1
|
Gong B, Guo D, Zheng C, Ma Z, Zhang J, Qu Y, Li X, Li G, Zhang L, Wang Y. Complement C3a activates astrocytes to promote medulloblastoma progression through TNF-α. J Neuroinflammation 2022; 19:159. [PMID: 35725556 PMCID: PMC9208237 DOI: 10.1186/s12974-022-02516-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant brain tumor in children. Approximately one-third of MB patients remain incurable. Understanding the molecular mechanism of MB tumorigenesis is, therefore, critical for developing specific and effective treatment strategies. Our previous work demonstrated that astrocytes constitute the tumor microenvironment (TME) of MB and play an indispensable role in MB progression. However, the underlying mechanisms by which astrocytes are regulated and activated to promote MB remain elusive. Methods By taking advantage of Math1-Cre/Ptch1loxp/loxp mice, which spontaneously develop MB, primary MB cells and astrocytes were isolated and then subjected to administration and coculture in vitro. Immunohistochemistry was utilized to determine the presence of C3a in MB sections. MB cell proliferation was evaluated by immunofluorescent staining. GFAP and cytokine expression levels in C3a-stimulated astrocytes were assessed by immunofluorescent staining, western blotting, q-PCR and ELISA. C3a receptor and TNF-α receptor expression was determined by PCR and immunofluorescent staining. p38 MAPK pathway activation was detected by western blotting. Transplanted MB mice were treated with a C3a receptor antagonist or TNF-α receptor antagonist to investigate their role in MB progression in vivo. Results We found that complement C3a, a fragment released from intact complement C3 following complement activation, was enriched in both human and murine MB tumor tissue, and its receptor was highly expressed on tumor-associated astrocytes (TAAs). We demonstrated that C3a activated astrocytes and promoted MB cell proliferation via the p38 MAPK pathway. Moreover, we discovered that C3a upregulated the production of proinflammatory cytokines, such as IL-6 and TNF-α in astrocytes. Application of the conditioned medium of C3a-stimulated astrocytes promoted MB cell proliferation, which was abolished by preincubation with a TNF-α receptor antagonist, indicating a TNF-α-dependent event. Indeed, we further demonstrated that administration of a selective C3a receptor or TNF-α receptor antagonist to mice subcutaneously transplanted with MB suppressed tumor progression in vivo. Conclusions C3a was released during MB development. C3a triggered astrocyte activation and TNF-α production via the p38 pathway, which promoted MB cell proliferation. Our findings revealed the novel role of C3a-mediated TNF-α production by astrocytes in MB progression. These findings imply that targeting C3a and TNF-α may represent a potential novel therapeutic approach for human MB. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02516-9.
Collapse
Affiliation(s)
- Biao Gong
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Duancheng Guo
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhen Ma
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yanghui Qu
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinhua Li
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Gen Li
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Tissue necrosis and its role in cancer progression. Oncogene 2018; 38:1920-1935. [PMID: 30390074 DOI: 10.1038/s41388-018-0555-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/31/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Abstract
Great efforts have been made in revealing the mechanisms governing cancer resistance and recurrence. The in-situ effects of cell death, caused by hypoxia and metabolic stress, were largely studied in association with inflammation. However, in this work, we focused on the direct effects of necrosis on cancer promotion and on the tumor microenvironment. The conditions leading to cell necrosis, upon nutrient and oxygen deprivation, were recapitulated in-vitro and were used to generate samples for computational proteomic analysis. Under these conditions, we identified clusters of enriched pathways that may be involved in tumor resistance, leading to cancer recurrence. We show that the content of necrotic cells enhances angiogenesis and proliferation of endothelial cells, induces vasculature, as well as increases migration, invasion, and cell-cell interactions. In-vivo studies, where MDA-MB-231 xenografts were exposed to necrotic lysates, resulted in an increase in both proliferation and angiogenesis. Histological analysis of tumor tissues revealed high expression levels of key mediators that were identified by proteomic analysis. Moreover, when cells were injected systemically, coupled with necrotic lysates, a higher number of large lesions was detected in the lung. Finally, using xenografts, we demonstrated that combining an antagonist of a necrotic signal with an anticancer treatment potentiates the prolonged therapeutic effect. This approach suggests a paradigm shift in which targeting late necrotic-secreted factors may increase survival and enhance the efficacy of anticancer therapy.
