1
|
Zhou S, Zhu Y, Wu Y, Zhang X, Kong X, Zhao X, Xiang H, Shang D. New insights on metabolic reprogramming in macrophage plasticity. Int Immunopharmacol 2025; 157:114797. [PMID: 40339492 DOI: 10.1016/j.intimp.2025.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Macrophages are the first line of defense in the innate immune system. Macrophages have two subtypes: classically activated macrophages (M1) and alternatively activated macrophages (M2), with different phenotypes and functions. They play a critical role in defending against pathogens and maintaining internal homeostasis. Macrophages have great plasticity in their biological characteristics. Although the regulation of macrophage plasticity has not been fully elucidated, accumulated evidence supports that microenvironmental differences are the root cause for macrophage differentiation into different subtypes. These differences alter macrophage plasticity by modulating key metabolites, activating downstream gene transcription, and influencing phagocytosis, cytokine secretion, and immune regulation. Herein, we systematically summarize metabolic reprogramming, including glucose, lipid, amino acid, ion, vitamin, nucleotide, and butyrate metabolism, as key regulators affecting macrophage polarization, providing new insights for developing targeted drugs that modulate macrophage plasticity.
Collapse
Affiliation(s)
- Siyu Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yutong Zhu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yu Wu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiaonan Zhang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xin Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, Dalian 116011, China
| | - Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, Dalian 116011, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China; Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Martinis E, Tonon S, Colamatteo A, La Cava A, Matarese G, Pucillo CEM. B cell immunometabolism in health and disease. Nat Immunol 2025; 26:366-377. [PMID: 39984733 DOI: 10.1038/s41590-025-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
B cells have crucial roles in the initiation and progression of many pathological conditions, and several therapeutic strategies have targeted the function of these cells. The advent of immunometabolism has provided compelling evidence that the metabolic reprogramming of immune cells can dramatically alter physiopathological immune activities. A better knowledge of the metabolic profiles of B cells can provide valuable means for developing therapies tuning defined cell pathways. Here we review the cellular and molecular mechanisms by which immunometabolism controls the physiology and pathophysiology of B cells and discuss the experimental evidence linking B cell metabolism to health, autoimmunity, and cancer. Considering that several metabolic pathways in B cells are involved differently, or even in opposite ways, in health and disease, we discuss how targeted modulation of B cell immunometabolism could be exploited mechanistically to rebalance abnormal B cell functions that have become altered in disease states.
Collapse
Affiliation(s)
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
| | - Antonio La Cava
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy.
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale 'G. Salvatore' - Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
| | | |
Collapse
|
3
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Bao X, Zhang H, Jiang T, Wang Y, Wei F, Song Y, Lu J, Wen J, Liu Q, Gao M, Wang Y. Ginsenoside compound K decreases presentation of citrullinated peptides by regulating autophagy-induced autoantigen activation. Int Immunopharmacol 2025; 146:113834. [PMID: 39721457 DOI: 10.1016/j.intimp.2024.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Citrullinated vimentin (cVIM) triggers the immune response and is the primary autoantigen of rheumatoid arthritis (RA). Ginsenoside compound K (CK), which exerts significant anti-inflammatory effects, was the objective of this study. We aimed to investigate the role and mechanism of CK in regulating presentation of citrullinated peptides. METHODS In RA fibroblast-like synoviocytes (RA-FLS), the expression of autoantigen cVIM, antigen presentation-related molecules, autophagy-related proteins, and autophagic flux were investigated. The effect of CK on the antigen presentation capability of FLS was also examined under conditions of autophagy induction and inhibition. Finally, Wistar rats were immunized with cVIM to evaluate the therapeutic effect of CK in an RA model. RESULTS In RA-FLS, CK mitigated the expression of cVIM, autophagy-associated proteins, and antigen presentation-related molecules. This regulatory effect was associated with autophagy. cVIM-immunized rats exhibited more severe arthritis and higher levels of anti-CCP antibodies than those with adjuvant- and vimentin (VIM)-induced arthritis. CK significantly alleviated arthritis inflammation in cVIM-immunized rats. CONCLUSIONS CK alleviates cVIM-induced arthritis symptoms, with the regulation of autophagy presenting a key cellular event involved in cVIM generation and RA-FLS antigen-presenting ability.
