1
|
Parncutt J, Johnson LR, Subharat S, Oke B, Hill KE. Effects of intranasal maropitant on clinical signs of naturally acquired upper respiratory disease in shelter cats. J Feline Med Surg 2025; 27:1098612X241309826. [PMID: 40008570 PMCID: PMC11863213 DOI: 10.1177/1098612x241309826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
OBJECTIVES The aim of this study was to test the hypothesis that intranasally administered maropitant citrate would reduce the severity of clinical signs of feline upper respiratory disease (FURD) in shelter cats with naturally acquired disease. METHODS Shelter cats with clinical signs of FURD were randomly assigned to receive either intranasal maropitant diluted in saline (maropitant citrate 10 mg/ml q12h, diluted 1:10 with sterile 0.9% saline) or intranasal 0.9% saline q12h for 7 days. Clinical disease severity was measured at entry into the study and again after completion of 7 days of treatment using a visual analogue scale to assess four separate clinical signs: conjunctivitis, blepharospasm, ocular discharge and nasal discharge. Total disease severity was also calculated. Cats received other medications for FURD as per standard shelter protocols, and all investigators were masked to group assignments. A Mann-Whitney U-test was performed to compare the clinical improvement score (CIS) between the treatment and control groups. RESULTS There were 34 cats in the maropitant treatment group; 27 cats served as placebo controls. Groups did not differ in age, sex distribution, nature of disease, administration of other medications for FURD or baseline clinical disease severity. There was no significant difference in CIS between the maropitant treatment and control groups for conjunctivitis, blepharospasm, ocular discharge, nasal discharge or total disease severity after 7 days. CONCLUSIONS AND RELEVANCE This study found no significant difference in outcomes for cats with FURD when treated with intranasal maropitant compared with treatment with intranasal saline. Further investigations would be required before intranasal maropitant could be recommended as the standard of care for FURD.
Collapse
Affiliation(s)
- John Parncutt
- Royal Society for the Prevention of Cruelty to Animals, Burwood East, VIC, Australia
| | - Lynelle R Johnson
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Supatsak Subharat
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Bronwyn Oke
- Royal Society for the Prevention of Cruelty to Animals, Burwood East, VIC, Australia
| | - Kate E Hill
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Culhuac EB, Bello M. Evaluation of Urtica dioica Phytochemicals against Therapeutic Targets of Allergic Rhinitis Using Computational Studies. Molecules 2024; 29:1765. [PMID: 38675586 PMCID: PMC11052477 DOI: 10.3390/molecules29081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Allergic rhinitis (AR) is a prevalent inflammatory condition affecting millions globally, with current treatments often associated with significant side effects. To seek safer and more effective alternatives, natural sources like Urtica dioica (UD) are being explored. However, UD's mechanism of action remains unknown. Therefore, to elucidate it, we conducted an in silico evaluation of UD phytochemicals' effects on known therapeutic targets of allergic rhinitis: histamine receptor 1 (HR1), neurokinin 1 receptor (NK1R), cysteinyl leukotriene receptor 1 (CLR1), chemoattractant receptor-homologous molecule expressed on type 2 helper T cells (CRTH2), and bradykinin receptor type 2 (BK2R). The docking analysis identified amentoflavone, alpha-tocotrienol, neoxanthin, and isorhamnetin 3-O-rutinoside as possessing a high affinity for all the receptors. Subsequently, molecular dynamics (MD) simulations were used to analyze the key interactions; the free energy of binding was calculated through Generalized Born and Surface Area Solvation (MMGBSA), and the conformational changes were evaluated. Alpha-tocotrienol exhibited a high affinity while also inducing positive conformational changes across all targets. Amentoflavone primarily affected CRTH2, neoxanthin targeted NK1R, CRTH2, and BK2R, and isorhamnetin-3-O-rutinoside acted on NK1R. These findings suggest UD's potential to treat AR symptoms by inhibiting these targets. Notably, alpha-tocotrienol emerges as a promising multi-target inhibitor. Further in vivo and in vitro studies are needed for validation.