Collapse
|
3
|
Liu K, Lu X, Zhu Y, Yip S, Poh C. Altered Immune-Related Gene Expressions Indicate Oral Cancer Nodal Disease. J Dent Res 2018; 97:709-716. [DOI: 10.1177/0022034518758045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lymph nodal disease (LN+) is the most significant prognostic factor of oral squamous cell carcinoma (OSCC). Current risk indicator(s) for guiding elective neck dissection (END) is insufficient for clinically node-negative (cN0) patients, resulting in under- or overtreatment. While the role of immunological events in tumorigenesis and metastasis is evident, the prognostic implication in OSCC remains unclear. The study objective was to investigate large-scale immune-related gene expression and determine its prognostic value on node-free survival (NFS). We analyzed patients who received intent-to-cure surgery with at least 3 y of follow-up and known outcome of LN through a pan-Canadian surgical trial. Total RNA was extracted from surgical tissues with >70% tumor content and analyzed on a 730-gene panel (NanoString nCounter® PanCancer Immune Panel). We first profiled gene expression in a fresh-frozen (FF) discovery set to identify differentially expressed (DE) genes, which were then used in unsupervised clustering analysis to identify patient subgroups. The prognostic value of the identified DE genes was then validated on formalin-fixed, paraffin-embedded (FFPE) samples. A total of 177 RNA samples were derived from 89 FF and 88 FFPE surgical tissues, of which 45 (51%) and 40 (45%), respectively, were from patients who developed LN+. We identified 6 DE genes overexpressed in LN+ tumors (false discovery rate <0.001; log2 fold change >1). Clustering analysis separated the patients into 2 subgroups (CM1, CM2), with CM2 exhibiting significantly increased expression and worse 5-y NFS rate (28%; P < 0.001). The prognostic value of these 6 candidate genes was validated on FFPE samples, which were also separated into 2 distinct prognostic groups, confirming the association between increased gene expression and poor 5-y NFS (CM1, 70.3%; CM2, 43.3%; P = 0.01). This is the first study identifying a panel of immune-related genes associated with NFS that can potentially be used clinically stratifying the risk of LN+ at the time of OSCC diagnosis.
Collapse
Affiliation(s)
- K.Y.P. Liu
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Cancer Agency/Research Centre, Vancouver, BC, Canada
| | - X.J.D. Lu
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Cancer Agency/Research Centre, Vancouver, BC, Canada
| | - Y. Zhu
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - S. Yip
- British Columbia Cancer Agency/Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C.F. Poh
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Cancer Agency/Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Morais RDVS, Crespo D, Nóbrega RH, Lemos MS, van de Kant HJG, de França LR, Male R, Bogerd J, Schulz RW. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol Cell Endocrinol 2017. [PMID: 28645700 DOI: 10.1016/j.mce.2017.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fsh-mediated regulation of zebrafish spermatogenesis includes modulating the expression of testicular growth factors. Here, we study if and how two Sertoli cell-derived Fsh-responsive growth factors, anti-Müllerian hormone (Amh; inhibiting steroidogenesis and germ cell differentiation) and insulin-like growth factor 3 (Igf3; stimulating germ cell differentiation), cooperate in regulating spermatogonial development. In dose response and time course experiments with primary testis tissue cultures, Fsh up-regulated igf3 transcript levels and down-regulated amh transcript levels; igf3 transcript levels were more rapidly up-regulated and responded to lower Fsh concentrations than were required to decrease amh mRNA levels. Quantification of immunoreactive Amh and Igf3 on testis sections showed that Fsh increased slightly Igf3 staining but decreased clearly Amh staining. Studying the direct interaction of the two growth factors showed that Amh compromised Igf3-stimulated proliferation of type A (both undifferentiated [Aund] and differentiating [Adiff]) spermatogonia. Also the proliferation of those Sertoli cells associated with Aund spermatogonia was reduced by Amh. To gain more insight into how Amh inhibits germ cell development, we examined Amh-induced changes in testicular gene expression by RNA sequencing. The majority (69%) of the differentially expressed genes was down-regulated by Amh, including several stimulators of spermatogenesis, such as igf3 and steroidogenesis-related genes. At the same time, Amh increased the expression of inhibitory signals, such as inha and id3, or facilitated prostaglandin E2 (PGE2) signaling. Evaluating one of the potentially inhibitory signals, we indeed found in tissue culture experiments that PGE2 promoted the accumulation of Aund at the expense of Adiff and B spermatogonia. Our data suggest that an important aspect of Fsh bioactivity in stimulating spermatogenesis is implemented by restricting the different inhibitory effects of Amh and by counterbalancing them with stimulatory signals, such as Igf3.
Collapse
Affiliation(s)
- R D V S Morais
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - D Crespo
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R H Nóbrega
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil
| | - M S Lemos
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - H J G van de Kant
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - L R de França
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; National Institute of Amazonian Research (L.R.F.), Manaus, Brazil
| | - R Male
- Department of Molecular Biology (R.M.), University of Bergen, 5020 Bergen, Norway
| | - J Bogerd
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - R W Schulz
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Research Group Reproduction and Developmental Biology (R.W.S.), Institute of Marine Research, 5817 Bergen, Norway.
| |
Collapse
|
5
|
Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 2016; 26:304-19. [PMID: 26902283 PMCID: PMC4783472 DOI: 10.1038/cr.2016.23] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells.
Collapse
|