1
|
Seegobin M, Logan SR, Emery RJN, Brunetti CR. Cytokinins Reduce Viral Replication and Alter Plaque Morphology of Frog Virus 3 In Vitro. Viruses 2024; 16:826. [PMID: 38932119 PMCID: PMC11209418 DOI: 10.3390/v16060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic effects in exogenous applications. In this study, we evaluated the virostatic potential of four types of CKs including, N6-isopentenyladenine (iP), N6-isopentenyladenosine (iPR), N6-isopentenyladenosine-5'monophosphate (iPMP), and 2-methylthiol-N6-isopentenyladenosine (2MeSiPR) against the ranavirus type species, frog virus 3 (FV3). Following concurrent treatment and infection, iP and iPR reduced viral replication by 33.8% and 59.6%, respectively, in plaque formation assays. A decrease in viral replication was also observed when CK exposure was limited to 12 h prior to infection, where iP and iPR reduced viral replication by 31% and 23.75%, respectively. Treatment with iP and iPR was also marked by 48% and 60% decreases in viral load over 72 h, respectively, as measured in single step growth curves. Plaque morphology was altered in vitro, as iP and iPR treatment increased plaque area by 83% and 112% with lytic zone formation also becoming more prevalent in corresponding treatments. Treatment with iPMP and 2MeSiPR resulted in no effect on viral kinetics in vitro. The results of this study are the first to provide evidence of CK antiviral activity against a DNA virus and highlight the importance of their structure for therapeutic investigations.
Collapse
Affiliation(s)
| | | | | | - Craig R. Brunetti
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 0G2, Canada; (M.S.); (S.R.L.); (R.J.N.E.)
| |
Collapse
|
2
|
Trivedi TS, Patel MP, Nanavaty V, Mankad AU, Rawal RM, Patel SK. MicroRNAs from Holarrhena pubescens stems: Identification by small RNA Sequencing and their Potential Contribution to Human Gene Targets. Funct Integr Genomics 2023; 23:149. [PMID: 37148427 DOI: 10.1007/s10142-023-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulikkumar P Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, 380006, Gujarat, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
3
|
Menarim BC, El-Sheikh Ali H, Loux SC, Scoggin KE, Kalbfleisch TS, MacLeod JN, Dahlgren LA. Transcriptional and Histochemical Signatures of Bone Marrow Mononuclear Cell-Mediated Resolution of Synovitis. Front Immunol 2021; 12:734322. [PMID: 34956173 PMCID: PMC8692379 DOI: 10.3389/fimmu.2021.734322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) may result from impaired ability of synovial macrophages to resolve joint inflammation. Increasing macrophage counts in inflamed joints through injection with bone marrow mononuclear cells (BMNC) induces lasting resolution of synovial inflammation. To uncover mechanisms by which BMNC may affect resolution, in this study, differential transcriptional signatures of BMNC in response to normal (SF) and inflamed synovial fluid (ISF) were analyzed. We demonstrate the temporal behavior of co-expressed gene networks associated with traits from related in vivo and in vitro studies. We also identified activated and inhibited signaling pathways and upstream regulators, further determining their protein expression in the synovium of inflamed joints treated with BMNC or DPBS controls. BMNC responded to ISF with an early pro-inflammatory response characterized by a short spike in the expression of a NF-ƙB- and mitogen-related gene network. This response was associated with sustained increased expression of two gene networks comprising known drivers of resolution (IL-10, IGF-1, PPARG, isoprenoid biosynthesis). These networks were common to SF and ISF, but more highly expressed in ISF. Most highly activated pathways in ISF included the mevalonate pathway and PPAR-γ signaling, with pro-resolving functional annotations that improve mitochondrial metabolism and deactivate NF-ƙB signaling. Lower expression of mevalonate kinase and phospho-PPARγ in synovium from inflamed joints treated with BMNC, and equivalent IL-1β staining between BMNC- and DPBS-treated joints, associates with accomplished resolution in BMNC-treated joints and emphasize the intricate balance of pro- and anti-inflammatory mechanisms required for resolution. Combined, our data suggest that BMNC-mediated resolution is characterized by constitutively expressed homeostatic mechanisms, whose expression are enhanced following inflammatory stimulus. These mechanisms translate into macrophage proliferation optimizing their capacity to counteract inflammatory damage and improving their general and mitochondrial metabolism to endure oxidative stress while driving tissue repair. Such effect is largely achieved through the synthesis of several lipids that mediate recovery of homeostasis. Our study reveals candidate mechanisms by which BMNC provide lasting improvement in patients with OA and suggests further investigation on the effects of PPAR-γ signaling enhancement for the treatment of arthritic conditions.
