1
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Estarreja J, Caldeira G, Silva I, Mendes P, Mateus V. The Pharmacological Effect of Hemin in Inflammatory-Related Diseases: A Systematic Review. Biomedicines 2024; 12:898. [PMID: 38672251 PMCID: PMC11048114 DOI: 10.3390/biomedicines12040898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Hemin is clinically used in acute attacks of porphyria; however, recent evidence has also highlighted its capability to stimulate the heme oxygenase enzyme, being associated with cytoprotective, antioxidant, and anti-inflammatory effects. Indeed, current preclinical evidence emphasizes the potential anti-inflammatory role of hemin through its use in animal models of disease. Nevertheless, there is no consensus about the underlying mechanism(s) and the most optimal therapeutic regimens. Therefore, this review aims to summarize, analyze, and discuss the current preclinical evidence concerning the pharmacological effect of hemin. METHODS Following the application of the search expression and the retrieval of the articles, only nonclinical studies in vivo written in English were considered, where the potential anti-inflammatory effect of hemin was evaluated. RESULTS Forty-nine articles were included according to the eligibility criteria established. The results obtained show the preference of using 30 to 50 mg/kg of hemin, administered intraperitoneally, in both acute and chronic contexts. This drug demonstrates significant anti-inflammatory and antioxidant activities considering its capacity for reducing the expression of proinflammatory and oxidative markers. CONCLUSIONS This review highlighted the significant anti-inflammatory and antioxidant effects of hemin, providing a clearer vision for the medical community about the use of this drug in several human diseases.
Collapse
Affiliation(s)
- João Estarreja
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Gonçalo Caldeira
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Inês Silva
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Priscila Mendes
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Vanessa Mateus
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
3
|
Mancuso C. Biliverdin as a disease-modifying agent: An integrated viewpoint. Free Radic Biol Med 2023; 207:133-143. [PMID: 37459935 DOI: 10.1016/j.freeradbiomed.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Biliverdin is one of the three by-products of heme oxygenase (HO) activity, the others being ferrous iron and carbon monoxide. Under physiological conditions, once formed in the cell, BV is reduced to bilirubin (BR) by the biliverdin reductase (BVR). However, if BVR is inhibited by either genetic variants, as occurs in the Inuit ethnicity, or dioxin intoxication, BV accumulates in cells giving rise to a clinical syndrome known as green jaundice. Preclinical studies have demonstrated that BV not only has a direct antioxidant effect by scavenging free radicals, but also targets many signal transduction pathways, such as BVR, soluble guanylyl cyclase, and the aryl hydrocarbon receptor. Through these direct and indirect mechanisms, BV has shown beneficial roles in ischemia/reperfusion-related diseases, inflammatory diseases, graft-versus-host disease, viral infections and cancer. Unfortunately, no clinical data are available to confirm these potential therapeutic effects and the kinetics of exogenous BV in humans is unknown. These limitations have so far excluded the possibility of transforming BV from a mere by-product of heme degradation into a disease-modifying agent. A closer collaboration between basic and clinical researchers would be advantageous to overcome these issues and promote translational research on BV in free radical-induced diseases.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
4
|
Martínez-Serrat M, Martínez-Martel I, Coral-Pérez S, Bai X, Batallé G, Pol O. Hydrogen-Rich Water as a Novel Therapeutic Strategy for the Affective Disorders Linked with Chronic Neuropathic Pain in Mice. Antioxidants (Basel) 2022; 11:antiox11091826. [PMID: 36139900 PMCID: PMC9495356 DOI: 10.3390/antiox11091826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain manifested with allodynia and hyperalgesia usually becomes a chronic condition accompanied with mood disorders. Clinical therapies for neuropathic pain are still unsatisfactory with notable side effects. Recent studies have reported the protective role of molecular hydrogen (H2) in different diseases including neurological disorders, such as Alzheimer's as well as its antidepressant activities in animals with chronic stress. This study explored the effects of treatment with hydrogen-rich water (HRW) in male mice with neuropathic pain induced by the chronic constriction of the sciatic nerve (CCI) and the accompanying affective deficits. The likely pathways implied in the HRW analgesic activity, as well as the interaction between heme oxygenase 1 (HO-1) enzyme and H2 during neuropathic pain were also studied. The results showed: (i) the inhibitory effects of the repetitive treatment with HRW on the allodynia and hyperalgesia provoked by CCI; (ii) the anxiolytic and antidepressant actions of HRW in animals with neuropathic pain; (iii) the contribution of the antioxidant enzymes (HO-1 and NAD(P)H: quinone oxidoreductase 1) and the ATP sensitive potassium channels in the painkiller activities of HRW during neuropathic pain; (iv) a positive interaction between the HO-1 and H2 systems in inhibiting the CCI-induced neuropathy; and (v) the antioxidant, antinociceptive, anti-inflammatory and/or antiapoptotic features of HRW treatment in the dorsal root ganglia and/or amygdala of sciatic nerve-injured mice. This study demonstrates new protective actions of H2 and suggests that treatment with HRW might be an interesting therapeutic strategy for chronic neuropathic pain and its associated mood disorders.