Collapse
Affiliation(s)
- Erick Bahena Culhuac
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca 50000, Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| |
Collapse
|
3
|
Wang H, Wu J, Zhang R. Effect of Neurokinin-1 Receptor Knockdown on the Expression of RANTES in Allergic Rhinitis. Am J Rhinol Allergy 2023; 37:730-738. [PMID: 37525517 DOI: 10.1177/19458924231191012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND Neurokinin-1 receptor (NK-1R) and normal T cell expressed and secreted (RANTES) have been shown to play important roles in allergic rhinitis (AR). However, whether the regulating effect of NK-1R in AR is achieved via RANTES remains unknown. METHODS In the present study, Sprague-Dawley rats were sensitized and challenged with ovalbumin to make AR models. During the challenge period, the rats were treated intranasally with NK-1R-specific small interfering RNA (siRNA) for NKR group, negative siRNA for NCS group, rats in NSAR group and NS group were given saline. The amount of nasal secretion and the numbers of nose rubs and sneezes were measured in each rat. The levels of NK-1R and RANTES in the nasal mucosal tissues were determined through real-time fluorescence quantitative RT-PCR and immunohistochemical staining. The numbers of eosinophils in the collected nasal lavage fluid (NLF) were counted, and the concentration of RANTES in NLF was determined by enzyme-linked immunosorbent assay. RESULTS Compared with that in the NS group, the expression of NK-1R and RANTES was significantly higher in the nasal mucosa of NSAR and NCS group rats. The sneezing and nose rubbing counts and the amount of nasal secretions were increased significantly in the NSAR and NCS groups. Rats in the NKR group experienced greater relief from AR symptoms than rats in the NSAR and NCS groups. Furthermore, knockdown of NK-1R expression also significantly eliminated RANTES expression and eosinophil infiltration in the nasal mucosa of NKR group rats. CONCULSION For the first time, we show that intranasal treatment with NK-1R-specific siRNA can significantly decrease RANTES expression, AR-related symptoms, and eosinophil inflammation, suggesting that the regulating effect of NK-1R in the development of AR occurs via alteration of RANTES expression.
Collapse
Affiliation(s)
- Hong Wang
- Department of Otorhinolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Otorhinolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruxin Zhang
- Department of Otorhinolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Chang Y, Zhang Y, Bai Y, Lin R, Qi Y, Li M. The correlation between tic disorders and allergic conditions in children: A systematic review and meta-analysis of observational studies. Front Pediatr 2023; 11:1064001. [PMID: 37020645 PMCID: PMC10067604 DOI: 10.3389/fped.2023.1064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Aim To evaluate the correlation between tic disorders and allergies and to inform strategies for the treatment and prevention of tic disorders. Methods We conducted online searches of the MEDLINE, Embase, Cochrane, CNKI, CBM, WanFang, and VIP Information databases. Case-control studies and cohort studies related to tic disorders and allergic conditions were searched. Two researchers screened the literature, extracted data, and evaluated quality in strict accordance with the predetermined retrieval strategy and inclusion criteria. Finally, RevMan 5.4 software was used to conduct a meta-analysis. We used the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach to rating the certainty of evidence about each allergy outcome as high, moderate, low, or very low. Results We obtained seven eligible studies involving eight allergic conditions. The following allergic conditions were significantly associated with the presence of a tic disorder: asthma (OR = 1.90, 95% CI = 1.57-2.30, P < 0.001), allergic rhinitis (OR = 2.61, 95% CI = 1.90-3.57, P < 0.001), allergic conjunctivitis (OR = 3.65, 95% CI = 1.53-8,67, P = 0.003), eczema (OR = 3.87, 95% CI = 2.24-6.67, P < 0.001) and food allergy (OR = 2.79, 95% CI = 1.56-4.99, P < 0.001). There was no significant correlation between atopic dermatitis, urticaria, drug allergy, and tic disorder. Conclusion The occurrence of tic disorders may be associated with the presence of certain allergic disorders. However, whether allergy is one of the causes of tic disorders remains unclear. Systematic review registration The registration number for this systematic review is PROSPERO: CRD42021231658.