Collapse
Affiliation(s)
- Xiurong Bao
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Hanmeng Zhang
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Tingting Jiang
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yating Wang
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Jialu Lu
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China
| | - Jingyi Wen
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China
| | - Qinwei Liu
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China
| | - Mengmeng Gao
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical University, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
5
|
Pi P, Zeng L, Zeng Z, Zong K, Han B, Bai X, Wang Y. The role of targeting glucose metabolism in chondrocytes in the pathogenesis and therapeutic mechanisms of osteoarthritis: a narrative review. Front Endocrinol (Lausanne) 2024; 15:1319827. [PMID: 38510704 PMCID: PMC10951080 DOI: 10.3389/fendo.2024.1319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can affect almost any joint, mainly resulting in joint dysfunction and pain. Worldwide, OA affects more than 240 million people and is one of the leading causes of activity limitation in adults. However, the pathogenesis of OA remains elusive, resulting in the lack of well-established clinical treatment strategies. Recently, energy metabolism alterations have provided new insights into the pathogenesis of OA. Accumulating evidence indicates that glucose metabolism plays a key role in maintaining cartilage homeostasis. Disorders of glucose metabolism can lead to chondrocyte hypertrophy and extracellular matrix degradation, and promote the occurrence and development of OA. This article systematically summarizes the regulatory effects of different enzymes and factors related to glucose metabolism in OA, as well as the mechanism and potential of various substances in the treatment of OA by affecting glucose metabolism. This provides a theoretical basis for a better understanding of the mechanism of OA progression and the development of optimal prevention and treatment strategies.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Keqiang Zong
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- School of Physical Education, Qiqihar University, Heilongjiang, Qiqihar, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
6
|
Yang X, A M, Gegen T, Daoerji B, Zheng Y, Wang A. PHLPP1 inhibits the growth and aerobic glycolysis activity of human ovarian granular cells through inactivating AKT pathway. BMC Womens Health 2024; 24:25. [PMID: 38184561 PMCID: PMC10771674 DOI: 10.1186/s12905-023-02872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphologic features, and PCOS is associated with infertility. PH domain Leucine-rich repeat Protein Phosphatase 1 (PHLPP1) has been shown to regulate AKT. The aim of present study is to investigate the role of PHLPP1 in PCOS. METHODS The expression levels of PHLPP1 in dihydrotestosterone (DHT)-treated human ovarian granular KGN cells were determined by qRT-PCR and Western blot. PHLPP1 was silenced or overexpressed using lentivirus. Cell proliferation was detected by CCK-8. Apoptosis and ROS generation were analyzed by flow cytometry. Glycolysis was analyzed by measuring extracellular acidification rate (ECAR). RESULTS DHT treatment suppressed proliferation, promoted apoptosis, enhanced ROS, and inhibited glycolysis in KGN cells. PHLPP1 silencing alleviated the DHT-induced suppression of proliferation and glycolysis, and promotion of apoptosis and ROS in KGN cells. PHLPP1 regulated cell proliferation and glycolysis in human KGN cells via the AKT signaling pathway. CONCLUSIONS Our results showed that PHLPP1 mediates the proliferation and aerobic glycolysis activity of human ovarian granular cells through regulating AKT signaling.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Min A
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Department of Urology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Tana Gegen
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Badema Daoerji
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Yue Zheng
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Aiming Wang
- Department of Obstetrics and Gynaecology, Sixth Medical Center, Chinese PLA General Hospital, No.6 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
7
|
Lei Y, He L, Li Y, Hou J, Zhang H, Li G. PDLIM1 interacts with HK2 to promote gastric cancer progression through enhancing the Warburg effect via Wnt/β-catenin signaling. Cell Tissue Res 2024; 395:105-116. [PMID: 37930472 DOI: 10.1007/s00441-023-03840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