Collapse
Affiliation(s)
- Bruno C Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Theodore S Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Sciences, College of Agricultural, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Lin Y, Zhang M, Lin T, Wang L, Wang G, Chen T, Su S. Royal jelly from different floral sources possesses distinct wound-healing mechanisms and ingredient profiles. Food Funct 2021; 12:12059-12076. [PMID: 34783324 DOI: 10.1039/d1fo00586c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, population aging together with the increased prevalence of diabetes and obesity has fuelled a surge in the instances of cutaneous non-healing wounds. Royal jelly (RJ) is a traditional remedy for wound repair; however, the subjacent mechanisms and ingredient profiles are still largely unknown. Our previous study found that Castanea mollissima Bl. RJ (CmRJ-Zj) possessed superior wound healing-promoting effects on both the in vivo and in vitro models than Brassica napus L. RJ (BnRJ-Zj). This study conducted an in-depth investigation on the wound-repairing mechanisms of CmRJ-Zj and BnRJ-Zj to explain the previously observed phenomenon and also comprehensively characterized their constituents. It was found that chestnut RJ could enhance cutaneous wound healing by boosting the growth and mobility of keratinocytes, modulating the expression of aquaporin 3 (AQP3), regulating MAPK and calcium pathways, and mediating inflammatory responses. By employing LC-MS/MS-based proteomic and metabolomic techniques, the comprehensive molecules present in CmRJ-Zj and BnRJ-Zj were elucidated, resulting in a clear discrimination from each other. A total of 15 and 631 differential proteins and compounds were identified, and 217 proteins were newly found in RJ proteome. With bioinformatic functional analysis, we speculated that some differential components were responsible for the wound-healing properties of CmRJ-Zj. Therefore, this study provides an insight into the wound-healing mechanisms of RJ and is the first to explore the compositions of RJ from different nectar plants. It will facilitate the development of therapeutic agents from RJ to treat difficult-to-heal wounds and the distinction of different RJ categories.
Collapse
Affiliation(s)
- Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Meng Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China. .,Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Luying Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guanggao Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China. .,Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Vinod Prabhu V, Elangovan P, Niranjali Devaraj S, Sakthivel KM. Targeting NF-κB mediated cell signaling pathway and inflammatory mediators by 1,2-diazole in A549 cells in vitro. ACTA ACUST UNITED AC 2021; 29:e00594. [PMID: 33598414 PMCID: PMC7868824 DOI: 10.1016/j.btre.2021.e00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
1,2-Diazole suppresses TNF-α induced MMP-2 expression. 1,2-Diazole abrogate NF-κB activation and regulate cytokines. It exhibits potent in vitro anticancer effect against A549 cells.
