1
|
Triggianese P, Senter R, Perego F, Gidaro A, Petraroli A, Arcoleo F, Brussino L, Giardino F, Rossi O, Bignardi D, Quattrocchi P, Brancaccio R, Cesoni Marcelli A, Accardo PA, Lo Sardo L, Cataudella E, Guarino MD, Firinu D, Bergamini A, Spadaro G, Zanichelli A, Cancian M. Rare connective tissue diseases in patients with C1-inhibitor deficiency hereditary angioedema: first evidence on prevalence and distribution from a large Italian cohort study. Front Immunol 2024; 15:1461407. [PMID: 39493762 PMCID: PMC11527674 DOI: 10.3389/fimmu.2024.1461407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction In patients with Hereditary Angioedema (HAE) related to primary C1 inhibitor deficiency (C1INH), the defective clearance of immune complexes and apoptotic materials along with impairment of normal humoral response potentially leads to autoimmunity. Few studies report evidence on autoimmune diseases in C1INH-HAE, but no large population studies focus on rare connective tissue diseases (RCTDs). We aim at evaluating for the first time prevalence and distribution of RCTDs - Systemic Lupus Erytematosus (SLE), primary Sjogren Syndrome (SjS), primary antiphospholipid syndrome (APS), Systemic Sclerosis (SSc), and mixed connective tissue diseases (MCTD) in a large Italian cohort of C1INH-HAE patients. Methods A multicenter observational study includes C1INH-HAE patients from ITACA Centers throughout Italy (time frame Sept 2023-March 2024). Inclusion criteria are i. a defined diagnosis of type I or type II C1INH-HAE; ii. age ≥15 years (puberty already occurred); iii. enrollment in the ITACA Registry. The diagnosis of SLE, primary SjS, primary APS, SSc, and MCTD are made in accordance with international classification criteria. Results Data are collected from a total of 855 C1INH-HAE patients referring to 15 ITACA Centers. Patients with concomitant RCTDs were 18/855 (2.1%) with F:M ratio 3.5 and a prevalent type I C1INH-HAE diagnosis (87.2%). A diagnosis of SLE results in 44.5% of cases (n=8) while the remaining diagnoses are primary SjS (22.2%, n=4), primary APS (16.6%, n=3), SSc (11.2%, n=2), and a single case of MCTD (5.5%). The female gender is prevalent in all the RCTDs. Patients on long term prophylaxis (LTP) are significantly prevalent in RCTDs group than in the whole C1INH-HAE population (p<0.01). Conclusions A relevant prevalence of RCTDs is documented in C1INH-HAE patients, mainly SLE. Patients with RCTDs are on LTP in a significant proportion supporting the idea of a bidirectional link between C1INH-HAE and autoimmunity.
Collapse
Affiliation(s)
- P. Triggianese
- University of Rome Tor Vergata, “Fondazione PTV Policlinico Tor Vergata”, Rome, Italy
| | - R. Senter
- Department of Medicine, Azienda Ospedale-Università di Padova, Padova, Italy
| | - F. Perego
- IRCCS Istituti Clinici Scientifici Maugeri, Milano, Italy
| | - A. Gidaro
- Internal Medicine, Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy
| | - A. Petraroli
- Department of Internal Medicine, Clinical Immunology, Clinical Pathology and Infectious Disease, Azienda Ospedaliera Universitaria Federico II, Napoli, Italy
| | - F. Arcoleo
- Ospedali Riuniti Villa Sofia-Cervello, Unità Operativa Complessa di Patologia Clinica, Palermo, Italy
| | - L. Brussino
- Allergy and Clinical Immunology Unit, Department of Medical Sciences, University of Torino & Mauriziano Hospital, Torino, Italy
| | - F. Giardino
- Azienda Ospedaliero-Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - O. Rossi
- Immunoallergology Unit, University Hospital of Careggi, Florence, Italy
| | - D. Bignardi
- Department of Medicine Integrated with the Territory, Ospedale Policlinico San Martino, IRCCS Ospedale Policlinico, Genova UO Allergologia, Genova, Italy
| | - P. Quattrocchi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| | - R. Brancaccio
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio nell’Emilia, Italy
| | | | - P. A. Accardo
- Ospedali Riuniti Villa Sofia-Cervello, Unità Operativa Complessa di Patologia Clinica, Palermo, Italy
| | - L. Lo Sardo
- Allergy and Clinical Immunology Unit, Department of Medical Sciences, University of Torino & Mauriziano Hospital, Torino, Italy
| | - E. Cataudella
- Immunoallergology Unit, University Hospital of Careggi, Florence, Italy
| | | | - D. Firinu
- Division of Allergy and Clinical Immunology, University of Cagliari, Cagliari, Italy
| | - A. Bergamini
- University of Rome Tor Vergata, “Fondazione PTV Policlinico Tor Vergata”, Rome, Italy
| | - G. Spadaro
- Department of Internal Medicine, Clinical Immunology, Clinical Pathology and Infectious Disease, Azienda Ospedaliera Universitaria Federico II, Napoli, Italy