PDZ and LIM domain protein 1 (PDLIM1) is a cytoskeletal protein and is associated with the malignant pathological features of several tumors. However, the prognostic value of PDLIM1 and the molecular mechanisms by which it is involved in the metabolism and progression in gastric cancer (GC) are still unclear. The GEPIA database was used to predict the expression and prognosis of PDLIM1 in GC. qRT-PCR and western blot assays were applied to detect the mRNA and protein expression in GC tissues and cells. Loss- and gain-of-function experiments were performed to evaluate the biological role of PDLIM1 in GC cells. The Warburg effect was detected by a battery of glycolytic indicators. The interaction of PDLIM1 and hexokinase 2 (HK2) was determined by a co-immunoprecipitation assay. Furthermore, the modulatory effects of PDLIM1 and HK2 on Wnt/β-catenin signaling were assessed. The results showed that PDLIM1 expression was upregulated in GC tissues and cells and was associated with a poor prognosis for GC patients. PDLIM1 inhibition reduced GC cell proliferation, migration and invasion and promoted cell apoptosis. In the glucose deprivation (GLU-D) condition, the PDLIM1 level was reduced and PDLIM1 overexpression led to an increase in glycolysis. Besides, mechanistic investigation showed that PDLIM1 interacted with HK2 to mediate biological behaviors and the glycolysis of GC through Wnt/β-catenin signaling under glucose deprivation. In conclusion, PDLIM1 interacts with HK2 to promote gastric cancer progression by enhancing the Warburg effect via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Lirui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Yue Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Haoran Zhang
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Guan Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
8
|
Wang Y, Bao X, Xian H, Wei F, Song Y, Zhao S, Zhang Y, Wang Y, Wang Y. Glucocorticoid receptors involved in ginsenoside compound K ameliorate adjuvant arthritis by inhibiting the glycolysis of fibroblast-like synoviocytes via the NF-κB/HIF-1α pathway. PHARMACEUTICAL BIOLOGY 2023; 61:1162-1174. [PMID: 37559380 PMCID: PMC10416744 DOI: 10.1080/13880209.2023.2241512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/12/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Ginsenoside metabolite compound K (CK) is an active metabolite produced by ginsenosides in vivo that has an anti-arthritic effect related to the glucocorticoid receptor (GR). However, the potential mechanisms of CK remain unclear. OBJECTIVE This study explores the role and potential mechanisms of CK in vivo and in vitro. MATERIALS AND METHODS Adjuvant arthritis (AA) model was induced in Sprague-Dawley (SD) rats; the rats were randomly divided into four groups (n = 10): normal, AA, CK (80 mg/kg), and dexamethasone (Dex) group (1 mg/kg). From day 15, rats were treated with CK (once a day, i.g.) and Dex (once every 3 days, i.p.) for 18 days. To further verify the mechanism of CK, fibroblast-like synoviocytes (FLS) were stimulated by tumour necrosis factor α (TNF-α) to establish an inflammatory model in vitro. RESULTS CK (80 mg/kg) reduced paw swelling (52%) and arthritis global assessment (31%) compared to that in AA rats. In addition, CK (80 mg/kg) suppressed GLUT1 (38%), HK2 (50%), and PKM2 (56%) levels compared with those in AA FLS. However, the effects of CK (30 μM) on these events were weakened or enhanced after GR knockdown or overexpression in FLS stimulated by TNF-α (30 ng/mL). CK (80 mg/kg) also downregulated the expression of P65 (61%), p-IκB (92%), and HIF-1α (59%). DISCUSSION AND CONCLUSIONS The inhibition of CK on glycolysis and the NF-κB/HIF-1α pathway is potentially mediated through activating GR. These findings provide experimental evidence for elucidating the molecular mechanism of CK in treating rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Yating Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, P.R. China
| | - Xiurong Bao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, P.R. China
| | - Hao Xian
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, P.R. China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, P.R. China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, P.R. China
| | - Siyu Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Yujie Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Yumeng Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, P.R. China
| |
Collapse
|
9
|
Qi J, Liu J, Zhao X, Huang H, Tang Y, Li X. IL-27 enhances peripheral B cell glycolysis of rheumatoid arthritis patients via activating mTOR signaling. Int Immunopharmacol 2023; 121:110532. [PMID: 37354782 DOI: 10.1016/j.intimp.2023.110532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Our previous study found that increased serum IL-27 could promote rheumatoid arthritis (RA) B cell dysfunction via activating mTOR signaling pathway. This study aimed to explore the effects of IL-27 on B cell metabolism and clarify the mechanisms via which IL-27 enhancing glycolysis to induce B cells hyperactivation. Peripheral CD19+ B cells were purified from healthy controls (HC) and RA patients and then cultured with or without anti-CD40/CpG and glycolysis inhibitor 2-deoxy-D-glucose (2-DG) or mTOR inhibitor rapamycin. Furthermore, the isolated CD19+ B cells were treated by HC serum or RA serum in the presence and absence of recombinant human IL-27 or anti-IL-27 neutralizing antibodies or 2-DG or rapamycin. The B cell glycolysis level, proliferation, differentiation and inflammatory actions were detected by qPCR, flow cytometry or ELISA. We found that the glycolysis in RA B cells was increased significantly compared with HC B cells. Glycolysis inhibition downregulated the proliferation, differentiation, and inflammatory actions of RA B cells. RA serum and IL-27 promoted B cell glycolysis, which could be obviously rescued by anti-IL-27 antibodies or mTOR inhibitor rapamycin. Our results suggest that the enhanced cellular glycolysis of RA B cells induced by IL-27 may contribute to B cells hyperactivation through activating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Xiangge Zhao