Collapse
Affiliation(s)
- Maria Martínez-Serrat
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Santiago Coral-Pérez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
5
|
Silveira FD, Gomes FIF, do Val DR, Freitas HC, de Assis EL, de Almeida DKC, Braz HLB, Barbosa FG, Mafezoli J, da Silva MR, Jorge RJB, Clemente-Napimoga JT, Costa DVDS, Brito GADC, Pinto VDPT, Cristino-Filho G, Bezerra MM, Chaves HV. Biological and Molecular Docking Evaluation of a Benzylisothiocyanate Semisynthetic Derivative From Moringa oleifera in a Pre-clinical Study of Temporomandibular Joint Pain. Front Neurosci 2022; 16:742239. [PMID: 35546897 PMCID: PMC9083263 DOI: 10.3389/fnins.2022.742239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Moringa oleifera possesses multiple biological effects and the 4-[(4′-O-acetyl-α-L- rhamnosyloxy) benzyl] isothiocyanate accounts for them. Based on the original isothiocyanate molecule we obtained a semisynthetic derivative, named 4-[(2′,3′,4′-O-triacetyl-α-L-rhamnosyloxy) N-benzyl] hydrazine carbothioamide (MC-H) which was safe and effective in a temporomandibular joint (TMJ) inflammatory hypernociception in rats. Therefore, considering that there is still a gap in the knowledge concerning the mechanisms of action through which the MC-H effects are mediated, this study aimed to investigate the involvement of the adhesion molecules (ICAM-1, CD55), the pathways heme oxygenase-1 (HO-1) and NO/cGMP/PKG/K+ATP, and the central opioid receptors in the efficacy of the MC-H in a pre-clinical study of TMJ pain. Methods Molecular docking studies were performed to test the binding performance of MC-H against the ten targets of interest (ICAM-1, CD55, HO-1, iNOS, soluble cGMP, cGMP-dependent protein kinase (PKG), K+ATP channel, mu (μ), kappa (κ), and delta (δ) opioid receptors). In in vivo studies, male Wistar rats were treated with MC-H 1 μg/kg before TMJ formalin injection and nociception was evaluated. Periarticular tissues were removed to assess ICAM-1 and CD55 protein levels by Western blotting. To investigate the role of HO-1 and NO/cGMP/PKG/K+ATP pathways, the inhibitors ZnPP-IX, aminoguanidine, ODQ, KT5823, or glibenclamide were used. To study the involvement of opioid receptors, rats were pre-treated (15 min) with an intrathecal injection of non-selective inhibitor naloxone or with CTOP, naltrindole, or norbinaltorphimine. Results All interactions presented acceptable binding energy values (below −6.0 kcal/mol) which suggest MC-H might strongly bind to its molecular targets. MC-H reduced the protein levels of ICAM-1 and CD55 in periarticular tissues. ZnPP-IX, naloxone, CTOP, and naltrindole reversed the antinociceptive effect of MC-H. Conclusion MC-H demonstrated antinociceptive and anti-inflammatory effects peripherally by the activation of the HO-1 pathway, as well as through inhibition of the protein levels of adhesion molecules, and centrally by μ and δ opioid receptors.