| | - A. Zanichelli
- Operative Unit of Medicine, Angioedema Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - M. Cancian
- Department of Medicine, Azienda Ospedale-Università di Padova, Padova, Italy
| |
Collapse
|
2
|
Dhiman A, Purohit R. Profiling the disintegration of BRPs released by massive wasp stings using serratiopeptidase: An in-silico insight. Comput Biol Med 2023; 159:106951. [PMID: 37086660 DOI: 10.1016/j.compbiomed.2023.106951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Serratiopeptidase is a multifaceted therapeutic enzyme renowned for its anti-inflammatory, analgesic, anti-biofilm, fibrinolytic, and anti-edemic properties. It is vital to uncover more about the assets of such efficacious enzyme in order to facilitate their contribution in all health-related issues, notably inflammatory ailments. The current study sought to determine whether serratiopeptidase would disintegrate bradykinin related peptides (BRPs) from wasp venom in the same manner as it does with human bradykinin. To accomplish this objective, we docked selected BRPs onto the binding pocket of wild and previously identified mutant (N412D) of serratiopeptidase. Based on their docked scores, the top two BRPs were selected, and their conformational behavior was analyzed employing molecular dynamics studies. Additionally, thermodynamics end-state energy analysis reported that both the complexes exhibited higher stability and identical ΔG values when compared to the reference complex. Further, we condemned the external pulling forces on both peptides to observe the force needed in the disassociation process to endorse the binding affinity findings in terms of unbinding mechanism. This analysis suggested that BRP-7 (Wasp kinin PMM1) peptide was tightly anchored and laid out the highest pulling force to get detach from the active pocket of serratiopeptidase in contrast to the BRP-6 peptide. The current study endorses up the present findings and paves the way for serratiopeptidase to be used as an anti-angioedemic peptidase as well as a fixed-dose combination (FDC) in hypotensive drugs.
Collapse
Affiliation(s)
- Ankita Dhiman
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Gangnus T, Bartel A, Burckhardt BB. Mass spectrometric study of variation in kinin peptide profiles in nasal fluids and plasma of adult healthy individuals. J Transl Med 2022; 20:146. [PMID: 35351153 PMCID: PMC8961484 DOI: 10.1186/s12967-022-03332-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The kallikrein-kinin system is assumed to have a multifunctional role in health and disease, but its in vivo role in humans currently remains unclear owing to the divergence of plasma kinin level data published ranging from the low picomolar to high nanomolar range, even in healthy volunteers. Moreover, existing data are often restricted on reporting levels of single kinins, thus neglecting the distinct effects of active kinins on bradykinin (BK) receptors considering diverse metabolic pathways. A well-characterized and comprehensively evaluated healthy cohort is imperative for a better understanding of the biological variability of kinin profiles to enable reliable differentiation concerning disease-specific kinin profiles. METHODS To study biological levels and variability of kinin profiles comprehensively, 28 healthy adult volunteers were enrolled. Nasal lavage fluid and plasma were sampled in customized protease inhibitor prespiked tubes using standardized protocols, proven to limit inter-day and interindividual variability significantly. Nine kinins were quantitatively assessed using validated LC-MS/MS platforms: kallidin (KD), Hyp4-KD, KD1-9, BK, Hyp3-BK, BK1-8, BK1-7, BK1-5, and BK2-9. Kinin concentrations in nasal epithelial lining fluid were estimated by correlation using urea. RESULTS Circulating plasma kinin levels were confirmed in the very low picomolar range with levels below 4.2 pM for BK and even lower levels for the other kinins. Endogenous kinin levels in nasal epithelial lining fluids were substantially higher, including median levels of 80.0 pM for KD and 139.1 pM for BK. Hydroxylated BK levels were higher than mean BK concentrations (Hyp3-BK/BK = 1.6), but hydroxylated KD levels were substantially lower than KD (Hyp4-KD/KD = 0.37). No gender-specific differences on endogenous kinin levels were found. CONCLUSIONS This well-characterized healthy cohort enables investigation of the potential of kinins as biomarkers and would provide a valid control group to study alterations of kinin profiles in diseases, such as angioedema, sepsis, stroke, Alzheimer's disease, and COVID-19.