Collapse
Affiliation(s)
- Ying Chang
- Department of Traditional Chinese Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Ying Zhang
- Evidence Based Medicine Center, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Bai
- Department of Pediatrics, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Run Lin
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yaping Qi
- TCM Pediatrics Department, Beijing Changping District Maternity and Child Care Hospital, Beijing, China
| | - Min Li
- Department of Traditional Chinese Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
- Department of Pediatrics, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Correspondence: Li Min
| |
Collapse
|
5
|
蔡 诗, 娄 鸿. [Neuroimmunomodulation in allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:859-864. [PMID: 34628846 PMCID: PMC10127821 DOI: 10.13201/j.issn.2096-7993.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/12/2022]
Abstract
The role of neuroimmunomodulation in allergic diseases is a research hotspot in recent years. Allergic rhinitis(AR) is caused by overactive immune response to a foreign antigen in nasal mucosa. Immune cells release inflammatory mediators(including histamine, cytokines and neurotrophins), which directly activate peripheral neurons to mediate nasal congestion, itching, sneezing, and other hyperresponsive symptoms. Upon activation, these peripheral neurons release neurotransmitters (including acetylcholine and norepinephrine) and neuropeptides(including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide) that directly act on immune cells to drive allergic inflammation. Neuro-immune signaling may play a significant role in the pathophysiology of AR. Therefore, a better understanding of these cellular and molecular neuro-immune interactions may inspire the discovery of new targets and novel therapies.
Collapse
Affiliation(s)
- 诗茹 蔡
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
| | - 鸿飞 娄
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
| |
Collapse
|
6
|
Could the Epigenetics of Eosinophils in Asthma and Allergy Solve Parts of the Puzzle? Int J Mol Sci 2021; 22:ijms22168921. [PMID: 34445627 PMCID: PMC8396248 DOI: 10.3390/ijms22168921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is a field of study investigating changes in gene expression that do not alter the DNA sequence. These changes are often influenced by environmental or social factors and are reversible. Epigenetic mechanisms include DNA methylation, histone modification, and noncoding RNA. Understanding the role of these epigenetic mechanisms in human diseases provides useful information with regard to disease severity and development. Several studies have searched for the epigenetic mechanisms that regulate allergies and asthma; however, only few studies have used samples of eosinophil, a proinflammatory cell type known to be largely recruited during allergic or asthmatic inflammation. Such studies would enable us to better understand the factors that influence the massive recruitment of eosinophils during allergic and asthmatic symptoms. In this review, we sought to summarize different studies that aimed to discover differential patterns of histone modifications, DNA methylation, and noncoding RNAs in eosinophil samples of individuals with certain diseases, with a particular focus on those with asthma or allergic diseases.
Collapse
|
7
|
Sun N, Niu Y, Zhang R, Huang Y, Wang J, Qiu W, Zhang X, Han Z, Bao J, Zhu H, Duan Y, Kan H. Ozone inhalation induces exacerbation of eosinophilic airway inflammation and Th2-skew immune response in a rat model of AR. Biomed Pharmacother 2021; 137:111261. [PMID: 33482509 DOI: 10.1016/j.biopha.2021.111261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ozone (O3) exposure elicits allergic rhinitis (AR) exacerbations by mechanisms that remain poorly understood. We used a rat model to investigate the effects of O3 on eosinophilic airway inflammation and Th2-related response. METHODS Sprague-Dawley (SD) rats were sensitized and challenged with ovalbumin (OVA) to make AR models. Three groups of AR rats were exposed respectively to 0.5, 1.0, 2.0 ppm of O3 for 2 h daily over 6 weeks consecutively and studied 24 h later. Normal rats exposed to O3 alone were used as controls. Nasal symptoms and OVA-specific immunoglobulin E (OVA-sIg E) in the serum were evaluated. Inflammatory cells in nasal lavage fluid (NLF) were classified and counted. Cytokines protein levels in NLF were assessed by ELISA. The pathological changes in the nasal mucosa were examined by histology. RESULTS The combination of allergen and repeated O3 exposure in rats induced a significant increase of the number of sneezes, nasal rubs, amount of nasal secretion and OVA-sIgE in the serum, accompanied by enhancement of eosinophils in NLF and nasal mucosa. The increase of interleukin-5 (IL-5), IL-13, Eotaxin and decrease of INF-γ protein levels in NLF were detected in AR rats after O3 inhalation. Hematoxylin and eosin staining showed disordered arrangement of the nasal mucosa epithelium and eosinophilic infiltration in a concentration-dependent manner. CONCLUSIONS O3 inhalation deteriorated symptoms in AR rats, and the possible mechanism is that ozone co-exposure could enhance the expression of Th2 cytokines, eosinophilic airway inflammation dose-dependently. The observation is helpful for us to understand the synergistic effect of O3 in the air pollution and allergen on aggravating allergic rhinitis.