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Huina Huang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China
| | - Yawei Tang
- Department of Flow Cytometry Center, Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
He Y, Wang Y, Jia X, Li Y, Yang Y, Pan L, Zhao R, Han Y, Wang F, Guan X, Hou T. Glycolytic reprogramming controls periodontitis-associated macrophage pyroptosis via AMPK/SIRT1/NF-κB signaling pathway. Int Immunopharmacol 2023; 119:110192. [PMID: 37068341 DOI: 10.1016/j.intimp.2023.110192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Glycolysis has been demonstrated as a crucial metabolic process in bacteria infected diseases via modulating the activity of pyroptosis. Macrophages are the most abundant immune cells that infiltrated in the infected periodontal tissues, which significantly influence the outcome of periodontitis (PD). However, the effect of glycolysis in regulating macrophage pyroptosis during PD development remains unknown. This study aimed to explore the role of glycolysis in PD-associated macrophage pyroptosis and periodontal degeneration. Clinical specimens were used to determine the emergence of macrophage pyroptosis and glycolysis in periodontal tissues by immunohistochemical analysis and western blot. For an in-depth understanding of the regulatory effect of glycolysis in the progression of macrophage pyroptosis associated periodontitis, both in vivo PD model and in vitro PD model were treated with 2-DG (2-Deoxy-d-glucose), a glycolysis inhibitor. The data showed that the blockade of glycolysis could significantly suppress the lipopolysaccharide (LPS) induced macrophage pyroptosis, resulting in an attenuation of the inflammatory response and bone resorption in periodontal lesions. Furthermore, we revealed that the regulatory effect of glycolysis on macrophage pyroptosis can be mediated via AMPK/SIRT1/NF-κB signaling pathway. Our study unveiled that suppressed glycolysis restrains the activity of PD-associated macrophage pyroptosis, osteoclastogenesis, and subsequent periodontal tissue destruction. These findings extend our knowledge of glycolysis in regulating PD-associated macrophage pyroptosis and provide a potential novel target for PD therapy.
Collapse
Affiliation(s)
- Yani He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiangbin Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingxue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lifei Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Han
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Wang
- Experimental Center of Stomatology, School of Stomatology, Xi'an Medical College, Xi'an, Shaanxi, China
| | - Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 465] [Impact Index Per Article: 232.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Wang C, Tang H, Wang Y, Chang Y, Wu YJ, Wang B, Sun W, Xiao F, Wei W. CP-25 enhances OAT1-mediated absorption of methotrexate in synoviocytes of collagen-induced arthritis rats. Acta Pharmacol Sin 2023; 44:81-91. [PMID: 35732708 PMCID: PMC9813221 DOI: 10.1038/s41401-022-00931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 05/26/2022] [Indexed: 01/18/2023]
Abstract
Organic anion transporter 1 (OAT1) plays a major role in mediating the absorption, distribution and excretion of drugs and other xenobiotics in the human body. In this study we explored the OAT1 status in rheumatoid arthritis (RA) patients and arthritic animals and its role in regulating the anti-arthritic activity of methotrexate (MTX). We showed that OAT1 expression was significantly downregulated in synovial tissues from RA patients compared with that in the control patients. In collagen-induced arthritis (CIA) rats, synovial OAT1 expression was significantly decreased compared with the control rats. In synoviocytes isolated from CIA rats, PGE2 (0.003-1.75 μM) dose-dependently downregulated OAT1 expression, resulting in decreased absorption of MTX. Silencing OAT1 in synoviocytes caused a 43.7% reduction in the uptake of MTX. Furthermore, knockdown of OAT1 impaired MTX-induced inhibitory effects on the viability and migration of synoviocytes isolated from CIA rats. Moreover, injection of OAT1-shRNA into articular cavity of CIA rats significantly decreased synovial OAT1 expression and impaired the anti-arthritic action of MTX, while injection of lentivirus containing OAT1 sequences led to the opposite results. Interestingly, we found that paeoniflorin-6'-O-benzene sulfonate (CP-25) upregulated OAT1 expression both in vitro and in vivo and promoted MTX uptake by synoviocytes via regulating OAT1 expression and function. Taken together, OAT1 plays a major role in regulating MTX uptake by synoviocytes and the anti-arthritic activity of MTX. OAT1 is downregulated in RA and CIA rats, which can be improved by CP-25.