Collapse
Affiliation(s)
- Tanja Gangnus
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Anke Bartel
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Maurer M, Magerl M, Betschel S, Aberer W, Ansotegui IJ, Aygören-Pürsün E, Banerji A, Bara NA, Boccon-Gibod I, Bork K, Bouillet L, Boysen HB, Brodszki N, Busse PJ, Bygum A, Caballero T, Cancian M, Castaldo AJ, Cohn DM, Csuka D, Farkas H, Gompels M, Gower R, Grumach AS, Guidos-Fogelbach G, Hide M, Kang HR, Kaplan AP, Katelaris CH, Kiani-Alikhan S, Lei WT, Lockey RF, Longhurst H, Lumry W, MacGinnitie A, Malbran A, Martinez Saguer I, Matta Campos JJ, Nast A, Nguyen D, Nieto-Martinez SA, Pawankar R, Peter J, Porebski G, Prior N, Reshef A, Riedl M, Ritchie B, Sheikh FR, Smith WB, Spaeth PJ, Stobiecki M, Toubi E, Varga LA, Weller K, Zanichelli A, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema - The 2021 revision and update. World Allergy Organ J 2022; 15:100627. [PMID: 35497649 PMCID: PMC9023902 DOI: 10.1016/j.waojou.2022.100627] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary Angioedema (HAE) is a rare and disabling disease for which early diagnosis and effective therapy are critical. This revision and update of the global WAO/EAACI guideline on the diagnosis and management of HAE provides up-to-date guidance for the management of HAE. For this update and revision of the guideline, an international panel of experts reviewed the existing evidence, developed 28 recommendations, and established consensus by an online DELPHI process. The goal of these recommendations and guideline is to help physicians and their patients in making rational decisions in the management of HAE with deficient C1-inhibitor (type 1) and HAE with dysfunctional C1-inhibitor (type 2), by providing guidance on common and important clinical issues, such as: 1) How should HAE be diagnosed? 2) When should HAE patients receive prophylactic on top of on-demand treatment and what treatments should be used? 3) What are the goals of treatment? 4) Should HAE management be different for special HAE patient groups such as children or pregnant/breast feeding women? 5) How should HAE patients monitor their disease activity, impact, and control? It is also the intention of this guideline to help establish global standards for the management of HAE and to encourage and facilitate the use of recommended diagnostics and therapies for all patients.
Collapse
Affiliation(s)
- Marcus Maurer
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | | | - Werner Aberer
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Ignacio J. Ansotegui
- Department of Allergy & Immunology, Hospital Quironsalúd Bizkaia, Bilbao-Errandio, Spain
| | - Emel Aygören-Pürsün
- Center for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Noémi-Anna Bara
- Romanian Hereditary Angioedema Expertise Centre, Mediquest Clinical Research Center, Sangeorgiu de Mures, Romania
| | - Isabelle Boccon-Gibod
- National Reference Center for Angioedema (CREAK), Angioedema Center of Reference and Excellence (ACARE), Grenoble Alpes, France
- University Hospital, Grenoble, France
| | - Konrad Bork
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Laurence Bouillet
- National Reference Center for Angioedema (CREAK), Angioedema Center of Reference and Excellence (ACARE), Grenoble Alpes, France
- University Hospital, Grenoble, France
| | | | - Nicholas Brodszki
- Department of Pediatric Immunology, Childrens Hospital, Skåne University Hospital, Lund, Sweden
| | - Paula J. Busse
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anette Bygum
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Teresa Caballero
- Allergy Department, Hospital Universitario La Paz, IdiPaz, CIBERER U754, Madrid, Spain
| | - Mauro Cancian
- Department of Systems Medicine, University Hospital of Padua, Padua, Italy
| | | | - Danny M. Cohn
- Department of Vascular Medicine, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Henriette Farkas
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Mark Gompels
- Clinical Immunology, North Bristol NHS Trust, Bristol, United Kingdom
| | - Richard Gower
- Marycliff Clinical Research, Principle Research Solutions, Spokane, WA, United States
| | - Anete S. Grumach
- Clinical Immunology, Centro Universitario FMABC, Sao Paulo, Brazil
| | | | - Michihiro Hide
- Department of Dermatology, Hiroshima Citizens Hospital, Hiroshima, Japan
- Department of Dermatology, Hiroshima University, Hiroshima, Japan
| | - Hye-Ryun Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Allen P. Kaplan
- Division of Pulmonary, Critical Care, Allergy and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Constance H. Katelaris
- Department of Medicine, Campbelltown Hospital and Western Sydney University, Sydney, NSW, Australia
| | | | - Wei-Te Lei
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hilary Longhurst
- Department of Immunology, Auckland District Health Board and Department of Medicine, University of Auckland, Auckland, New Zealand
| | - William Lumry
- Internal Medicine, Allergy Division, University of Texas Health Science Center, Dallas, TX, United States
| | - Andrew MacGinnitie
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alejandro Malbran
- Unidad de Alergia, Asma e Inmunología Clínica, Buenos Aires, Argentina
| | | | | | - Alexander Nast
- Department of Dermatology, Venereology and Allergology, Division of Evidence-Based Medicine Charité–Universitätsmedizin, Berlin, Germany
- Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dinh Nguyen
- Respiratory, Allergy and Clinical Immunology Unit, Internal Medicine Department, Vinmec Healthcare System, College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Grzegorz Porebski
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Nieves Prior
- Allergy, Hospital Universitario Severo Ochoa, Madrid, Spain