Collapse
Affiliation(s)
| | | | - Danielle Rocha do Val
- Graduate Programme in Biotechnology, North-Eastern Biotechnology Network, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Helyson Lucas Bezerra Braz
- Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Jair Mafezoli
- Graduate Programme in Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
| | | | - Roberta Jeane Bezerra Jorge
- Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | - Deiziane Viana da Silva Costa
- Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Gerly Anne de Castro Brito
- Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Vicente de Paulo Teixeira Pinto
- Graduate Programme in Health Sciences, Federal University of Ceará, Sobral, Brazil.,Faculty of Medicine, Federal University of Ceará, Sobral, Brazil
| | - Gerardo Cristino-Filho
- Graduate Programme in Health Sciences, Federal University of Ceará, Sobral, Brazil.,Faculty of Medicine, Federal University of Ceará, Sobral, Brazil
| | - Mirna Marques Bezerra
- Graduate Programme in Health Sciences, Federal University of Ceará, Sobral, Brazil.,Faculty of Medicine, Federal University of Ceará, Sobral, Brazil
| | - Hellíada Vasconcelos Chaves
- Graduate Programme in Health Sciences, Federal University of Ceará, Sobral, Brazil.,Faculty of Dentistry, Federal University of Ceará, Sobral, Brazil.,Graduate Program in Dentistry, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Ou YC, Li JR, Wu CC, Yu TM, Chen WY, Liao SL, Kuan YH, Chen YF, Chen CJ. Cadmium induces the expression of Interleukin-6 through Heme Oxygenase-1 in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2022; 161:112846. [PMID: 35122928 DOI: 10.1016/j.fct.2022.112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 11/15/2022]
Abstract
Cadmium is toxic to the kidney through mechanisms involving oxidative stress and inflammation. We studied reciprocal crosstalk among the oxidative stress, inflammation, and the nuclear Nrf2 pathway in cadmium-induced nephrotoxicity on HK-2 human renal proximal tubular epithelial cells. Cadmium chloride (CdCl2) caused cell viability loss, Reactive Oxygen Species (ROS) generation, glutathione reduction, and Interleukin-6 (IL-6) expression, accompanied by Nrf2 activation and Heme Oxygenase-1 (HO-1) expression. Pharmacological treatments demonstrated cytotprotective and anti-inflammatory effects of Nrf2 activation. Intriguingly, inhibition of HO-1 activity mitigated cell viability loss and IL-6 expression in CdCl2-treated cells. Parallel attenuation by HO-1 inhibitor was demonstrated in cadmium-induced ROS generation and glutathione reduction. CdCl2-treated cells also increased levels of ferrous iron, cGMP, Mitogen-Activated Protein Kinases phosphorylation, as well as NF-κB DNA-binding activity. These increments were mitigated by antioxidant N-Acetyl Cysteine, HO-1 inhibitor SnPP, and PKG inhibitor KT5823, and were mimicked by the Carbon Monoxide-releasing compound. In the kidney cortex of CdCl2-exposed Sprague-Dawley rats, we found similar renal injury, histological changes, ROS generation, IL-6 expression, and accompanied pro-oxidant and pro-inflammatory changes. These observations indicated that cadmium-induced nephrotoxicity was associated with oxidative stress and inflammation, and HO-1 likely acts as a linking molecule to induce nephrotoxicity-associated IL-6 expression upon cadmium exposure.
Collapse
Affiliation(s)
- Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung City, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung City, Taiwan; Department of Nursing, HungKuang University, Taichung City, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung City, Taiwan; Department of Financial Engineering, Providence University, Taichung City, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City, Taiwan
| | - Tung-Min Yu
- Division of Nephrology, Taichung City, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, Taiwan
| | - Yu-Fan Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
7
|
Wang Y, Bao M, Hou C, Wang Y, Zheng L, Peng Y. The Role of TNF-α in the Pathogenesis of Temporomandibular Disorders. Biol Pharm Bull 2021; 44:1801-1809. [PMID: 34853262 DOI: 10.1248/bpb.b21-00154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temporomandibular disorder (TMD) is an oral dentofacial disease that is related to multiple factors such as disordered dental occlusion, emotional stress, and immune responses. In the past decades, tumor necrosis factor-alpha (TNF-α), a pleiotropic cytokine, has provided valuable insight into the pathogenesis of TMD, particularly in settings associated with inflammation. It is thought that TNF-α participates in the pathogenesis of TMD by triggering immune responses, deteriorating bone and cartilage, and mediating pain in the temporomandibular joint (TMJ). Initially, TNF-α plays the role of "master regulator" in the complex immune network by increasing or decreasing the production of other inflammatory