Lung cancer is the leading cause of cancer deaths globally. The objective of this study was to investigate the effect of 1,2-diazole (pyrazole) as an anti-cancer drug on human non-small cell lung carcinoma A549 cells. We attempt to examine the expression level of pro-inflammatory proteins such as TNF-α, NF-κB-p65, MMP-2 and E-Cadherin which are commonly associated with an inflammatory response in epithelial cells and apoptosis in A549 cells. The LPS-induced cytokines and inflammatory mediators include TNF-α, IL-6, iNOS and COX-2 levels in A549 cells and the effect of pyrazole was studied. The present study reveals that, pyrazole inhibits A549 cells by suppressing TNF-α induced MMP-2 expression, thereby inhibiting the nuclear translocation of NF-κB-p65. Pyrazole significantly up-regulate the E-cadherin level and down-regulated MMP-2 expression that could probably preventing A549 cancer cells to invade. The study further substantiated the anti-cancer property of pyrazole by regulating the above mentioned level of LPS-induced cytokines and inflammatory mediators. The observations of the present study open a possibility for the development of an effective therapeutic agent that targets inflammatory and signaling pathway mediators to challenge human non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Venugopal Vinod Prabhu
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
- Corresponding author.
| | - Perumal Elangovan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | | | | |
Collapse
|
6
|
Gbian DL, Omri A. Current and novel therapeutic strategies for the management of cystic fibrosis. Expert Opin Drug Deliv 2021; 18:535-552. [PMID: 33426936 DOI: 10.1080/17425247.2021.1874343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cystic fibrosis (CF), is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and affects thousands of people throughout the world. Lung disease is the leading cause of death in CF patients. Despite the advances in treatments, the management of CF mainly targets symptoms. Recent CFTR modulators however target common mutations in patients, alleviating symptoms of CF. Unfortunately, there is still no approved treatments for patients with rare mutations to date.Areas covered: This paper reviews current treatments of CF that mitigate symptoms and target genetic defects. The use of gene and drug delivery systems such as viral or non-viral vectors and nano-compounds to enhance CFTR expression and the activity of antimicrobials against chronic pulmonary infections respectively, will also be discussed.Expert opinion: Nano-compounds tackle biological barriers to drug delivery and revitalize antimicrobials, anti-inflammatory drugs and even genes delivery to CF patients. Gene therapy and gene editing are of particular interest because they have the potential to directly target genetic defects. Nanoparticles should be formulated to more specifically target epithelial cells, and biofilms. Finally, the development of more potent gene vectors to increase the duration of gene expression and reduce inflammation is a promising strategy to eventually cure CF.
Collapse
Affiliation(s)
- Douweh Leyla Gbian
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
7
|
Di Pietro P, D'Auria R, Viggiano A, Ciaglia E, Meccariello R, Russo RD, Puca AA, Vecchione C, Nori SL, Santoro A. Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. CHEMOSPHERE 2020; 254:126819. [PMID: 32334263 DOI: 10.1016/j.chemosphere.2020.126819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a synthetic xenoestrogen diffused worldwide. Humans are chronically exposed to low doses of BPA from food and drinks, thus BPA accumulates in tissues posing human health risk. In this study, we investigated the effects of BPA on peripheral blood mononuclear cells (PBMC) from human healthy donors, and in glia and microglia of rat offspring at postnatal day 17 (17PND) from pregnant females who received BPA soon after coupling and during lactation and weaning. Results indicated that BPA affected Phytoemagglutinin (PHA) stimulated PBMC proliferation causing an S-phase cell cycle accumulation at nanomolar concentrations while BPA was almost ineffective in resting PBMC. Furthermore, BPA induced chromosome aberrations and the appearance of shattered cells characterized by high number of fragmented and pulverized chromosomes, suggesting that the compound could cause a massive genomic rearrangement by inducing catastrophic events. The BPA-induced DNA damage was observed mainly in TCD4+ and TCD8+ subsets of T lymphocytes and was mediated by the increase of ERK1/2 phosphorylation, p21/Waf1 and PARP1 protein expression. Intriguingly, we observed for the first time that BPA-induced effects were associated to a sex specific modulation of ERα and ERβ in human PBMC. Immunofluorescence analysis of rat hippocampus corroborated in vitro findings showing that BPA induced ɣH2AX phosphorylation in microglia and astrocytosis by decreasing ERα expression within the dentate gyrus. Overall these results suggest that BPA can alter immune surveillance functions at both peripheral and central level with a potential risk for cancer, neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Raffaella D'Auria
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, 80133, Naples, Italy
| | - Rossana Dello Russo
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy; Cardiovascular Research Unit, IRCCS MultiMedica, 20138, Milan, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy; IRCCS Neuromed, Department of Vascular Physiopathology, 86077, Pozzilli, IS, Italy
| | | | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy.