| | - Avner Reshef
- Angiedema Center, Barzilai University Medical Center, Ashkelon, Israel
| | - Marc Riedl
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
| | - Bruce Ritchie
- Departments of Medicine and Medical Oncology, University of Alberta, Edmonton, AB, Canada
| | - Farrukh Rafique Sheikh
- Section of Adult Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - William B. Smith
- Clinical Immunology and Allergy, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Peter J. Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Marcin Stobiecki
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Elias Toubi
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Affiliated with Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lilian Agnes Varga
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Karsten Weller
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Andrea Zanichelli
- Department of Internal Medicine, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-University of Milan, Milan, Italy
| | - Yuxiang Zhi
- Department of Allergy and Clinical Immunology, Bejing Union Medical College Hospital, Chinese Academy of Medical Sciences, Bejing, China
| | - Bruce Zuraw
- University of California, San Diego, San Diego, CA, United States
| | - Timothy Craig
- Departments of Medicine and Pediatrics, Penn State University, Hershey, PA, USA
| |
Collapse
|
5
|
Maurer M, Magerl M, Betschel S, Aberer W, Ansotegui IJ, Aygören‐Pürsün E, Banerji A, Bara N, Boccon‐Gibod I, Bork K, Bouillet L, Boysen HB, Brodszki N, Busse PJ, Bygum A, Caballero T, Cancian M, Castaldo A, Cohn DM, Csuka D, Farkas H, Gompels M, Gower R, Grumach AS, Guidos‐Fogelbach G, Hide M, Kang H, Kaplan AP, Katelaris C, Kiani‐Alikhan S, Lei W, Lockey R, Longhurst H, Lumry WB, MacGinnitie A, Malbran A, Martinez Saguer I, Matta JJ, Nast A, Nguyen D, Nieto‐Martinez SA, Pawankar R, Peter J, Porebski G, Prior N, Reshef A, Riedl M, Ritchie B, Rafique Sheikh F, Smith WR, Spaeth PJ, Stobiecki M, Toubi E, Varga LA, Weller K, Zanichelli A, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema-The 2021 revision and update. Allergy 2022; 77:1961-1990. [PMID: 35006617 DOI: 10.1111/all.15214] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Hereditary angioedema (HAE) is a rare and disabling disease for which early diagnosis and effective therapy are critical. This revision and update of the global WAO/EAACI guideline on the diagnosis and management of HAE provides up-to-date guidance for the management of HAE. For this update and revision of the guideline, an international panel of experts reviewed the existing evidence, developed 28 recommendations, and established consensus by an online DELPHI process. The goal of these recommendations and guideline is to help physicians and their patients in making rational decisions in the management of HAE with deficient C1 inhibitor (type 1) and HAE with dysfunctional C1 inhibitor (type 2), by providing guidance on common and important clinical issues, such as: (1) How should HAE be diagnosed? (2) When should HAE patients receive prophylactic on top of on-demand treatment and what treatments should be used? (3) What are the goals of treatment? (4) Should HAE management be different for special HAE patient groups such as children or pregnant/breast-feeding women? and (5) How should HAE patients monitor their disease activity, impact, and control? It is also the intention of this guideline to help establish global standards for the management of HAE and to encourage and facilitate the use of recommended diagnostics and therapies for all patients.
Collapse
Affiliation(s)
- Marcus Maurer
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | - Markus Magerl
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | | | - Werner Aberer
- Department of Dermatology Medical University of Graz Graz Austria
| | | | - Emel Aygören‐Pürsün
- Center for Children and Adolescents University Hospital Frankfurt Frankfurt Germany
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology Massachusetts General Hospital Boston Massachusetts USA
| | - Noémi‐Anna Bara
- Romanian Hereditary Angioedema Expertise CentreMediquest Clinical Research Center Sangeorgiu de Mures Romania
| | - Isabelle Boccon‐Gibod
- National Reference Center for Angioedema (CREAK) Angioedema Center of Reference and Excellence (ACARE) Grenoble Alpes University Hospital Grenoble France
| | - Konrad Bork
- Department of Dermatology University Medical CenterJohannes Gutenberg University Mainz Germany
| | - Laurence Bouillet
- National Reference Center for Angioedema (CREAK) Angioedema Center of Reference and Excellence (ACARE) Grenoble Alpes University Hospital Grenoble France
| | | | - Nicholas Brodszki
- Department of Pediatric Immunology Childrens HospitalSkåne University Hospital Lund Sweden
| | | | - Anette Bygum
- Clinical Institute University of Southern Denmark Odense Denmark
- Department of Clinical Genetics Odense University Hospital Odense Denmark
| | - Teresa Caballero
- Allergy Department Hospital Universitario La PazIdiPaz, CIBERER U754 Madrid Spain
| | - Mauro Cancian
- Department of Systems Medicine University Hospital of Padua Padua Italy
| | | | - Danny M. Cohn
- Department of Vascular Medicine Amsterdam UMC/University of Amsterdam Amsterdam The Netherlands
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Henriette Farkas
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Mark Gompels
- Clinical Immunology North Bristol NHS Trust Bristol UK
| | - Richard Gower
- Marycliff Clinical ResearchPrinciple Research Solutions Spokane Washington USA
| | | | | | - Michihiro Hide
- Department of Dermatology Hiroshima Citizens Hospital Hiroshima Japan
- Department of Dermatology Hiroshima University Hiroshima Japan
| | - Hye‐Ryun Kang