cytokines. Then, the effects of TNF-α on cells, particularly on chondrocytes and synovial fibroblasts, result in pathologic cartilage degradation in TMD. Additionally, multiple downstream cytokines induced by TNF-α and neuropeptides can regulate central sensitization and inflammatory pain in TMD. Previous studies have also found some therapies target TMD by reducing the production of TNF-α or blocking TNF-α-induced pathways. All this evidence highlights the numerous associations between TNF-α and TMD; however, they are currently not fully understood and further investigations are still required for specific mechanisms and treatments targeting specific pathways. Therefore, in this review, we explored general mechanisms of TNF-α, with a focus on molecules in TNF-α-mediated pathways and their potential roles in TMD treatment. In view of the high clinical prevalence rate of TMD and damage to patients' QOL, this review provides adequate evidence for studying links between inflammation and TMD in further research and investigation.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Chuping Hou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| | - Yiran Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| |
Collapse
|
8
|
Alcaraz MJ, Ferrándiz ML. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic Biol Med 2020; 157:83-93. [PMID: 31830562 DOI: 10.1016/j.freeradbiomed.2019.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 02/08/2023]
Abstract
Joint conditions pose an important public health problem as they are a leading cause of pain, functional limitation and physical disability. Oxidative stress is related to the pathogenesis of many chronic diseases affecting the joints such as rheumatoid arthritis and osteoarthritis. Cells have developed adaptive protection mechanisms to maintain homeostasis such as nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) which regulates the transcription of many genes involved in redox balance, detoxification, metabolism and inflammation. Activation of Nrf2 results in the synthesis of heme oxygenase-1 (HO-1) leading to the formation of a number of bioactive metabolites, mainly CO, biliverdin and bilirubin. Ample evidence supports the notion that Nrf2 and HO-1 can confer protection against oxidative stress and inflammatory and immune responses in joint tissues. As a consequence, this pathway may control the activation and metabolism of articular cells to play a regulatory role in joint destruction thus offering new opportunities for better treatments. Further studies are necessary to identify improved strategies to regulate Nrf2 and HO-1 activation in order to enable the development of drugs with therapeutic applications in joint diseases.
Collapse
Affiliation(s)
- Maria José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100, Burjasot, Valencia, Spain.
| | - María Luisa Ferrándiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100, Burjasot, Valencia, Spain
| |
Collapse
|
9
|
Heme attenuates beta-endorphin levels in leukocytes of HIV positive individuals with chronic widespread pain. Redox Biol 2020; 36:101684. [PMID: 32828015 PMCID: PMC7451624 DOI: 10.1016/j.redox.2020.101684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
The prevalence of chronic widespread pain (CWP) in people with HIV is high, yet the underlying mechanisms are elusive. Leukocytes synthesize the endogenous opioid, β-endorphin, within their endoplasmic reticulum (ER). When released into plasma, β-endorphin dampens nociception by binding to opioid receptors on sensory neurons. We hypothesized that the heme-dependent redox signaling induces ER stress, which attenuates leukocyte β-endorphins levels/release, thereby increasing pain sensitivity in people with HIV. Results demonstrated that HIV positive individuals with CWP had increased plasma methemoglobin, erythrocytes membrane oxidation, hemolysis, and low plasma heme scavenging enzyme, hemopexin, compared to people with HIV without CWP and HIV-negative individuals with or without pain. In addition, the leukocytes from people with HIV with CWP had attenuated levels of the heme metabolizing enzyme, heme oxygenase-1, which metabolizes free heme to carbon-monoxide and biliverdin. These individuals also had elevated ER stress, and low β-endorphin in leukocytes. In vitro, heme exposure or heme oxygenase-1 deletion, decreased β-endorphins in murine monocytes/macrophages. Treating cells with a carbon-monoxide donor or an ER stress inhibitor, increased β-endorphins. To mimic hemolytic effects in a preclinical model, C57BL/6 mice were injected with phenylhydrazine hydrochloride (PHZ). PHZ increased cell-free heme and ER stress, decreased leukocyte β-endorphin levels and hindpaw mechanical sensitivity thresholds. Treatment of PHZ-injected mice with hemopexin blocked these effects, suggesting that heme-induced ER stress and a subsequent decrease in leukocyte β-endorphin is responsible for hypersensitivity in people with HIV.