Collapse
Affiliation(s)
- Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hao Tang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yong Wang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yi-Jin Wu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Bin Wang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Sun
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Feng Xiao
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
13
|
Xian H, Wang Y, Bao X, Zhang H, Wei F, Song Y, Wang Y, Wei Y, Wang Y. Hexokinase inhibitor 2-deoxyglucose coordinates citrullination of vimentin and apoptosis of fibroblast-like synoviocytes by inhibiting HK2 /mTORC1-induced autophagy. Int Immunopharmacol 2023; 114:109556. [PMID: 36516539 DOI: 10.1016/j.intimp.2022.109556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
High hexokinase 2 (HK2) expression is associated with aberrant activation of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA). However, the mechanism by which this occurs has not been fully elucidated. To investigate the role of HK2 and its underlying mechanism, adjuvant arthritis (AA) rats were treated with the HK2 inhibitor, 2-deoxyglucose (2-DG). In conjunction with HK2 knockdown experiments in FLSs, we evaluated the effect of HK2 on the citrullination of vimentin (cVIM), autophagy and apoptosis-associated protein expression, including that of cVIM, LC3, p62, Beclin1, Bax, Bcl2, and caspase 3. We further investigated the interaction of HK2 with downstream mTORC1 signaling effectors. Correlation analysis revealed that 2-DG treatment and HK2 knockdown upregulated the expression levels of caspase3, Bax, and p62 and downregulated the expression levels of LC3, Bcl2, and Beclin1, as well as decreasing vimentin citrullination. Furthermore, interactions between HK2 and mTOR decreased, coinciding with mTORC1 pathway activation. These findings suggest that the regulation of apoptosis and cVIM by HK2/mTORC1-dependent autophagy involves the inhibition of aberrant FLSs activation in the rat model of arthritis.
Collapse
Affiliation(s)
- Hao Xian
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yating Wang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xiurong Bao
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Hanmeng Zhang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yumeng Wang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China
| | - Yingmei Wei
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233000, Anhui, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
14
|
Cui L, Weiyao J, Chenghong S, Limei L, Xinghua Z, Bo Y, Xiaozheng D, Haidong W. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front Med (Lausanne) 2022; 9:1017650. [PMID: 36213670 PMCID: PMC9542797 DOI: 10.3389/fmed.2022.1017650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by chronic symmetric synovial inflammation and erosive bone destruction. Mitochondria are the main site of cellular energy supply and play a key role in the process of energy metabolism. They possess certain self-regulatory and repair capabilities. Mitochondria maintain relative stability in number, morphology, and spatial structure through biological processes, such as biogenesis, fission, fusion, and autophagy, which are collectively called mitochondrial homeostasis. An imbalance in the mitochondrial homeostatic environment will affect immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling. These biological processes are involved in the onset and development of rheumatoid arthritis. In this review, we found that in rheumatoid arthritis, abnormal mitochondrial homeostasis can mediate various immune cell metabolic disorders, and the reprogramming of immune cell metabolism is closely related to their inflammatory activation. In turn, mitochondrial damage and homeostatic imbalance can lead to mtDNA leakage and increased mtROS production. mtDNA and mtROS are active substances mediating multiple inflammatory pathways. Several rheumatoid arthritis therapeutic agents regulate mitochondrial homeostasis and repair mitochondrial damage. Therefore, modulation of mitochondrial homeostasis would be one of the most attractive targets for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Liu Cui
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Weiyao
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Su Chenghong
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liu Limei
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhang Xinghua
- Acupuncture and Moxibustion Department, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Yuan Bo
- Acupuncture and Pain Department, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Du Xiaozheng
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Du Xiaozheng
| | - Wang Haidong
- Rheumatoid Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
- Wang Haidong
| |
Collapse
|
15
|