- Department of Internal Medicine Seoul National University College of Medicine Seoul Korea
| | - Allen Phillip Kaplan
- Division of Pulmonary, Critical Care, Allergy and Immunology Medical university of South Carolina Charleston South Carolina USA
| | - Constance Katelaris
- Department of Medicine Campbelltown Hospital and Western Sydney University Sydney NSW Australia
| | | | - Wei‐Te Lei
- Division of Allergy, Immunology, and Rheumatology Department of Pediatrics Mackay Memorial Hospital Hsinchu Taiwan
| | - Richard Lockey
- Division of Allergy and Immunology Department of Internal Medicine Morsani College of MedicineUniversity of South Florida Tampa Florida USA
| | - Hilary Longhurst
- Department of Immunology Auckland District Health Board and Department of MedicineUniversity of Auckland Auckland New Zealand
| | - William B. Lumry
- Internal Medicine Allergy Division University of Texas Health Science Center Dallas Texas USA
| | - Andrew MacGinnitie
- Division of Immunology Department of Pediatrics Boston Children's HospitalHarvard Medical School Boston Massachusetts USA
| | - Alejandro Malbran
- Unidad de Alergia, Asma e Inmunología Clínica Buenos Aires Argentina
| | | | | | - Alexander Nast
- Department of Dermatology, Venereology and Allergology Division of Evidence‐Based Medicine Charité ‐ Universitätsmedizin Berlincorporate member of Free University of BerlinHumboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Dinh Nguyen
- Respiratory, Allergy and Clinical Immunology Unit Internal Medicine Department Vinmec Healthcare System College of Health SciencesVinUniversity Hanoi Vietnam
| | | | - Ruby Pawankar
- Department of Pediatrics Nippon Medical School Tokyo Japan
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology University of Cape Town Cape Town South Africa
- Allergy and Immunology Unit University of Cape Town Lung Institute Cape Town South Africa
| | - Grzegorz Porebski
- Department of Clinical and Environmental Allergology Jagiellonian University Medical College Krakow Poland
| | - Nieves Prior
- Allergy Hospital Universitario Severo Ochoa Madrid Spain
| | - Avner Reshef
- Angioderma CenterBarzilai University Medical Center Ashkelon Israel
| | - Marc Riedl
- Division of Rheumatology, Allergy and Immunology University of California San Diego La Jolla California USA
| | - Bruce Ritchie
- Departments of Medicine and Medical Oncology University of Alberta Edmonton AB Canada
| | - Farrukh Rafique Sheikh
- Section of Adult Allergy & Immunology Department of Medicine King Faisal Specialist Hospital & Research Centre Riyadh Saudi Arabia
| | - William R. Smith
- Clinical Immunology and Allergy Royal Adelaide Hospital Adelaide SA Australia
| | - Peter J. Spaeth
- Institute of PharmacologyUniversity of Bern Bern Switzerland
| | - Marcin Stobiecki
- Department of Clinical and Environmental Allergology Jagiellonian University Medical College Krakow Poland
| | - Elias Toubi
- Division of Allergy and Clinical Immunology Bnai Zion Medical CenterAffiliated with Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | - Lilian Agnes Varga
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Karsten Weller
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | - Andrea Zanichelli
- Department of Internal Medicine ASST Fatebenefratelli Sacco Ospedale Luigi Sacco‐University of Milan Milan Italy
| | - Yuxiang Zhi
- Department of Allergy and Clinical Immunology Bejing Union Medical College Hospital & Chinese Academy of Medical Sciences Bejing China
| | - Bruce Zuraw
- University of California, San Diego San Diego California USA
| | - Timothy Craig
- Departments of Medicine and Pediatrics Penn State University Hershey Pennsylvania USA
| |
Collapse
|
6
|
Maurer M, Magerl M. Differences and Similarities in the Mechanisms and Clinical Expression of Bradykinin-Mediated vs. Mast Cell-Mediated Angioedema. Clin Rev Allergy Immunol 2021; 61:40-49. [PMID: 33534062 PMCID: PMC8282544 DOI: 10.1007/s12016-021-08841-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/22/2022]
Abstract
Angioedema (AE), transient localized swelling due to extravasated fluid, is commonly classified as mast cell mediator-induced, bradykinin-mediated or of unknown cause. AE often occurs more than once, and it is these recurrent forms of AE that are challenging for patients and physicians, and they are the ones we focus on and refer to as AE in this review. Since effective treatment depends on the causative mediator, reliable and early diagnosis is essential. Although their clinical presentations bear similarities, many forms of angioedema exhibit specific patterns of clinical appearance or disease history that may aid in diagnosis. Here, we describe the most common differences and similarities in the mechanisms and clinical features of bradykinin-mediated and mast cell mediator-induced types of angioedema. We first provide an overview of the diseases that manifest with mast cell mediator-induced versus bradykinin-mediated angioedema as well as their respective underlying pathogenesis. We then compare these diseases for key clinical features, including angioedema location, course and duration of swelling, attack frequency, prevalence and relevance of prodromal signs and symptoms, triggers of angioedema attacks, and other signs and symptoms including wheals, age of onset, and duration. Our review and comparison of the clinical profiles of different types of angioedema incorporate our own clinical experience as well as published information. Our aim is to highlight that mast cell mediator-induced and bradykinin-mediated angioedema types share common features but are different in many aspects. Knowledge of the differences in underlying pathomechanisms and clinical profiles between different types of angioedema can help with the diagnostic approach in affected patients and facilitate targeted and effective treatment.
