increases BTZ cytotoxicity in BTZ naïve/resistant cells. We propose disulfiram as a combination chemotherapy drug to inhibit relapse in MM.
Collapse
Affiliation(s)
- Kelley Salem
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, Iowa City, IA, USA
| | - Michael L McCormick
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, Iowa City, IA, USA
| | - Erik Wendlandt
- Department of Internal Medicine, The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Fenghuang Zhan
- Department of Internal Medicine, The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Apollina Goel
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, Iowa City, IA, USA.
| |
Collapse
|
49
|
Gangemi S, Allegra A, Sciarrone P, Russo S, Cristani M, Gerace D, Saitta S, Alonci A, Musolino C. Effect of therapeutic plasma exchange on plasma levels of oxidative biomarkers in a patient with thrombotic thrombocytopenic purpura. Eur J Haematol 2014; 94:368-73. [PMID: 24813235 DOI: 10.1111/ejh.12378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The role of oxidative stress in the initiation and progression of endothelial damage in thrombotic thrombocytopenic purpura (TTP) syndrome has been the subject of much speculation in the recent past. OBJECTIVES The aim of this study was to measure the concentration of plasma advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs), and carbonyl groups (CG) as markers of oxidative stress in plasma of a patient with TTP during the course of the disease until recovery and to evaluate the effect of plasmapheresis (PE) on these biomarkers. MATERIALS AND METHODS The study consisted of plasma analysis of the patient, and 23 healthy subjects served as controls. In the patient with TTP, AOPP, AGE, and CG analysis was performed before and after each PE at the days +1 (Tα), +2, +4, +6, +10, +9, and +17 after the last plasmapheresis (Tω). RESULTS Plasma concentrations of AOPPs were increased in the acute phase of TTP, and at Tα, the patient had AOPPs levels higher than 99°‰ of controls. AOPPs decreased in the recovery phase, and at Tω, their values were between 84° and 85°‰ of controls. No significant difference was found in AOPP levels before and after each PE. No significant differences for AGEs or CG concentrations were found at Tα with respect to the control group, while only a trend was observed for reduction of plasma AGEs after each plasmapheresis. CONCLUSION Our data seem to confirm the hypothesis that oxidative stress is a critical component of the pathogenesis of TTP.
Collapse
Affiliation(s)
- Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Expèerimental Medicine, University Hospital "G. Martino", Messina, Italy; Institute of Clinical Physiology, IFC CNR, Messina Unit, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ellidag HY, Eren E, Aydin O, Yıldırım M, Sezer C, Yilmaz N. Multiple myeloma: relationship to antioxidant esterases. Med Princ Pract 2014; 23:18-23. [PMID: 24216973 PMCID: PMC5586838 DOI: 10.1159/000355826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 09/17/2013] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To investigate the status of the oxidant/antioxidant balance in patients with multiple myeloma compared to healthy controls. MATERIALS AND METHODS This study was conducted on 40 multiple myeloma patients and 40 healthy controls of matched age and sex. Serum total thiol, oxidative stress index (OSI), total oxidant status (TOS), and total antioxidant status (TAS) were measured using colourimetric methods; paraoxonase-1 and arylesterase enzyme activities were also quantified. RESULTS Serum paraoxonase-1 and arylesterase activities and total thiol levels were significantly lower (p = 0.0001, p = 0.036 and p < 0.0001, respectively), whereas TOS and OSI levels were significantly higher (p < 0.0001 for both parameters) in multiple myeloma patients compared to controls. However, no significant differences in TAS were identified when the two groups were compared. CONCLUSIONS Our findings indicate an impaired oxidative/antioxidative balance in multiple myeloma. We recommend further studies with larger groups to investigate the possible relationship between oxidative stress and the aetiopathogenesis of multiple myeloma.
Collapse
Affiliation(s)
- Hamit Yasar Ellidag
- Central Laboratories of Antalya Education and Research Hospital, Antalya, Turkey
- *Hamit Yasar Ellidag, Central Laboratories of Antalya Education and Research Hospital, Ministry of Health, Varlik Mahallesi Kazim, Karabekir Caddesi Soguksu, TR-07100 Antalya (Turkey), E-Mail
| | - Esin Eren
- Antalya Public Health Center, Antalya, Turkey
| | - Ozgur Aydin
- Central Laboratories of Antalya Education and Research Hospital, Antalya, Turkey
| | | | - Cem Sezer
- Pathology Laboratories of Antalya Education and Research Hospital, Ministry of Health, Antalya, Turkey
| | - Necat Yilmaz
- Central Laboratories of Antalya Education and Research Hospital, Antalya, Turkey
| |
Collapse
|