Collapse
Affiliation(s)
- Na Sun
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Yu Huang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jinchao Wang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Wenjia Qiu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Xueyan Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhijin Han
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jing Bao
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Huili Zhu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| |
Collapse
|
8
|
章 如. [Surgical treatment of allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2020; 34:1-4. [PMID: 32086887 PMCID: PMC10128588 DOI: 10.13201/j.issn.1001-1781.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 11/12/2022]
Affiliation(s)
- 如新 章
- 复旦大学附属华东医院耳鼻咽喉头颈外科(上海,200040)
| |
Collapse
|
9
|
Sun R, Yang Y, Gu Z, Tang X, Zhang C, Kou W, Wei P. Silencing of CD86 in dendritic cells by small interfering RNA regulates cytokine production in T cells from patients with allergic rhinitis in vitro. Mol Med Rep 2019; 20:3893-3900. [PMID: 31485639 DOI: 10.3892/mmr.2019.10638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/30/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the expression and role of the co‑stimulatory molecule T‑lymphocyte activation antigen CD86 (CD86) in dendritic cells (DCs) from the peripheral blood of patients with allergic rhinitis (AR) compared with those from healthy individuals. It was observed that mature DCs from the peripheral blood of patients with AR expressed high levels of the co‑stimulatory molecule CD86, but not CD80, compared with healthy control subjects. CD86 expression levels in DCs decreased significantly following transfection with siRNA in a lentiviral vector. Furthermore, the level of transforming growth factor‑β1 produced by T cells co‑cultured with DCs was significantly increased in the siRNA group, while interleukin (IL)‑4 and IL‑5 production was significantly decreased. The findings of the present study indicated that CD86 may play a pivotal role in the regulatory T cell/type 2 helper T cell imbalance in allergic inflammation.
Collapse
Affiliation(s)
- Rong Sun
- Department of Physical Examination, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yang Yang
- Department of Otorhinolaryngology, The Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Gu
- Department of Otorhinolaryngology, The Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinye Tang
- Department of Otorhinolaryngology, The Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Cheng Zhang
- Department of Otorhinolaryngology, The Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Kou
- Department of Otorhinolaryngology, The Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ping Wei
- Department of Otorhinolaryngology, The Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
10
|
Yu S, Jin L, Che N, Zhang R, Xu F, Han B. Dendritic cells modified with Der p1 antigen as a therapeutic potential for allergic rhinitis in a murine model via regulatory effects on IL-4, IL-10 and IL-13. Int Immunopharmacol 2019; 70:216-224. [PMID: 30851701 DOI: 10.1016/j.intimp.2019.02.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES House dust mites, including Der p1, are common allergens. The current study was designed to explore the allergen-specific immune tolerance effects of Der p1-modified dendritic cells (DCs) through IL-4, IL-10 and IL-13 on an allergic rhinitis (AR) mouse model. METHODS A lentivirus was modified to express Derp1. Then, immature DCs from mice were infected with this modified lentivirus to generate a lenti-Derp1-GFP DCs. 24 mice were random divided into four groups (n = 6 each), AR mouse were sensitized by Derp1 allergens and treated with lenti-GFP DCs (GFP-DC/AR group), or lenti-Derp1-GFP DCs (Der p1-DC/AR group) and dexamethasone (Dex/AR group), mice in the control group were treated with PBS instead of Der p1 then also intraperitoneally injected with 5 × 106 lenti-GFP DCs/mouse. AR symptoms expressed by each mouse were recorded. The proportions of CD4+CD25+Foxp3+ regulatory T cells among CD4+ T cells in the peripheral blood, and mRNA and protein expression levels of IL-4, IL-10, and IL-13 were measured. RESULTS DCs infected with lenti-Derp1-GFP stimulated the maturation of DCs. Compared with the GFP-DC/AR group, mice in the Der p1-DC/AR group showed an ameliorated allergic response, a significant decrease in the levels of serum IgE, IgG1, and histamine, and a decrease in the expression of IL-4 and IL-13 mRNA and protein in the nasal mucosa. The expression of IL-10 increased in the Der p1-DC/AR group to a level similar to that observed in the Dex/AR group. CONCLUSIONS These results indicate that Der p1-modified DCs have therapeutic potential for AR via downregulation of IL-4 and IL-13, and upregulation of IL-10.