Collapse
Affiliation(s)
- Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Markus Magerl
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Leibovich-Nassi I, Reshef A. The Enigma of Prodromes in Hereditary Angioedema (HAE). Clin Rev Allergy Immunol 2021; 61:15-28. [PMID: 33534063 DOI: 10.1007/s12016-021-08839-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
A prodrome is a premonitory set of signs and symptoms indicating the onset of a disease. Prodromes are frequently reported by hereditary angioedema (HAE) patients, antedating attacks by a few hours or even longer. In some studies, high incidence of prodromes was reported by patients, with considerable number being able to predict oncoming attacks. Regrettably, prodromes have never received a consensual definition and have not been properly investigated in a systematic fashion. Therefore, their nature remains elusive and their contribution to the diagnosis and treatment of disorders is uncertain. The term "prodrome," as used in various pathologies, denotes different meanings, timing, and duration, so it may not be equally suitable for all clinical situations. Perception of a prodrome is unique for each individual patient depending on self-experience. As modern drugs delegate the administration decision to the patients, early detection of a developing attack may help mitigate its severity and allow deployment of appropriate therapy. New diagnostic instruments were recently developed that can assist in defining the attributes of prodromes and their association with attacks. We will review the prodrome phenomenon as exhibited in certain clinical situations, with an emphasis on prodromes of HAE.
Collapse
Affiliation(s)
- Iris Leibovich-Nassi
- Barzilai University Medical Center, Ashkelon, Israel
- Department of Nursing, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avner Reshef
- Barzilai University Medical Center, Ashkelon, Israel.
| |
Collapse
|
8
|
Sensitive mass spectrometric determination of kinin-kallikrein system peptides in light of COVID-19. Sci Rep 2021; 11:3061. [PMID: 33542252 PMCID: PMC7862273 DOI: 10.1038/s41598-021-82191-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/14/2021] [Indexed: 01/28/2023] Open
Abstract
The outbreak of COVID-19 has raised interest in the kinin-kallikrein system. Viral blockade of the angiotensin-converting enzyme 2 impedes degradation of the active kinin des-Arg(9)-bradykinin, which thus increasingly activates bradykinin receptors known to promote inflammation, cough, and edema-symptoms that are commonly observed in COVID-19. However, lean and reliable investigation of the postulated alterations is currently hindered by non-specific peptide adsorption, lacking sensitivity, and cross-reactivity of applicable assays. Here, an LC-MS/MS method was established to determine the following kinins in respiratory lavage fluids: kallidin, bradykinin, des-Arg(10)-kallidin, des-Arg(9)-bradykinin, bradykinin 1-7, bradykinin 2-9 and bradykinin 1-5. This method was fully validated according to regulatory bioanalytical guidelines of the European Medicine Agency and the US Food and Drug Administration and has a broad calibration curve range (up to a factor of 103), encompassing low quantification limits of 4.4-22.8 pg/mL (depending on the individual kinin). The application of the developed LC-MS/MS method to nasal lavage fluid allowed for the rapid (~ 2 h), comprehensive and low-volume (100 µL) determination of kinins. Hence, this novel assay may support current efforts to investigate the pathophysiology of COVID-19, but can also be extended to other diseases.
Collapse
|
9
|
Wu MA, Bova M, Berra S, Senter R, Parolin D, Caccia S, Cicardi M. The central role of endothelium in hereditary angioedema due to C1 inhibitor deficiency. Int Immunopharmacol 2020; 82:106304. [PMID: 32114411 DOI: 10.1016/j.intimp.2020.106304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
Abstract
An impairment of the endothelial barrier function underlies a wide spectrum of pathological conditions. Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) can be considered the "pathophysiological and clinical paradigm" of Paroxysmal Permeability Diseases (PPDs), conditions characterized by recurrent transient primitively functional alteration of the endothelial sieving properties, not due to inflammatory-ischemic-degenerative injury and completely reversible after the acute flare. It is a rare yet probably still underdiagnosed disease which presents with localized, non-pitting swelling of the skin and submucosal tissues of the upper respiratory and gastrointestinal tracts, without significant wheals or pruritus. The present review addresses the pathophysiology of C1-INH-HAE with a focus on the crucial role of the endothelium during contact and kallikrein/kinin system (CAS and KKS) activation, currently available and emerging biomarkers, methods applied to get new insights into the mechanisms underlying the disease (2D, 3D and in vivo systems), new promising investigation techniques (autonomic nervous system analysis, capillaroscopy, flow-mediated dilation method, non-invasive finger plethysmography). Hints are given to the binding of C1-INH to endothelial cells. Finally, crucial issues as the local vs systemic nature of CAS/KKS activation, the episodic nature of attacks vs constant C1-INH deficiency, pros and cons as well as future perspectives of available methodologies are briefly discussed.