Collapse
|
10
|
Iwata M, Inoue T, Asai Y, Hori K, Fujiwara M, Matsuo S, Tsuchida W, Suzuki S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem Biophys Rep 2020; 23:100790. [PMID: 32760814 PMCID: PMC7390790 DOI: 10.1016/j.bbrep.2020.100790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important part of the host defense mechanism; however, it displays both pro- and anti-inflammatory properties depending on its location and concentration. Importantly, excessive or inappropriate NO production can cause tissue damage. Systemic and local administration of NO synthase (NOS) inhibitors ameliorates and may exacerbate the inflammatory response, respectively. Here, we used a carrageenan-induced pleurisy model of acute inflammation in rats to confirm the location-dependent effects of NO and investigate the underlying mechanisms. As expected, localized suppression of NO production exacerbated inflammation, as evidenced by increased pleural exudate volumes and leukocyte counts and enhanced activity of enzymes related to oxidative stress. In contrast, local NO supplementation reduced leukocyte infiltration, vascular permeability, and the activity of oxidative stress-related enzymes. Interestingly, inhibition of heme oxygenase-1 (HO-1) reversed the anti-inflammatory effects of localized NO production, while the addition of hemin (HO-1 substrate) or carbon monoxide (CO; HO-1 metabolite) decreased leukocyte migration and exudation. Together, these findings confirm a protective role for NO at the inflammatory site, which appears to be mediated via NOS induction of the HO-1/CO pathway. Thus, NO supplementation may be a potential new treatment for oxidative stress-associated inflammatory diseases. Systemic NOS inhibition ameliorated inflammation in a rat Cg-induced pleurisy model. Conversely, localized NOS inhibition increased all examined markers of inflammation. HO-1, hemin, and CO enhanced the localized anti-inflammatory effects of NO. NOC-18, l-arginine, hemin, and CORM-3 decreased levels of inflammatory cytokines. The localized anti-inflammatory effect of NO may be mediated via the HO-1/CO pathway.
Collapse
Affiliation(s)
- Masahiro Iwata
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan.,Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Takayuki Inoue
- Department of Rehabilitation, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Yuji Asai
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan
| | - Kiyomi Hori
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Mitsuhiro Fujiwara
- Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan.,Kamiiida Rehabilitation Hospital, 3-57 Kamiiida Kita-machi, Kita-ku, Nagoya, 462-0802, Japan
| | - Shingo Matsuo
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan
| | - Wakako Tsuchida
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Shigeyuki Suzuki
- Department of Health and Sports Sciences, School of Health Sciences, Asahi University, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
11
|
Rocha do Val D, Bezerra MM, Fernandes Gomes FI, Nobre CA, Teixeira SC, Lemos JC, Alves Pereira KM, de Paulo Teixeira Pinto V, Rodrigues E Silva AA, de Sousa Franco E, Bernadete de Sousa Maia M, Chaves HV. Protective effect of Chresta martii extract on the zymosan-induced temporomandibular joint arthritis in rats. J Oral Biol Craniofac Res 2020; 10:276-280. [PMID: 32518744 DOI: 10.1016/j.jobcr.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Chresta martii is broadly used by folk medicine due to its anti-inflammatory effects, but there is a lack of preclinical data on its pharmacological mechanisms. This study investigated the efficacy of Chresta martii ethanolic extract (CEE) in the zymosan-induced temporomandibular joint arthritis (TMJ) and evaluated the possible role of TNF-α, nitric oxide (NO), and heme oxygenase-1 (HO-1). Methods Male Wistar rats (160-220 g) were pre-treated with CEE (100, 200 or 400 mg/kg; v.o) 1 h before zymosan injection (2 mg; i.art). Mechanical hypernociception (g) was assessed 4 h later. The trigeminal ganglion was collected for TNF-α quantification (ELISA), total cell count and myeloperoxidase activity (MPO) were assayed in the synovial lavage 6 h after arthritis induction. Additionally, animals were pre-treated with L-NAME (30 mg/kg; i.p.) or ZnPP-IX (3 mg/kg, s.c.) to assess the involvement of NO and HO-1, respectively. Results CEE 400 mg/kg (v.o) increased (p < 0.05) hypernociception threshold, reduced the cell counts and MPO activity in the synovial lavage, as well as decreased TNF-α levels in the trigeminal ganglion. ZnPP-IX abolished the analgesic effect of CEE, but not L-NAME. Conclusion The anti-inflammatory and antinociceptive effects of CEE depended on the HO-1 pathway integrity and TNF-α suppression.