| |
Collapse
|
8
|
Dabravolski S. Multi-faceted nature of the tRNA isopentenyltransferase. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:475-485. [PMID: 32345433 DOI: 10.1071/fp19255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/26/2019] [Indexed: 06/11/2023]
Abstract
Transfer RNA isopentenylation an adenine 37 position (A37) is a universal modification known in prokaryotes and eukaryotes. A set of highly homologous enzymes catalyse a series of reactions, leading to tRNA modifications, aimed to increase adaptation to environmental condition through the control of translation efficiency and reading frame maintenance. Transfer RNA-isopentenylation-related (TI-related) functions are well studied in bacteria, mitochondria of yeast and human, but completely unexplored in plants. Transfer RNA-isopentenylation-unrelated (TI-unrelated) functions participate in adaptation to environmental stresses via the regulation of sterol metabolism, gene silencing/suppression and amyloid fibrils formation. TI-unrelated functions are mostly studied in yeast. Finally, the degradation of A37-modified tRNA releases a set of bioactive compounds known as cis-cytokinins. Although all organisms are able to produce cis-cytokinins, its physiological role is still a matter of debates. For several species of bacteria and fungi, cis-cytokinins are known to play a crucial role in pathogenesis. In mammalian and human models cis-cytokinins have tumour-suppressing and anti-inflammation effects. This review aims to summarise current knowledge of the TI-related and TI-unrelated functions and main bioactive by-products of isopentenylated tRNA degradation.
Collapse
Affiliation(s)
- Siarhei Dabravolski
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelu 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
9
|
Grimaldi M, Randino R, Ciaglia E, Scrima M, Buonocore M, Stillitano I, Abate M, Covelli V, Tosco A, Gazzerro P, Bifulco M, Rodriquez M, D'Ursi AM. NMR for screening and a biochemical assay: Identification of new FPPS inhibitors exerting anticancer activity. Bioorg Chem 2019; 98:103449. [PMID: 32057422 DOI: 10.1016/j.bioorg.2019.103449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023]
Abstract
Farnesyl pyrophosphate synthase (FPPS) is a crucial enzyme for the synthesis of isoprenoids and the key target of nitrogen-containing bisphosphonates (N-BPs). N-BPs are potent and selective FPPS inhibitors that are used in the treatment of bone-related diseases, but have poor pharmacokinetic properties. Given the key role played by FPPS in many cancer-related pathways and the pharmacokinetic limits of N-BPs, hundreds of molecules have been screened to identify new FPPS inhibitors characterized by improved drug-like properties that are useful for broader therapeutic applications in solid, non-skeletal tumours. We have previously shown that N6-isopentenyladenosine (i6A) and its related compound N6-benzyladenosine (2) exert anti-glioma activity by interfering with the mevalonate pathway and inhibiting FPPS. Here, we report the design and synthesis of a panel of N6-benzyladenosine derivatives (compounds 2a-m) incorporating different chemical moieties on the benzyl ring. Compounds 2a-m show in vitro antiproliferative activity in U87MG glioma cells and, analogous to the bisphosphonate FPPS inhibitors, exhibit immunogenic properties in ex vivo γδ T cells from stimulated peripheral blood mononuclear cells (PBMCs). Using saturation transfer difference (STD) and quantitative 1H nuclear magnetic resonance (NMR) experiments, we found that 2f, the N6-benzyladenosine analogue that includes a tertbutyl moiety in the para position of the benzyl ring, is endowed with increased FPPS binding and inhibition compared to the parent compounds i6A and 2. N6-benzyladenosine derivatives, characterized by structural features that are significantly different from those of N-BPs, have been confirmed to be promising chemical scaffolds for the development of non N-BP FPPS inhibitors, exerting combined cytotoxic and immunostimulatory activities.