Collapse
Affiliation(s)
- Maddalena Alessandra Wu
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy.
| | - Maria Bova
- Department of Translational Medical Sciences and Interdepartmental Center for Research in Basic and Clinical Immunology Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Berra
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | | | - Debora Parolin
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Marco Cicardi
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy; IRCCS-ICS Maugeri, Milan, Italy
| |
Collapse
|
10
|
Marcelino-Rodriguez I, Callero A, Mendoza-Alvarez A, Perez-Rodriguez E, Barrios-Recio J, Garcia-Robaina JC, Flores C. Bradykinin-Mediated Angioedema: An Update of the Genetic Causes and the Impact of Genomics. Front Genet 2019; 10:900. [PMID: 31611908 PMCID: PMC6776636 DOI: 10.3389/fgene.2019.00900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022] Open
Abstract
Recurrent episodes of bradykinin-mediated angioedema (Bk-AE) can associate with acquired or hereditary conditions, the former most commonly developing secondarily to a pharmacological treatment. Despite successful genomic advances that have led to the identification of a large number of disease genes irrespective of disease prevalence, their application to Bk-AE has barely occurred. As a consequence, the genetic causes of Bk-AE remain poorly understood, obstructing the identification of patient subtypes and the development of precision medicine strategies. This review provides an update of the genetic studies completed to date on the acquired forms, which have almost exclusively focused on Bk-AE secondarily to the angiotensin-converting enzyme inhibitor treatment, and the blooming subdivision of the hereditary forms established by the identification of novel causal genes with next-generation sequencing (NGS) technology-based exome studies in genetically undiagnosed patients. Finally, based on the diverse benefits that are offered by the technology, we present arguments favoring the use of holistic NGS approaches as first-tier genetic tests as a promise to reduce the diagnostic odyssey of patients with suspected hereditary forms of Bk-AE.
Collapse
Affiliation(s)
- Itahisa Marcelino-Rodriguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ariel Callero
- Allergy Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandro Mendoza-Alvarez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Eva Perez-Rodriguez
- Allergy Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Javier Barrios-Recio
- Allergy Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose C. Garcia-Robaina
- Allergy Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Instituto Tecnológico y de Energías Renovables (ITER), Genomics Division, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
11
|
Maurer M, Magerl M, Ansotegui I, Aygören-Pürsün E, Betschel S, Bork K, Bowen T, Balle Boysen H, Farkas H, Grumach AS, Hide M, Katelaris C, Lockey R, Longhurst H, Lumry WR, Martinez-Saguer I, Moldovan D, Nast A, Pawankar R, Potter P, Riedl M, Ritchie B, Rosenwasser L, Sánchez-Borges M, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema-The 2017 revision and update. Allergy 2018; 73:1575-1596. [PMID: 29318628 DOI: 10.1111/all.13384] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 12/25/2022]
Abstract
Hereditary Angioedema (HAE) is a rare and disabling disease. Early diagnosis and appropriate therapy are essential. This update and revision of the global guideline for HAE provides up-to-date consensus recommendations for the management of HAE. In the development of this update and revision of the guideline, an international expert panel reviewed the existing evidence and developed 20 recommendations that were discussed, finalized and consented during the guideline consensus conference in June 2016 in Vienna. The final version of this update and revision of the guideline incorporates the contributions of a board of expert reviewers and the endorsing societies. The goal of this guideline update and revision is to provide clinicians and their patients with guidance that will assist them in making rational decisions in the management of HAE with deficient C1-inhibitor (type 1) and HAE with dysfunctional C1-inhibitor (type 2). The key clinical questions covered by these recommendations are: (1) How should HAE-1/2 be defined and classified?, (2) How should HAE-1/2 be diagnosed?, (3) Should HAE-1/2 patients receive prophylactic and/or on-demand treatment and what treatment options should be used?, (4) Should HAE-1/2 management be different for special HAE-1/2 patient groups such as pregnant/lactating women or children?, and (5) Should HAE-1/2 management incorporate self-administration of therapies and patient support measures?