Collapse
Affiliation(s)
| | - Mirna Marques Bezerra
- Graduate Program in Biotechnology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Christiane Aguiar Nobre
- Graduate Program in Biotechnology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Karuza Maria Alves Pereira
- Department of Legal Medicine and Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Vicente de Paulo Teixeira Pinto
- Faculty of Medicine, Federal University of Ceará, Sobral, Brazil
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | - Hellíada Vasconcelos Chaves
- Faculty of Dentistry, Federal University of Ceará, Sobral, Brazil
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
12
|
Zhu H, Fu J, Chen S, Li X, Liang H, Hou Y, Dou H. FC-99 reduces macrophage tenascin-C expression by upregulating miRNA-494 in arthritis. Int Immunopharmacol 2019; 79:106105. [PMID: 31881378 DOI: 10.1016/j.intimp.2019.106105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/16/2019] [Accepted: 11/29/2019] [Indexed: 01/29/2023]
Abstract
The excessive production of inflammatory mediators by inflammatory cells contributes to the pathogenesis of rheumatoid arthritis. Tenascin-C (TN-C) is expressed in rheumatoid joint, and is associated with levels of inflammatory mediators. FC-99 (N1-[(4-methoxy)methyl]-4-methyl-1,2-Benzenediamine), a novel 1,2-benzenediamine derivative, was previously reported to block the prolonged expression of key rheumatoid arthritis inflammatory cytokines and relieve zymosan-induced joint inflammation. However, the specific mechanism is unknown. This study aimed to examine the effects of FC-99 on TN-C expression and inflammation and investigate its possible molecular mechanism. The results showed that FC-99 treatment reduced the high expression of TN-C in ankle joints of arthritis mice. Besides, FC-99 reduced the increased number of macrophages in arthritis mice, while did not change the number of synovioblasts. Concomitantly, expression of TN-C in synovial fibroblasts exhibited no difference between control and ZIA groups, and was not apparently altered following FC-99 treatment, while FC-99 decreased TN-C expression in macrophages both in vivo and in vitro. Meanwhile, TargetScan and luciferase assays indicated that TN-C was negatively regulated by miR-494. Transfection assay further demonstrated that FC-99 inhibited TN-C by targeting miR-494. Furthermore, the reduction of miR-494 mimic on expression of TN-C was associated with NF-κB pathway. Similarly, the down-regulation of FC-99 on TN-C was considerably decreased when NF-κB pathway was inhibited. These results indicated that FC-99 relieved macrophages inflammation via the miR-494/TN-C/NF-κB pathway, finally leading to the relief of inflammation in arthritis. The findings suggested that FC-99 might be a potential therapeutic candidate for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Haiyan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Juanhua Fu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Sheng Chen
- Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaoqin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Army Medical University, Chongqing 400042, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
13
|
de Sousa LM, Dos Santos Alves JM, da Silva Martins C, Pereira KMA, Goes P, Gondim DV. Immunoexpression of canonical Wnt and NF-κB signaling pathways in the temporomandibular joint of arthritic rats. Inflamm Res 2019; 68:889-900. [PMID: 31372663 DOI: 10.1007/s00011-019-01274-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the participation of canonical Wnt and NF-κB signaling pathways in an experimental model of chronic arthritis induced by methylated bovine serum albumin (mBSA) in rat temporomandibular joint (TMJ). MATERIALS AND METHODS Wistar rats were sensitized by mBSA+Complete Freund Adjuvant (CFA)/Incomplete Freund Adjuvant (IFA) on the first 14 days (1 ×/week). Subsequently, they received 1, 2 or 3 mBSA or saline solution injections into the TMJ (1 ×/week). Hypernociceptive threshold was assessed during the whole experimental period. 24 h after the mBSA injections, the TMJs were removed for histopathological and immunohistochemical analyses for TNF-α, IL-1β, NF-κB, RANKL, Wnt-10b, β-catenin and DKK1. RESULTS The nociceptive threshold was significantly reduced after mBSA injections. An inflammatory infiltrate and thickening of the synovial membrane were observed only after mBSA booster injections. Immunolabeling of TNF-α, IL-1β and Wnt-10b was increased in the synovial membrane in arthritic groups. The immunoexpression of nuclear β-catenin was significantly higher only in the group that received 2 booster TMJ injections. However, NF-κB, RANKL and DKK1 immunoexpression were increased only in animals with 3 mBSA intra-articular injections. CONCLUSION Our results suggest that canonical Wnt and NF-κB signaling pathways participate in the hypernociception and inflammatory response in TMJ synovial membrane during the development of rheumatoid arthritis in rats.
Collapse
Affiliation(s)
- Luane Macêdo de Sousa
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil
| | - Joana Maria Dos Santos Alves
- Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Conceição da Silva Martins
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil
| | - Karuza Maria Alves Pereira
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil.,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paula Goes
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil.,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Delane Viana Gondim
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil. .,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|