Collapse
Affiliation(s)
- Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125 Naples, Italy
| | - Rosario Randino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Mario Scrima
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ilaria Stillitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, 80131 Naples, Italy; Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Manuela Rodriquez
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
10
|
Dos Anjos PMF, Volpe CMO, Miranda TC, Nogueira-Machado JA. Atorvastatin Inhibited ROS Generation and Increased IL-1β And IL-6 Release by Mononuclear Cells from Diabetic Patients. Endocr Metab Immune Disord Drug Targets 2019; 19:1207-1215. [PMID: 31416412 DOI: 10.2174/1871530319666190617160349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atorvastatin (ATV) inhibits the conversion of 3-Hydroxy-3-Methylglutaryl Coenzyme A (HMG-CoA) to mevalonate formation and promotes lowering of the LDL cholesterol fraction. However, ATV exhibits pleiotropic metabolic actions beyond cholesterol-lowering properties. OBJECTIVE We aimed to evaluate the effect of ATV on oxidizing species generation and cytokine secretion in Peripheral Blood Mononuclear Cells (PBMNC) of Type 2 Diabetes Mellitus (T2DM) patients in comparison to healthy control. METHODS Both NADPH-oxidase-dependent and mitochondrial ROS generation were assessed by chemoluminescence luminol-dependent assay and fluorometric experiment, using Dichlorofluorescein Assay (DCFH-DA), respectively. IL-1β and IL-6 were quantified by classical ELISA. RESULTS ATV inhibited NADPH-oxidase dependent ROS generation, but showed no effect on mitochondrial ROS generation and activated IL-1β and IL-6 secretions in PBMNC from control and T2DM patients. ROS generation and cytokine secretion in the presence of an inhibitor of Protein Kinase Cβ (iPKCβ) and ATV led to similar results. The secretion of IL-1β, PDB-induced in the presence of iPKCβ, but not ATV, was increased. ATV and iPKCβ exacerbated PDB-induced IL-6 secretion. LPS activated the secretion of IL-1β and IL-6 which was potentiated by ATV. CONCLUSION ATV inhibited ROS generation and activated IL-1 β/IL-6 secretion in PBMNC of diabetes patients. Its effect was not affected by the hyperglycemia.
Collapse
Affiliation(s)
- Paula M F Dos Anjos
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, 30150-240, Belo Horizonte, MG, Brazil
| | - Caroline M O Volpe
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, 30150-240, Belo Horizonte, MG, Brazil
| | - Thaís C Miranda
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, 30150-240, Belo Horizonte, MG, Brazil
| | - José A Nogueira-Machado
- Núcleo de Pós-Graduação e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigênia, 30150-240, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Wang J, Zhao H, Xu F, Zhang P, Zheng Y, Jia N. Human epididymis protein 4 (HE4) protects against cystic pulmonary fibrosis associated-inflammation through inhibition of NF-κB and MAPK singnaling. Genes Genomics 2019; 41:1045-1053. [PMID: 31165362 DOI: 10.1007/s13258-019-00836-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cystic pulmonary fibrosis (CF) affects mostly the lung of the newborns. Chronic infection and inflammation become the major causes of morbidity and mortality in CF. However, the underlying molecular mechanisms causing CF still remain unclear. METHODS ELISA assay was used to examine the expression of HE4 and pro-inflammatory cytokines in W126VA4 cells supernatant fluid. qRT-PCR was applicable to determine the mRNA level of HE4, α-SMA, collagen 1, MMP2, MMP9 and various interleukins. Immunofluorescent assay was used to test the expression of HE4 in WI-26 VA4 cells. Major elements of MAPK and NF-κB signals pathways were examined by western blot. RESULTS