Collapse
Affiliation(s)
- M. Maurer
- Department of Dermatology and Allergy; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - M. Magerl
- Department of Dermatology and Allergy; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - I. Ansotegui
- Department of Allergy and Immunology; Hospital Quironsalud Bizkaia; Bilbao Spain
| | - E. Aygören-Pürsün
- Center for Children and Adolescents; University Hospital Frankfurt; Frankfurt Germany
| | - S. Betschel
- Division of Clinical Immunology and Allergy; St. Michael's Hospital; University of Toronto; Toronto ON Canada
| | - K. Bork
- Department of Dermatology; Johannes Gutenberg University Mainz; Mainz Germany
| | - T. Bowen
- Department of Medicine and Pediatrics; University of Calgary; Calgary AB Canada
| | | | - H. Farkas
- Hungarian Angioedema Center; 3rd Department of Internal Medicine; Semmelweis University; Budapest Hungary
| | - A. S. Grumach
- Clinical Immunology; Faculdade de Medicina ABC; São Paulo Brazil
| | - M. Hide
- Department of Dermatology; Hiroshima University; Hiroshima Japan
| | - C. Katelaris
- Department of Medicine; Campbelltown Hospital and Western Sydney University; Sydney NSW Australia
| | - R. Lockey
- Department of Internal Medicine; University of South Florida Morsani College of Medicine; Tampa FL USA
| | - H. Longhurst
- Department of Clinical Biochemistry and Immunology; Addenbrooke's Hospital; Cambridge University Hospitals NHS Foundation Trust; UK
| | - W. R. Lumry
- Department of Internal Medicine; Allergy/Immunology Division; Southwestern Medical School; University of Texas; Dallas TX USA
| | | | - D. Moldovan
- University of Medicine and Pharmacy; Tîrgu Mures Romania
| | - A. Nast
- Berlin Institute of Health; Department of Dermatology, Venereology und Allergy; Division of Evidence based Medicine (dEBM); Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - R. Pawankar
- Department of Pediatrics; Nippon Medical School; Tokyo Japan
| | - P. Potter
- Department of Medicine; University of Cape Town; Cape Town South Africa
| | - M. Riedl
- Department of Medicine; University of California-San Diego; La Jolla CA USA
| | - B. Ritchie
- Division of Hematology; University of Alberta; Edmonton AB Canada
| | - L. Rosenwasser
- Allergy and Immunology Department; University of Missouri at Kansas City School of Medicine; Kansas City MO USA
| | - M. Sánchez-Borges
- Allergy and Clinical Immunology Department; Centro Medico Docente La Trinidad; Caracas Venezuela
| | - Y. Zhi
- Department of Allergy; Peking Union Medical College Hospital and Chinese Academy of Medical Sciences; Beijing China
| | - B. Zuraw
- Department of Medicine; University of California-San Diego; La Jolla CA USA
- San Diego VA Healthcare; San Diego CA USA
| | - T. Craig
- Department of Medicine and Pediatrics; Penn State University; Hershey PA USA
| |
Collapse
|
12
|
Aygören-Pürsün E, Magerl M, Maetzel A, Maurer M. Epidemiology of Bradykinin-mediated angioedema: a systematic investigation of epidemiological studies. Orphanet J Rare Dis 2018; 13:73. [PMID: 29728119 PMCID: PMC5935942 DOI: 10.1186/s13023-018-0815-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
Background Bradykinin-mediated angioedema (Bk-AE) can be life-threatening and requires specific targeted therapies. Knowledge of its epidemiology may help optimize its management. Methods We systematically searched the medical literature to identify abstracts of interest indexed between 1948 and March, 2016. We used published national survey data on the proportion of the population treated with angiotensin-converting enzyme inhibitors (ACEI) to derive estimates of the population prevalence of ACEI-AE in the USA, Germany and France. For hereditary angioedema (C1-INH-HAE) and C1-inhibitor related acquired angioedema (C1-INH-AAE), publications had to contain original epidemiologic data collection within a defined geographical area. Hereditary angioedema with normal C1-INH was not included in the analysis due to lack of clearly defined criteria. Results We identified 4 relevant publications on the prevalence of ACEI-AE, 6 on the prevalence of C1-INH-HAE, and 1 on the prevalence of C1-INH-AAE. The 1st year cumulative incidence of ACEI-AE was estimated to vary between 0.12 (population-based analyses) and 0.30 (meta-analyses of clinical trials) per 100 patient-years. The population prevalence of ACEI-AE was modeled to vary between 7 and 26 in 100,000. The prevalence of C1-INH-HAE was estimated to vary between 1.1 and 1.6 per 100,000. The prevalence of C1-INH-AAE was estimated to be 0.15 per 100,000 in one epidemiological investigation of AAE in Denmark. Conclusions Epidemiological evidence on Bk-AE is limited to North America and Europe. ACEI-AE is more common than C1-INH-HAE (~ 10:1), which is more common than C1-INH-AAE (~ 10:1). More studies are needed to comprehensively assess the epidemiological burden of Bk-AE.
Collapse
Affiliation(s)
- Emel Aygören-Pürsün
- Department for Children and Adolescents, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany.
| | - Markus Magerl
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Maetzel
- Institute of Health Policy, Management & Evaluation, University of Toronto, Toronto, ON, Canada.,Kalvista Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Maurer M, Magerl M, Ansotegui I, Aygören-Pürsün E, Betschel S, Bork K, Bowen T, Boysen HB, Farkas H, Grumach AS, Hide M, Katelaris C, Lockey R, Longhurst H, Lumry WR, Martinez-Saguer I, Moldovan D, Nast A, Pawankar R, Potter P, Riedl M, Ritchie B, Rosenwasser L, Sánchez-Borges M, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema – the 2017 revision and update. World Allergy Organ J 2018. [DOI: 10.1186/s40413-017-0180-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Wu MA, Zanichelli A, Mansi M, Cicardi M. Current treatment options for hereditary angioedema due to C1 inhibitor deficiency. Expert Opin Pharmacother 2015; 17:27-40. [DOI: 10.1517/14656566.2016.1104300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Church MK, Maurer M. H1-Antihistamines and itch in atopic dermatitis. Exp Dermatol 2015; 24:332-3. [DOI: 10.1111/exd.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Martin K Church
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|