Bao C, Zhu S, Song K, He C. HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways. Cell Commun Signal 2022; 20:132. [PMID: 36042519 PMCID: PMC9426234 DOI: 10.1186/s12964-022-00943-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is an age-related chronic degenerative joint disease where the main characteristics include progressive degeneration of cartilage, varying degrees of synovitis, and periarticular osteogenesis. However, the underlying factors involved in OA pathogenesis remain elusive which has resulted in poor clinical treatment effect. Recently, glucose metabolism changes provide a new perspective on the pathogenesis of OA. Under the stimulation of external environment, the metabolic pathway of chondrocytes tends to change from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Previous studies have demonstrated that glycolysis of synovial tissue is increased in OA. The hexokinase (HK) is the first rate limiting enzyme in aerobic glycolysis, participating and catalyzing the main pathway of glucose utilization. An isoform of HKs, HK2 is considered to be a key regulator of glucose metabolism, promotes the transformation of glycolysis from OXPHOS to aerobic glycolysis. Moreover, the expression level of HK2 in OA synovial tissue (FLS) was higher than that in control group, which indicated the potential therapeutic effect of HK2 in OA. However, there is no summary to help us understand the potential therapeutic role of glucose metabolism in OA. Therefore, this review focuses on the properties of HK2 and existing research concerning HK2 and OA. We also highlight the potential role and mechanism of HK2 in OA. Video abstract
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Kangping Song
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
16
|
Xu Y, Chen Y, Zhang X, Ma J, Liu Y, Cui L, Wang F. Glycolysis in Innate Immune Cells Contributes to Autoimmunity. Front Immunol 2022; 13:920029. [PMID: 35844594 PMCID: PMC9284233 DOI: 10.3389/fimmu.2022.920029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant autoantibodies resulting from dysfunctional immune surveillance. Most of the current treatments for AIDs use non-selective immunosuppressive agents. Although these therapies successfully control the disease process, patients experience significant side effects, particularly an increased risk of infection. There is a great need to study the pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory signaling to overcome the limitations of traditional therapies. Immune cells alter their predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the cellular level, this metabolic switch involves multiple signaling molecules, including serine-threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase. Although glycolysis is less efficient than mitochondrial respiration in terms of ATP production, immune cells can promote disease progression by enhancing glycolysis to satisfy cellular functions. Recent studies have shown that active glycolytic metabolism may also account for the cellular physiology of innate immune cells in AIDs. However, the mechanism by which glycolysis affects innate immunity and participates in the pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that could explain the relationship between glycolysis and the pro-inflammatory phenotype of innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally, we summarize the impact of glycolysis on the pathophysiological processes of AIDs, including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing spondylitis, and discuss potential therapeutic targets. The discovery that immune cell metabolism characterized by glycolysis may regulate inflammation broadens the avenues for treating AIDs by modulating immune cell metabolism.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongkang Chen
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Cai W, Cheng J, Zong S, Yu Y, Wang Y, Song Y, He R, Yuan S, Chen T, Hu M, Pan Y, Ma R, Liu H, Wei F. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol 2021; 140:186-195. [PMID: 34735867 DOI: 10.1016/j.molimm.2021.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022]
Abstract
Macrophages are highly plastic cells critical for the development of rheumatoid arthritis (RA). Macrophages exhibit a high degree of pro-inflammatory plasticity in RA, accompanied by a metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis. 2-deoxyglucose (2-DG), a glycolysis inhibitor, has previously been shown to exhibit anti-inflammatory and anti-arthritic properties. However, the specific mechanisms of inflammatory modulation by 2-DG remain unclear. This study used 2-DG to treat rats with adjuvant arthritis (AA) and investigated its specific anti-arthritic mechanisms in the murine-derived macrophage cell line RAW264.7 in vitro. 2-DG reduced the arthritis index as well as alleviated cellular infiltration, synovial hyperplasia, and bone erosion in AA rats. Moreover, 2-DG treatment modulated peritoneal macrophage polarization, increasing levels of the arginase1 (Arg1) and decreasing expression of the inducible nitric oxide synthase (iNOS). 2-DG activated AMP-activated protein kinase (AMPK) via phosphorylation and reduced activation of the nuclear factor κB (NF-κB) in peritoneal macrophages of AA rats. In vitro, we verified that 2-DG promoted macrophage transition from M1 to M2-type by upregulating the expression of p-AMPKα and suppressing NF-κB activation in LPS-stimulated RAW264.7 cells. LPS-induced macrophages exhibited a metabolic shift from glycolysis to OXPHOS following 2-DG treatment, as observed by reduced extracellular acidification rate (ECAR), lactate export, glucose consumption, as well as an elevated oxygen consumption rate (OCR) and intracellular ATP concentration. Importantly, changes in polarization and metabolism in response to 2-DG were dampened after AMPKα knockdown. These findings indicate that the anti-arthritic 2-DG effect is mediated by a modulation of macrophage polarization in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Jingwen Cheng