We found higher expression of HE4 in CF patients serum and lung biopsy. Interestingly, HE4 expression was positively correlated with fibrosis markers expression. In addition,HE4 overexpression increased inflammatory cytokines secretion and fibrosis markers expression in WI-26 VA4 cells. And NF-κB pathways were responsible for elevated inflammation. In addition, HE4/MAPK/MMPs signaling cascades destroyed the normal extracellular matrix (ECM) and promoted fibrosis. CONCLUSIONS Overall, we first identified that HE4 promoted CF-associated inflammation. Additionally, NF-κB and MAPK signalings were further validated to be responsible for CF-associated inflammation and ECM destruction. Characterization of lumacaftor/ivacaftor in CF-associated inflammation may provide a novel insight into clinical CF treatment.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Piaopiao Zhang
- Graduate School of Taishan Medical University, Tai'an, China
| | - Yuan Zheng
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Nan Jia
- Department of Neonatal, The Second Affiliated Hospital of Xi'an Medical College, No. 167, Textile City East Street, Baqiao District, Xi'an, 710038, Shanxi, China.
| |
Collapse
|
12
|
Gu L, Wang Z, Zuo J, Li H, Zha L. Prognostic significance of NF-κB expression in non-small cell lung cancer: A meta-analysis. PLoS One 2018; 13:e0198223. [PMID: 29813121 PMCID: PMC5973575 DOI: 10.1371/journal.pone.0198223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
Nuclear factor kappa B (NF-κB), a key nuclear transcription factor, is associated with prognosis in a variety of human cancers. However, the clinical value of NF-κB in non-small cell lung cancer (NSCLC) is still controversial. Therefore, the aim of this meta-analysis was to obtain an accurate evaluation of the relationship between NF-κB expression and survival prognosis of NSCLC patients based on published articles. PubMed, EMBASE and Web of Science databases were systematically searched for potential articles. A total of 1159 patients from 7 eligible studies comparing prognostic significance of NF-κB expression levels in NSCLC were included in our meta-analysis. I2 statistic and P value were performed to evaluate heterogeneity. The results of analysis were presented as hazard ratio (HR) or odds ratios (OR) with 95% confidence interval (95% CI). Subgroup analysis based on ethnicity of NSCLC patients and NF-kB cellular localization within cancer cells were conducted to illustrate the potential discrepancy. Significant heterogeneity was considered at I2>50% and P<0.05, and random-effects model was used. The combined results indicated that higher NF-κB expression was associated with shorter overall survival (OS) of NSCLC patients (HR = 2.78, 95% CI = 1.51–5.12, P = 0.001). Moreover, NF-κB expression was closely associated with tumor stage (HR = 0.32, 95% CI = 0.18–0.57, P<0.0001), lymph node metastasis (HR = 0.56, 95% CI = 0.38–0.83, P = 0.004) and 5-year OS for NSCLC patients (OR = 1.83, 95% CI = 1.02–3.31, P = 0.04). We conclude that NF-κB expression may be a potential unfavorable prognostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Lijun Gu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Zhiyan Wang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Jing Zuo
- Nanlou Health Care Department, Chinese PLA General Hospital, Beijing, China
| | - Hongmei Li
- Clinical Center of Spaceport, Chinese PLA General Hospital, Beijing, China
- Clinical Center of Spaceport, The 309th Hospital of People's Liberation Army, Beijing, China
- * E-mail: (HL); (LZ)
| | - Lin Zha
- Clinical Center of Spaceport, Chinese PLA General Hospital, Beijing, China
- Clinical Center of Spaceport, The 309th Hospital of People's Liberation Army, Beijing, China
- * E-mail: (HL); (LZ)
| |
Collapse
|