Collapse
Affiliation(s)
- Shaoqing Yu
- Department of Otolaryngology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| | - Ling Jin
- Department of Otolaryngology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Na Che
- Department of Otolaryngology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Feifei Xu
- Department of Otolaryngology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Bing Han
- Department of Otolaryngology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
11
|
Cheng L, Chen J, Fu Q, He S, Li H, Liu Z, Tan G, Tao Z, Wang D, Wen W, Xu R, Xu Y, Yang Q, Zhang C, Zhang G, Zhang R, Zhang Y, Zhou B, Zhu D, Chen L, Cui X, Deng Y, Guo Z, Huang Z, Huang Z, Li H, Li J, Li W, Li Y, Xi L, Lou H, Lu M, Ouyang Y, Shi W, Tao X, Tian H, Wang C, Wang M, Wang N, Wang X, Xie H, Yu S, Zhao R, Zheng M, Zhou H, Zhu L, Zhang L. Chinese Society of Allergy Guidelines for Diagnosis and Treatment of Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:300-353. [PMID: 29949830 PMCID: PMC6021586 DOI: 10.4168/aair.2018.10.4.300] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/17/2017] [Accepted: 10/05/2017] [Indexed: 11/20/2022]
Abstract
Allergic rhinitis (AR) is a global health problem that causes major illnesses and disabilities worldwide. Epidemiologic studies have demonstrated that the prevalence of AR has increased progressively over the last few decades in more developed countries and currently affects up to 40% of the population worldwide. Likewise, a rising trend of AR has also been observed over the last 2-3 decades in developing countries including China, with the prevalence of AR varying widely in these countries. A survey of self-reported AR over a 6-year period in the general Chinese adult population reported that the standardized prevalence of adult AR increased from 11.1% in 2005 to 17.6% in 2011. An increasing number of Journal Articles and imporclinical trials on the epidemiology, pathophysiologic mechanisms, diagnosis, management and comorbidities of AR in Chinese subjects have been published in international peer-reviewed journals over the past 2 decades, and substantially added to our understanding of this disease as a global problem. Although guidelines for the diagnosis and treatment of AR in Chinese subjects have also been published, they have not been translated into English and therefore not generally accessible for reference to non-Chinese speaking international medical communities. Moreover, methods for the diagnosis and treatment of AR in China have not been standardized entirely and some patients are still treated according to regional preferences. Thus, the present guidelines have been developed by the Chinese Society of Allergy to be accessible to both national and international medical communities involved in the management of AR patients. These guidelines have been prepared in line with existing international guidelines to provide evidence-based recommendations for the diagnosis and management of AR in China.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huabin Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guolin Tan
- Department of Otolaryngology Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Dehui Wang
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chonghua Zhang
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruxin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Yuan Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Luquan Chen
- Department of Traditional Chinese Medicine, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Xinyan Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhiqiang Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhenxiao Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Zizhen Huang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Houyong Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Wenting Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Lin Xi
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuhui Ouyang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Wendan Shi
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaoyao Tao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqin Tian
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Hui Xie
- Department of Otorhinolaryngology, Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoqing Yu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji University, Shanghai, China
| | - Renwu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Han Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Luping Zhu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Luo Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Bencycloquidium bromide inhibits nasal hypersecretion in a rat model of allergic rhinitis. Inflamm Res 2015; 64:213-23. [DOI: 10.1007/s00011-015-0800-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
|