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shiye Zong
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Rui He
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Siqi Yuan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Tao Chen
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Mengru Hu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yousheng Pan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ran Ma
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
18
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Liu XY, Pei WJ, Wu YZ, Ren FL, Yang SY, Wang X. Transdermal delivery of triptolide-phospholipid complex to treat rheumatoid arthritis. Drug Deliv 2021; 28:2127-2136. [PMID: 34617835 PMCID: PMC8510618 DOI: 10.1080/10717544.2021.1986603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to develop and evaluate a triptolide phospholipid complex (TPCX) for the treatment of rheumatoid arthritis (RA) by transdermal delivery. TPCX was prepared and characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR) analysis, transmission electron microscope (TEM), and scanning electron microscope (SEM). The solubility of TPCX was determined. Then, a TPCX cream was prepared to evaluate its percutaneous permeability and the antiarthritis effect. The transdermal permeability was determined using the Franz method, and a microdialysis system was used for skin pharmacokinetic study. A rat model of RA was prepared to evaluate the pharmacological effects. TPCX increased the solubility of triptolide in water, and the percutaneous permeability of TPCX cream was greatly enhanced compared with triptolide cream. The skin pharmacokinetic study indicated that TPCX cream has a longer biological half-life (t1/2) and mean residence time (MRT), but it has a shorter Tmax than that of triptolide cream in vivo. The area under the curve (AUC0–t)/AUC0–∞) and the peak concentration (Cmax) of TPCX cream were obviously higher than those of triptolide cream. The TPCX-loaded cream alleviated paw swelling and slowed down the progression of arthritis by inhibiting the inflammatory response by down regulating the TNF-α, IL-1β, and IL-6 levels, thus exhibiting excellent antiarthritic effects. In summary, the prepared TPCX effectively increases the hydrophilicity of triptolide, which is good for its percutaneous absorption and enhances its effect on RA rats. TPCX can be a good candidate for the transdermal delivery to treat RA.
Collapse
Affiliation(s)
- Xin-Yi Liu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Wen-Jun Pei
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Ye-Zhen Wu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Fang-Li Ren
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Si-Yu Yang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Xiu Wang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, PR China
| |
Collapse
|
20
|
Burgos RA, Alarcón P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Molecules 2020; 26:molecules26010005. [PMID: 33374961 PMCID: PMC7792620 DOI: 10.3390/molecules26010005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Andrographolide is a labdane diterpene and the main active ingredient isolated from the herb Andrographis paniculata. Andrographolide possesses diverse biological effects including anti-inflammatory, antioxidant, and antineoplastic properties. Clinical studies have demonstrated that andrographolide could be useful in therapy for a wide range of diseases such as osteoarthritis, upper respiratory diseases, and multiple sclerosis. Several targets are described for andrographolide, including the interference of transcription factors NF-κB, AP-1, and HIF-1 and signaling pathways such as PI3K/Akt, MAPK, and JAK/STAT. In addition, an increase in the Nrf2 (nuclear factor erythroid 2–related factor 2) signaling pathway also supports its antioxidant and anti-inflammatory properties. However, this scenario could be more complex since recent evidence suggests that andrographolide targets can modulate glucose metabolism. The metabolic effect of andrographolide might be the key to explaining the diverse therapeutic effects described in preclinical and clinical studies. This review discusses some of the most recent evidence about the anti-inflammatory and metabolic effects of andrographolide.
Collapse
Affiliation(s)
- Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: ; Tel.: +56-63-2293-015
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- PhD Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Juan Hancke
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
| |
Collapse
|